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Abstract. This is the sequel of an article on persistent double
limits in weak double categories. Here we consider their links with
flexible weighted limits in 2-categories.

Introduction

Our recent article ‘Persistent double limits’ [GP3] continues our
study of double limits in a weak double category [GP1, GP2]. The
main results of [GP3] deal with an invariance property, called persis-
tence, which was introduced in 1989 [Pa]. This property is characterised
by two Persistence Theorems: essentially, a weak double category I
parametrises persistent (double) limits if and only if every connected
component of its ordinary category of objects and horizontal arrows has
a natural weak initial object, if and only if I-based limits and pseudo
limits coincide up to equivalence.

Here we consider the links of flexible weighted limits in a 2-category
A (defined in [BKPS]) with the persistent double limits in A (viewed
as a double category with trivial vertical arrows). These links were
already conjectured in [Pa] and investigated in Verity’s thesis [Ve].

In Section 1 we prove that, for a given 2-functor W : I→ Cat (called
the weight), the W -weighted limit of a 2-functor F : I → A can be
obtained as a double limit in A, parametrised over a double category
El(W ) of elements of W (as stated in [Pa]). It is thus a universal
double cone, i.e. a terminal object in a double category ConeW (F ) of
weighted cones of F . The same holds for the pseudo case, concerned
with weighted pseudo limits, pseudo double limits and weighted pseudo
cones in the double category PsConeW (F ).

Section 2 is based on results of [BKPS], saying that pseudo W -limits
can be reduced to strict W ′-limits, with respect to a derived weight
W ′ : I→ Cat. In fact we show that the double categories PsConeW (F )
and ConeW ′(F ) are isomorphic.

In the last Section 3, taking advantage of the first Persistence The-
orem of [GP3], we prove that a 2-functor W : I → Cat is a flexible
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weight if and only if the associated double category El(W ) parametrises
persistent double limits.

1. From weighted 2-limits to double limits

After reviewing the definition of W -weighted limits in a 2-category
A [St, K1, K2], we construct the double category of elements El(W )
as (a double category version of) the Grothendieck semidirect product
construction applied to W . Note that it is not a 2-category but in fact
has non-trivial vertical arrows. Then we prove that W -weighted limits
can be obtained as double limits in A (viewed as a horizontal double
category), parametrised by El(W ). They are thus universal double
cones, i.e. terminal cones based on a double category. All this works
both in the pseudo sense and the strict one.

I is always a small 2-category equipped with a 2-functor W : I →
Cat, its weight. We write as [I,Cat] (resp. [I,Cat]ps) the 2-category
of 2-functors I→ Cat, their 2-natural (resp. pseudo natural) transfor-
mations, and modifications.

1.1. Weighted limits and pseudo limits. The W -weighted pseudo
limit (L, λ), or pseudo W -limit, of a 2-functor F : I → A is an object
L = psLimWF of A equipped with a pseudo natural transformation

(1) λ : W → A(L, F (−)) : I→ Cat,

that gives, for every A in A, an isomorphism of categories

(2) A(A,L) ∼= [I,Cat]ps(W,A(A,F )).

This means that:

(i) for every similar pair (A, h : W → A(A,F )) there is a unique mor-
phism f : A→ L in A such that:

(3) h = A(L, f).λ : W → A(A,F ),

(ii) for every modification ξ : h → k : W → A(A,F ) there is a unique
2-cell α : f → g : A→ L in A such that:

(4) ξ = A(L, α).λ : h→ k : W → A(A,F ).

The (strict) W -limit of F , written as LimWF , is similarly defined,
replacing ‘pseudo natural’ by 2-natural and [I,Cat]ps by [I,Cat].

The trivial weight W : I → Cat, constant at the terminal category
1, gives the conical limit of F (i.e. its ordinary 2-limit). As well known,
all conical limits in A can be constructed from products and equalisers
(in the 2-dimensional sense).

Moreover, all weighted limits can be constructed from the conical
ones, adding cotensors 2 t X; this is the limit of the functor X : 1→ A
weighted by 2 : 1→ Cat [St].
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1.2. From weighted 2-categories to double categories. We want
now to show that all W -weighted limits (resp. pseudo limits) in A can
be obtained as double limits (resp. pseudo limits) in A, parametrised
over the double category El(W ) of elements of the 2-functor W : I →
Cat.

The latter is defined as the following double comma 1 ↓↓ W (see
[GP2], Subsection 2.5)

(5)

El(W )
P //

Q

��

1

��
π

��I
W

// Cat

Concretely, an object of El(W ) is a pair (I,X) where I ∈ ObI and
X ∈ Ob(WI) (viewed as a functor X : 1→ WI).

A horizontal arrow i = (i,X) : (I,X) → (I ′, X ′) ‘is’ an I-morphism
i : I → I ′ such that (Wi)(X) = X ′; they compose as in I. A vertical
arrow x = (I, x) : (I,X) ·→ (I, Y ) is a W (I)-morphism x : X → Y ; they
compose as in W (I).

A double cell ξ : (x i
j y)

(6)

(I,X)
i //

•
x

��

(I ′, X ′)

•
y

��
ξ

(I, Y )
j
// (I, Y ′)

comes from a 2-cell ξ : i → j : I → I ′ of I such that (Wξ)(x) = y,
where (Wξ)(x) is the diagonal of the commutative square

(7)

(Wi)X
(Wξ)X

//

(Wi)x

��

(Wj)X

(Wj)Y

��

(Wx)(x) = y : X ′ → Y ′,

= (Wi)(X) = X ′,

(Wi)Y
(Wξ)Y

// (Wj)Y ′ (Wj)(Y ) = Y ′,

which expresses the naturality of Wξ on the map x : X → Y .
A 2-functor F : I→ A between 2-categories has an associated double

functor F (W ) with values in the horizontal double category of A

(8)

F (W ) : El(W )→ A, (I,X) 7→ FI,

(i : (I,X)→ (I ′, X ′)) 7→ Fi : FI → FI ′,

(x : (I,X) ·→ (I, Y )) 7→ eFI ,

(ξ : (x i
j y)) 7→ (Fξ : (FI Fi

Fj FI
′)).
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1.3. Cones and limits. The double category PsCone(F (W )) of the
pseudo cones of the double functor F (W ) : El(W ) → A is defined in
[GP3], Section 5, as a double comma D ↓↓F (W ) of the diagonal functor
D, where 1l is the singleton double category

(9)

PsCone(F )
P //

��

A

D

��
π

��1l
F (W )

// Lax(I,A)

It can be analysed as follows.

(a) A pseudo cone (A, h : A → F (W )) is an object A of A equipped
with:

- a map h(I,X) : A→ FI, for every I in I and every X ∈ W (I),

- a 2-cell h(I, x) : h(I,X) → h(I, Y ) : A → FI, for every I in I and
every x : X → Y in W (I),

- an invertible 2-cell h(i,X) : Fi.h(I,X) → h(j,Wi(X)), for every
i : I → J in I and every X ∈ W (I)

(10)

A
h(I,X)

// FI

Fi

��
↓h(i,X)

A
h(J,Wi(X))

// FJ

under the axioms (pht1–5) of naturality and coherence (in [GP3], Sub-
section 3.2).

It is a cone when all the comparison cells h(i,X) are vertical identi-
ties.

When speaking of a consistent pair (I,X), or (I, x), or (i,X) we will
mean one as above.

(b) A horizontal morphism f : (A, h) → (A′, h′) of pseudo cones is a
horizontal arrow f : A → A′ in A that commutes with the cone ele-
ments (for every consistent pair (I,X), or (I, x), or (i,X)), as follows:

(i) h(I,X) = h′(I,X).f : A→ FI,

(ii) h(I, x) = h′(I, x).f : A⇒ FI,

(iii) h(i,X) = h′(i,X).f : A⇒ FJ.

Horizontal morphisms compose, forming a category.

(c) A vertical morphism ξ : (A, h) ·→ (A, k) of pseudo cones is a modi-
fication ξ : (A h

k F (W )).
We have thus, for every consistent pair (I,X), a 2-cell

ξ(I,X) : h(I,X)→ k(I,X) : A→ FI
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in A that satisfies the conditions (mod1, 2) of [GP3], Definition 4.2.

(d) A double cell of cones

(11)

(A, h)
f //

•
ξ
��

(A′, h′)
•
ζ
��

α

(A, k) g
// (A′, k′)

is a 2-cell α : f → g : A→ A′ in A such that, for every pair (I,X)

(12) A

f

↓α
//

g
// A
′

h′(I,X)

↓ζ(I,X)
//

k′(I,Y )
// FI = ξ(I,X).

Spelling out the conditions of [GP3], Subsection 5.7, for a pseudo
cone (L, λ) of F (W ) to be its pseudo limit, we have

(lim1) for every pseudo cone (A, h : A → F (W )) there is a unique
morphism f : A→ L in A such that

(13) h(I,X) = λ(I,X).f : A→ FI (for I in I, X in WI),

(14) h(I, x) = λ(I, x).f : A⇒ FI (for I in I, x : X → Y in WI),

(lim2) for every vertical morphism ξ : (A, h) ·→ (A, k) of pseudo cones
there is a unique 2-cell α : f → g : A→ L in A such that

(15) A

f

↓α
//

g
// L

λ(I,X)
// FI = ξ(I,X) (for I in I, X in WI).

1.4. Proposition (From weighted 2-limits to double limits). For every
2-functor F : I→ A, the weighted limit (LimWF, λ) is the same as the
double limit of the associated double functor F (W ) : El(W ) → A (i.e.
they solve the same universal problem).

Similarly the weighted pseudo limit (psLimWF, λ) is the same as the
pseudo limit of F (W ).

Proof. The analytic descriptions of these ‘limits’, in 1.1 and 1.3, amount
to the same. �

1.5. Definition (Weighted cones). This result allows us to define the
double categories of W -weighted pseudo cones and strict cones of the
2-functor F : I→ A as

(16)
PsConeW (F ) = PsCone(F (W )),

ConeW (F ) = Cone(F (W )).

The terminal objects of these double categories give the W -weighted
limit of F , pseudo or strict, respectively.
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On the other hand, there seems to be no natural way of expressing the
2-dimensional universal property of weighted (strict or pseudo) limits
by terminality in a 2-category.

1.6. A direct construction of weighted cones. Let V be the 2-
functor

(17) V : A→ [I,Cat], V (A) = A(A,F (−)).

Without going through El(W ) and F (W ), the double categories of
weighted (pseudo) cones can be constructed, up to isomorphism, as the
following double commas ([GP2], Subsection 2.5)

(18)

PsConeW (F ) //

��

1

W
��

ConeW (F ) //

��

1

W
��

π

��

π′

��A
V

// [I,Cat]ps A
V
// [I,Cat]

In fact all the items (including compositions) of these double cate-
gories amount to the corresponding ones in the double categories anal-
ysed in 1.3.

1.7. Comments. We have already recalled in [GP3], Subsection 5.7,
that the existence of all weighted limits in a 2-category A amounts to
that of all double limits in the associated horizontal double category.

We will prove in Theorem 3.3 that a 2-functor W : I → Cat is a
flexible weight if and only if the double category El(W ) parametrises
persistent limits in Cat (or equivalently in every weak double category).

It would be interesting to consider whether any double limit in A,
based on a double category I, can be obtained as a single weighted
limit for an associated weight W : I → Cat (defined on an associated
2-category).

2. Strictifying pseudo limits by derived weights

I is a fixed small 2-category. We recall from [BKPS] that pseudo
W -limits can be reduced to strict W ′-limits, with respect to a derived
weight W ′ : I → Cat. More precisely, we show that the double cate-
gories PsConeW (F ) and ConeW ′(F ) are isomorphic.

2.1. Surjective equivalences. We recall that, in a 2-category C, a
morphism q : X → A is said to be a surjective equivalence if it can be
completed to an adjoint equivalence (s, q, η, ε) where the unit η : 1→ qs
is an identity

(19)
s : A −→←− X : q s a q,
η : 1A = qs, ε : sq ∼= 1X , (εs = 1s, qε = 1q).
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In Cat this is plainly equivalent to a full and faithful functor q :
X → A which is surjective on objects: then, after choosing a section
s0 : ObA→ ObX for the objects, all the rest is determined.

2.2. Strictifying pseudo natural transformations. We recall, from
[BKP, BKPS], that the 2-category [I,Cat] of 2-functors I → Cat,
their 2-natural transformations and modifications is 2-reflective in the
2-category [I,Cat]ps of such 2-functors, their pseudo natural transfor-
mations and modifications.

The reflector is the strictifying 2-functor (−)′, right 2-adjoint to the
inclusion (−), whose computation will be written out below (in 2.6)

(20) (−)′ : [I,Cat]ps −→←− [I,Cat] : (−), (−)′ a (−).

As in [BKPS] we write a pseudo natural transformation k : W → V
in bold-face character. The unit and counit of the 2-adjunction are
written as

(21)

p : id[I,Cat]ps → (−).(−)′, q : (−)′.(−)→ id[I,Cat],

pW : W → W ′, qV : V ′ → V,

qW ′ .(pW )′ = 1W ′ , qV .pV = 1V .

Let us note that the unit p is a 2-natural transformation, whose
components pW are pseudo natural transformations of 2-functors.

The universal property of the pseudo natural component pW : W →
W ′ says that every pseudo natural k : W → V can be written as
hpW : W → W ′ → V , for a unique strict h : W ′ → V (namely h =
qV .k

′), yielding an isomorphism of categories

(22)

[I,Cat](W ′, V ) ∼= [I,Cat]ps(W,V ),

(h : W ′ → V ) 7→ (hpW : W → V ),

(k : W → V ) 7→ (qV k′ : W ′ → V ).

2.3. The derived weight. For a fixed weight W : I → Cat we con-
sider its derived weight W ′ : I → Cat, with its component of the unit
and the counit

(23)
p = pW : W → W ′, q = qW : W ′ → W,

qp = 1W qW ′ .(pW )′ = 1W ′ .

By [BKPS], Proposition 4.1 (or [BKP], Theorem 4.2) there is a
unique invertible modification εW : pq ∼= id that gives an adjoint equiv-
alence in [I,Cat]ps

(24)
p : W −→←− W ′ : q, p a q,

η : 1W = qp, ε : pq ∼= 1W ′ (εp = 1p, qε = 1q).

The retraction q is thus a surjective equivalence in [I,Cat]ps.
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For every object I in I we have a surjective equivalence qI of ordinary
categories

(25)

pI : W (I) −→←− W ′(I) : qI pI a qI,
qI.pI = idW (I), εI : pI.qI ∼= idW ′(I)

(εI .pI = 1pI , qI.εI = 1qI),

where, for X = (qI.pI)(X) in W (I) and Y in W ′(I):

(26)
W ′(I)(pI(X), Y ) ∼= W (I)(X, qI(Y )),

(f : pI(X)→ Y ) 7→ (qI(f) : X → qI(Y )).

As recalled above, this is equivalent to a full and faithful functor
qI : W ′(I)→ W (I) surjective on objects.

2.4. Theorem. For every 2-functor F : I → A (with values in a 2-
category) there is an isomorphism of double categories (writing V =
A(A,F (−)))

(27)

ConeW ′(F ) −→←− PsConeW (F ),

(h : W ′ → V ) 7→ (hpW : W → V ),

(k : W → V ) 7→ (qV .k
′ : W ′ → V ).

which extends the isomorphism (22) of ordinary categories.

Proof. The double categories PsConeW (F ) and ConeW ′(F ) are defined
by the double commas (18).

The pseudo natural transformation pW : W → W ′ gives a diagram
of double cells

(28)

ConeW ′(F ) //

��

1 //

W ′

��

1

W
��

π′

��

pW

��A
V

// [I,Cat]
(−)
// [I,Cat]ps

The horizontal universal property of the double comma PsConeW (F )
(in [GP2], Theorem 2.6) gives a double functor

ConeW ′(F )→ PsConeW (F ),

as in (27).
Similarly, the 2-natural transformation qV : V ′ → V gives a diagram
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(29)

PsConeW (F ) //

��

1

W
��

π

��A
V // [I,Cat]ps

(−)′
��

qV

��VA
V

// [I,Cat]

and the vertical universal property of double commas gives a backward
double functor, as in (27) which is inverse to the previous one. �

2.5. Corollary. For every 2-functor F : I→ A the pseudo W -limit of
F amounts to its W ′-limit.

2.6. Computations. For a 2-functor W : I→ Cat, the derived weight
W ′ : I → Cat works as follows. (This computation was deferred in
[BKPS] to an article in preparation, which was not published.)

(a) The category W ′(I) has objects (i′ : I ′ → I,X ′), with i′ in I and
X ′ ∈ W (I ′).

A morphism is a triple

(30) (i′, i′′, x) : (i′ : I ′ → I,X ′)→ (i′′ : I ′′ → I,X ′′),

where x : W (i′)(X ′)→ W (i′′)(X ′′) is a map of W (I).
We have thus a forgetful functor

(31) q(I) : W ′(I)→ W (I), (i′, X ′) 7→ W (i′)(X ′),

which is a surjective equivalence, with a quasi-inverse section

(32)

s(I) : W (I)→ W ′(I),

X 7→ (1I , X), (x : X → Y ) 7→ (1, 1, x) : (1I , X)→ (1I , Y ),

ε : sq ∼= 1X , ε(i′, X ′) = (1, i′, 1) : (1,Wi′(X ′))→ (i′, X ′).

(b) For j : I → J , the functor W ′(j) : W ′(I)→ W ′(J) acts as follows:

(33)
(i′ : I ′ → I,X ′) 7→ (ji′ : I ′ → J,X ′),

(i′, i′′, x) 7→ (ji′, ji′′,W (j)(x)) : W (ji′)(X ′)→ W (ji′′)(X ′′).

(c) For α : j → k : I → J , the natural transformation

W ′(α) : W ′(j)→ W ′(k) : W ′(I)→ W ′(J)

has the following component on the object (i′, X ′) (for i′ : I ′ → I and
X ′ ∈ W (I ′))

(34)
W ′(α)(i′, X ′) = (ji′, ki′,W (αi′)(X ′)) :

(ji′ : I ′ → J,X ′)→ (ki′ : I ′ → J,X ′),
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where αi′ : ji′ → ki′ : I ′ → J and

W (αi′)(X ′) : W (ji′)(X ′)→ W (ki′)(X ′).

(d) One proves that:

- the family q(I) is a 2-natural transformation q = qW : W ′ → W ,
- the family p(I) is a pseudo natural transformation p = pW : W → W ′,

that form the adjoint equivalence (24) in [I,Cat]ps.

3. Flexible weights and persistent double limits

We prove here that a 2-functor W : I→ Cat is a flexible weight, as
defined in [BKPS], if and only if the associated double category El(W )
parametrises persistent double limits.

3.1. Definition (Flexible weight). We know, from section 2.3, that
a 2-functor W : I → Cat comes with a 2-natural transformation q =
qW : W ′ → W which is a surjective equivalence in [I,Cat]ps, with a
weak inverse p = pW : W → W ′ which is pseudo natural.
W is said to be a flexible weight [BKPS] if q : W ′ → W is already a

surjective equivalence in [I,Cat], i.e. it can be completed to an adjoint
equivalence (r, q, η, ε) in the 2-category [I,Cat] where the unit η : 1→
qr is the identity (and the weak inverse r : W → W ′ is 2-natural).

Then, for every I in I, we have a surjective equivalence qI of ordinary
categories

(35)

rI : W (I) −→←− W ′(I) : qI, rI a qI,
qI.rI = idW (I), εI : rI.qI ∼= idW ′(I)

(εI .rI = 1rI , qI.εI = 1qI),

where, for X = (qI.rI)(X) in W (I) and Y in W ′(I):

(36)
W ′(I)(rI(X), Y ) ∼= W ′(I)(X, qI(Y )),

(f : rI(X)→ Y ) 7→ (qI(f) : X → qI(Y )).

This is equivalent to a full and faithful functor qI : W ′(I) → W (I),
surjective on objects.

Finally, W is a flexible weight if and only if the 2-natural transfor-
mation q : W ′ → W admits, for every I in I, a section for the objects

(rI)0 : ObW (I)→ ObW ′(I),

so that the derived 2-functor rI : W (I) → W ′(I) is 2-natural in the
variable I.
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3.2. Theorem. A 2-functor W : I → Cat is a flexible weight if and
only if the double category El(W ) is grounded, i.e. every connected com-
ponent of the ordinary category HorEl(W ) (of objects and horizontal
arrows) has a natural weak initial object (see [GP3], Subsection 6.2).

Note. We recall that this also amounts to the fact that double limits
based on El(W ) are persistent.

Proof. Saying that W is a flexible weight means that the 2-natural
transformation q : W ′ → W admits, for every I in I, a section

rI : ObW (I)→ ObW ′(I)

for the objects so that the derived 2-functor rI : W (I) → W ′(I) is
2-natural in I.

First, for X in W (I), we have an object of W ′(I) (see 2.6)

(37)
(rI)(X) = (ρ(I,X) : r0(I,X)→ I, r1(I,X))

(r1(I,X) ∈ W (r0(I,X)),

satisfying (precisely) the condition of splitting the functor qI : W ′(I)→
W (I), (i′, X ′) 7→ W (i′)(X ′)

(38) W (ρ(I,X))(r1(I,X)) = X.

Note that, on a morphism x : X → Y of W (I), we have:

(39)
(rI)(x : X → Y ) = (ρ(I,X), (ρ(I, Y ), x) :

(ρ(I,X), r1(I,X))→ (ρ(I, Y ), r1(I, Y )).

Second, we have the condition of 2-naturality on a cell α : j → k :
I → J

(40) WI
rI // W ′I

W ′α +3 W ′J = WI
Wα +3 WJ

rJ // W ′J,

(W ′α.rI)(X) = W ′(α)(ρ(I,X), r1(I,X))

= (jρ(I,X), kρ(I,X),W (α.ρ(I,X))),

rJ(W (αX)) = (ρ(J,X), ρ(J,X), (Wα)X).

W (r0(I,X))
Wρ(I,X)

// WI

Wα

��
W (r0(J,X))

(Wα)X
+3 WJ

(In particular r0(I,X) = r0(J,X), when I, J are in the same con-
nected component of the category of arrows of I.)

Now, equation (38) says that ρ(I,X) : r0(I,X) → I is a horizontal
morphism of the double category El(W )

(41) ρ(I,X) : (r0(I,X), r1(I,X))→ (I,X),
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and equation (40) says that this family ρ(I,X) is natural with respect
to the horizontal morphisms of El(W ). In other words, our condition
means that El(W ) is grounded. �

3.3. A partial converse. Verity’s thesis gives a partial converse to
this result.

As proved in [Ve], Theorem 2.7.1, the class of persistent weighted
colimits in the 2-category Cat is closed (in the sense of [AK]) and gen-
erated by sums, coinserters, coequifiers and idempotent-splittings. It
coincides thus with the closed class of (PIES)*-colimits, which precisely
amounts to the class of flexible colimits in Cat, as proved in [BKPS].
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Catég. 40 (1999), 162–220.
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