$\qquad$

1. Define each of the following terms:
(a) orthogonal set
(b) orthogonal matrix
(c) orthogonal complement of a subspace
2. Let $V=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, \begin{array}{ll}x-y+z=0\end{array}\right\}$
(a) Find an orthogonal basis for $V$ (with respect to the usual inner product on $\mathbb{R}^{3}$ ).
$\qquad$
(b) Use your answer from part (a) to define the linear transformation $\mathbb{R}^{3} \xrightarrow{\text { proj }_{V}} V$.
(c) Describe $V^{\perp}$. [Hint: this requires no computation.]
3. Prove that if $P$ and $Q$ are orthogonal matrices, then so is $P Q$.
