1. For any $u \in{ }^{n}$, let $|u|$ denote the (usual notion of) length of u; and for any $A \in{ }^{n \times n}$, let $\|A\|$ denote the maximum value of $f\left(x_{1}, \ldots, x_{n}\right)=\left|A\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)\right|$ subject to the constraint $g\left(x_{1}, \ldots, x_{n}\right)=\left|\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)\right|=1$. Using only logic only (no calculations!), show that each of the following properties hold:
(a) $\|A+B\| \leq\|A\|+\|B\|$, for all $A, B \in{ }^{n \times n}$.
(b) $\|k A\|=|k|\|A\|$, for all $A \in{ }^{n \times n}$ and all $k \in$.
(c) $\|A\|=0$ implies A is the zero matrix.
(d) $\|A B\| \leq\|A\|\|B\|$, for all $A, B \in{ }^{n \times n}$.
(e) $\|I\|=1$.
2. Let $A \in{ }^{2 \times 2}$. We will use the method of Lagrange multipliers to maximise $\phi(x, y)=$ $\left|A\binom{x}{y}\right|^{2}$ subject to the constraint $\gamma(x, y)=\left|\binom{x}{y}\right|^{2}=1$. [The squaring is just to get rid of the square roots, which makes calculating derivatives easier!]
(a) Show that $\nabla \phi(x, y)=2 A^{T} A\binom{x}{y}$.
(b) Show that λ is a Lagrange multiplier if and only if it is an eigenvalue of $A^{T} A$.
(c) Show that if (λ, x, y) is a solution of the system

$$
\left\{\begin{array}{l}
\nabla \phi(x, y)=\lambda \nabla \gamma(x, y) \\
\gamma(x, y)=1
\end{array}\right.
$$

then $\phi(x, y)=\lambda$.
(d) Conclude that $\|A\|$ is the square root of the largest eigenvalue of $A^{T} A$. [Remember that a positive matrix -i.e., one of the form $A^{T} A$-cannot have negative eigenvalues!]
[All these results generalise to ${ }^{n \times n}$ for $n>2$.]
3. (a) Show that if λ is an eigenvalue of A, then λ^{2} is an eigenvalue of A^{2}.
(b) Show that if $A \in{ }^{n \times n}$ is diagonalisable, and λ is an eigenvalue of A^{2}, then $\pm \sqrt{\lambda}$ is an eigenvalue of A.
(c) Conclude that if A is a symmetric matrix, then

$$
\|A\|=\max \{|\lambda| \mid \lambda \text { is an eigenvalue of } A\} .
$$

(d) Calculate the norm of each of the following matrices:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

(e) Show that the parallelogram law fails for this notion of norm of a matrix-i.e., there does not exist an inner product $2 \times 2 \times 2 \times 2 \xrightarrow{\langle,\rangle}$ such that $\|A\|=\sqrt{\langle A, A\rangle}$.

