\qquad

1. Which, if any, of the following matrices are positive definite? Explain your answers.
(a) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(b) $B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
(c) $C=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$
(d) $D=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$
\qquad
2. Let $A=\left(\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right)$
(a) Calculate the characteristic polynomial of A.
(b) State the conclusion of the Cayley-Hamilton Theorem for A.
(c) Use the Cayley-Hamilton Theorem to find a formula for A^{-1} in terms of A and I.
(d) [BONUS] What is the minimal polynomial of A ?
