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follows: a map f :A→ B is in E ′ if each of its pullbacks lies in E (that is, if it is stably in E), and
is inM∗ if some pullback of it along an effective descent map lies inM (that is, if it is locally in
M). We find necessary and sufficient conditions for (E ′,M∗) to be another factorization system,
and show that a number of interesting factorization systems arise in this way. We further make
the connexion with Galois theory, where M∗ is the class of coverings; and include self-contained
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1. Introduction

1.1. Although many categories are richly endowed with factorization systems,
there has been little investigation of general processes that produce such systems.
It is of course well known that every full reflective subcategory X of a category
C gives rise (under very mild conditions on C) to a factorization system (E ,M)
on C, where E is the class of maps inverted by the reflexion I: C → X ; the
factorization systems that arise thus, called the reflective factorization systems,
are those for which g ∈ E whenever fg ∈ E and f ∈ E ; and their properties were
examined in considerable detail in [6]. What we investigate in the present article
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2 A. CARBONI ET AL.

is a process that can be applied to any factorization system (E ,M) on a category
C, and then sometimes produces a new factorization system (E ′,M∗).

Starting from the given factorization system (E ,M), we define as follows
new classes E ′ and M∗ of maps: a map f : A→ B lies in E ′ if every pullback
of f lies in E , while f lies in M∗ if some pullback of f along an effective
descent map p: E → B lies in M. Thus E ′ consists of the maps stably in E ,
andM∗ of those locally inM. When (E ′,M∗) is a factorization system, it may
be said to arise by simultaneously stabilizing E and localizingM. (This process
is vacuous when E is already pullback-stable, so that E ′ = E ; for then in fact
M∗ =M – although this is not quite obvious.)

It is always the case that a map g ∈ E ′ and a map n ∈ M∗ have the
“unique diagonal fill-in property”, denoted below by g ↓ n; so that (E ′,M∗) is
a factorization system if and only if every map f has a factorization f = ng
with n ∈ M∗ and g ∈ E ′. In general this is not the case; counter-examples
show that it may be, in a certain sense, “far from true”. However it is indeed the
case in a number of interesting examples; and among the factorization systems
arising thus as (E ′,M∗), starting from a reflective factorization system (E ,M),
are several important ones: Eilenberg’s monotone-light factorization for maps of
compact Hausdorff spaces; the factorization of a field extension into a separable
one and a purely-inseparable one; and various factorization systems associated
with hereditary torsion theories on abelian categories. Our chief aims are to give
a necessary and sufficient condition, in terms of the factorization system (E ,M),
for (E ′,M∗) to be a factorization system, and to work out in detail the examples
above.

At the same time we wish to point out the connexion with Galois theory, as
formulated in the papers [12], [13], and [14] of Janelidze: when (E ,M) is the
reflective factorization system arising from an admissible reflexion of C onto a
full subcategory X , the maps f : A → B in M∗ are just what are called in
Galois theory the coverings of B (or in some contexts the central extensions of
B). So each of our positive examples is in fact a theorem about the corresponding
“Galois theory”. Moreover some of these Galois theories are new – certainly that
corresponding to Eilenberg’s factorization, which may be seen as a Galois theory
for C∗-algebras.

Since this program takes us not only into very diverse areas of mathematics,
but even into areas of category theory – factorization systems, descent theory,
Galois theory – that will be unfamiliar to many, we have thought it best to ease
the reader’s task by keeping the article almost completely self-contained, revising
as we go both the category theory and the background to the examples.

The occasion of our coming together for this joint investigation was Carboni’s
interest in the situation he discusses in Sections 9 and 10 of his forthcoming [4].
There, with (E ,M) derived from a full reflective subcategory X of C – not indeed
as the corresponding reflective factorization system, but as a close relation – he
argues that a map f : A→ B in M∗ is the appropriate abstraction of “a family
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ON LOCALIZATION AND STABILIZATION FOR FACTORIZATION SYSTEMS 3

(Ab)b∈B of objects of X indexed by the object B of C ”, in connexion with
his concept of “C-completeness” of X . However that investigation and this have
proceeded quite independently; and, while our results are very relevant to his
concerns, we have put particular emphasis on factorization systems, while he
expresses interest rather in the more general “reflective subfibrations” that we
shall mention below.

We turn to a brief description of the contents.

1.2. The modern notion of a factorization system (E ,M) on a category C was
introduced by Freyd and Kelly [8]; the earlier bicategorical structures of Isbell
[10] can be seen as those factorization systems for which every E is an epimor-
phism and every M a monomorphism. Later authors have further clarified the
elementary properties of factorization systems, and further simplified the axioms
that describe them; since there is no easily-accessible connected account of these
results, we have devoted Section 2 to a succinct modern treatment.

In particular we devote Section 2.12 to a comparison of factorization systems
with the more general notion of a fibrewise-reflective subfibration of the canonical
fibration B 7→ C/B. Since the M of a factorization system is pullback-stable,
the pseudofunctor B 7→ M/B gives a subfibration of the canonical one; and
M/B is reflective in C/B, the reflexion of f : A→ B being m: C → B, where
f = me is the (E ,M)-factorization of f . (Because the reflexion C/B →M/B
is not itself a map of fibrations unless the class E too is pullback-stable, we
say that the subfibration is fibrewise-reflective, rather than reflective.) One may
very well, however, have a fibrewise-reflective subfibration – a pullback-stable
class M of maps, with each M/B reflective in C/B – which is not part of a
factorization system (E ,M); we recall the result that it is indeed part of such a
factorization system precisely whenM is closed under composition.

In Section 3, drawing chiefly on [6], we recall such properties of reflective
factorization systems as we need, and in particular note that the reflexions called
semi-left-exact in [6] are exactly those called admissible by Janelidze in his
Galois theory. For such reflexions there is a simple characterization of the maps
f : A → B that lie in M: namely, f is in M precisely when it is the pullback
of its reflexion If : IA → IB along the reflexion-unit B → IB. These are the
maps called trivial coverings in Galois theory; so that the maps inM∗, called as
we said “coverings”, are those that locally are trivial coverings. In Section 3.9,
we describe some factorization systems related to the reflective ones, including
that used by Carboni in the considerations we mentioned above; we shall find
that, in most of the examples, such factorization systems give the same (E ′,M∗)
as their simpler reflective relatives.

The notion of “locally” is given by descent theory; in Section 4 we describe the
basic ideas of this briefly but fully, and augment them by quoting recent results
of Reiterman, Sobral, Tholen, and Janelidze that are needed for our discussion.
Then, in Section 5, for an admissible reflective X , we state and prove the basic
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4 A. CARBONI ET AL.

theorem of Galois theory, in the special case suited to our context – namely
that where “covering” does indeed mean “any map in M∗ ”, and not – as it
occasionally does – something like “epimorphism in M∗ ”.

In Section 6 we use descent theory to give a necessary and sufficient condition
for (E ′,M∗) to be a factorization system: it is that, for any f : A→ B, we can
find an effective descent map p: E → B such that, if the (E ,M)-factorization
of the pullback p∗(f) is me, we have e ∈ E ′. When there are enough projectives
(with respect to effective descent maps), it comes to the same thing to say that
the (E ,M)-factorization f = me of f : A → B has e ∈ E ′ whenever B is
projective. The counter-examples showing how badly this may fail are at the end,
in Section 10: first, M∗/B may not even be reflective in C/B; secondly, when
it is reflective for each B, the class M∗ may not be closed under composition;
and thirdly, when theM∗/B are reflective andM∗ is closed under composition,
so that M∗ is indeed part of a factorization system (F ,M∗), the class F may
fail to be E ′ (being strictly larger). Note that, since E ′ ⊂ F ⊂ E in this last case,
F can never be pullback-stable unless it coincides with E ′.

Finally, Sections 7, 8 and 9 give the details of the positive examples mentioned
above, along with the necessary mathematical background – which it would
be hard to find in the literature in the precise forms needed for our purposes.
Especially in these sections, the reader will find questions that could have been
pursued, but were not for lack of time – in view of the publication deadline
for these articles from the 1994 European Colloquium on Category Theory at
Tours.

1.3. Before ending, we wish to make public our most sincere gratitude to the
organizers of that colloquium, and in particular to Pierre Damphousse, for their
extraordinary kindness and their unstinting personal dedication that made the
meeting such a success; as well as for their very generous financial support.

We further express our gratitude to our various funding bodies: Carboni to
the Italian CNR, Janelidze and Kelly to the Australian ARC, and Paré to the
Canadian NSERC.

2. Revision of Factorization Systems

2.1. The general definition of a factorization system, and the really basic results,
are most easily found in Sections 2.1 and 2.2 of Freyd–Kelly [8], which we
largely repeat here, augmented by a few later insights – learnt in part from such
others as Bousfield [3]. It is far easier to reason about factorization systems if
we first introduce the simple notion of prefactorization system.

Given maps p and i in our category C, we write p ↓ i if, for every pair of
maps u, v with vp = iu, there is a unique w (often called the diagonal fill-in)
making commutative
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ON LOCALIZATION AND STABILIZATION FOR FACTORIZATION SYSTEMS 5

p -

	�
�
�
�
�

w
u

?
i

- ?

v (2.1)

.

For any class H of maps in C we set

H↑ = {p | p ↓ h for all h ∈ H}, H↓ = {i | h ↓ i for all h ∈ H}.

By a prefactorization system (E ,M) on C is meant a pair of classes of maps
having E = M↑ and M = E↓. The usual arguments about Galois connexions
tell us that every class H gives rise to prefactorization systems (H↑,H↑↓) and
(H↓↑,H↓). If we order prefactorization systems by setting (E ,M) 6 (E ′,M′)
whenever M ⊂ M′, or equivalently whenever E ⊃ E ′, they form a (possibly
large) complete lattice, with

∧
(Eα,Mα) = (M↑,M) where M =

⋂
Mα; the

top element has E = the isomorphisms, M = all maps.

2.2. PROPOSITION. Let (E ,M) be a prefactorization system. Then

(a) M contains the isomorphisms and is closed under composition;
(b) every pullback of an M is an M;
(c) if fg is an M so is g, provided that f is either anM or a monomorphism;
(d) if α: F → G: K → C is a natural transformation with each αK in M, and

if limF and limG exist, then limα: limF → limG is in M.
Proof. All are easy consequences of the fact that M is of the form H↓

for some H.

2.3. REMARK. A classM of maps containing the identities and satisfying (d)
above necessarily satisfies (b) and (c), and contains the isomorphisms – but need
not be closed under composition; see Im and Kelly [9, Thm. 2.5].

2.4. PROPOSITION. For a prefactorization system (E ,M), the intersection
E ∩M consists of the isomorphisms.

Proof. Take p = i ∈ E ∩M, u = 1, v = 1 in (2.1).

2.5. PROPOSITION. When C is either finitely complete or finitely cocomplete,
the following properties of a prefactorization system (E ,M) are equivalent:
(a) every E is an epimorphism;
(b) if fg is in M, so is g;
(c) every equalizer is in M;
(d) every coretraction is in M.
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6 A. CARBONI ET AL.

Proof. That (a) implies (b) and that (a) implies (c) follow easily from the
fact that M = E↓, while it is trivial that (b) implies (d) and that (c) implies
(d); it remains to show that (d) implies (a). Suppose then that we have xe = ye
where x, y: A → B and e ∈ E . If C has binary products, set u = 〈1A, x〉, v =
〈1A, y〉: A → A × B; if instead C has pushouts, let u, v be the cokernel-pair
of e. In both cases we have, for some t and for some s,

ue = ve, tu = tv = 1, x = su, y = sv. (2.2)

Now (d) gives a diagonal w in

e -

	�
�
�
�
�

w
e

?
v

- ?

u

;

and tu = tv = 1 gives w = 1, so that u = v; whence x = y by (2.2).

The test for membership of H↑ often simplifies:

2.6. PROPOSITION. If C admits pullbacks and H is stable under pullbacks, a
map f lies in H↑ if and only if, whenever f = ht with h ∈ H, there is unique
diagonal s in

f -

	�
�
�
�
�

s
t

?
h

- ?

1 (2.3)

.

Proof. For an f with this latter property, consider a commutative diagram

f -

u

?
k

- ?

v (2.4)
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ON LOCALIZATION AND STABILIZATION FOR FACTORIZATION SYSTEMS 7

with k ∈ H. We have a commutative diagram

f -

t

?
h

- ?

1

x

?
k

- ?

v

wherein the bottom square is a pullback and xt = u; and the pullback h of k lies
in H. So we have an s as in (2.3), and clearly xs provides a diagonal for (2.4).
As for uniqueness, if w is any diagonal for (2.4) we have w = xs̄ and 1 = hs̄
for some s̄; then xs̄f = wf = u = xt and hs̄f = f = ht, so that s̄f = t. By
the uniqueness of s in (2.3) we have s̄ = s and w = xs.

It is convenient to record:

2.7. LEMMA. For a composite map f = me, suppose that f ↓ m and e ↓ m.
Then m is invertible.

Proof. Since f ↓ m there is a diagonal t in

f -

	�
�
�
�
�

t
e

?
m

- ?

1 (2.5)

;

and since we clearly have commutativity in each of

e -

	�
�
�
�
�

tm
e

?
m

- ?

m

e -

	�
�
�
�
�

1
e

?
m

- ?

m

, ,
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8 A. CARBONI ET AL.

the uniqueness of the diagonal coming from e ↓ m gives tm = 1. By this and
(2.5), m is invertible.

2.8. Although the definition in [8] of a factorization system (E ,M) required each
of E andM to be closed under composition, we can in fact derive this property
from an apparently weaker definition; this is a considerable simplification in
practice. Let us say that a class N of maps is closed under composition with
isomorphisms if vnu ∈ N whenever n ∈ N and v, u are invertible. A pair
(E ,M) of classes of maps in C is said to constitute a factorization system if

(i) each of E and M contains the identities and is closed under composition
with isomorphisms;

(ii) every map in C can be written as me with m ∈M and e ∈ E ;
(iii) if vme = m′e′u with m,m′ ∈M and e, e′ ∈ E , there is a unique w making

commutative the diagram

e - m -

u

?
e′

- ?

w

m′
- ?

v (2.6)

.

Of course (iii) is a consequence of the following – and is in fact equivalent to it
in the presence of (i), since m and e′ in (2.6) could be taken to be identities:

(iii)′ e ↓ m whenever e ∈ E and m ∈ M; that is, E ⊂ M↑ – or equivalently
M⊂ E↓.

By an easy argument, the w of (2.6) is invertible if u and v are so – and in
particular if u and v are identities; this shows the extent to which an (E ,M)-
factorization f = me of f is unique.

2.9. PROPOSITION. Every factorization system (E ,M) is a prefactorization
system; in particular, E and M are closed under composition.

Proof. Since we have (iii)′ above, we needM↑ ⊂ E , and its dual. Let f ∈M↑

have the (E ,M)-factorization f = me; then f ↓ m, while e ↓ m by (iii)′; thus
m is invertible by Lemma 2.7, so that f ∈ E by (i).

2.10. COROLLARY. Factorization systems are just those prefactorization sys-
tems that satisfy (ii) above.

2.11. If (E ,M) is a factorization system on a category C that admits pullbacks,
we have seen that the class M is stable under pullbacks; the class E , however,
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ON LOCALIZATION AND STABILIZATION FOR FACTORIZATION SYSTEMS 9

is not in general stable under pullbacks – a celebrated example being that where
C is the category of topological spaces, E is the class of quotient maps, and
M is the class of continuous injections. We shall commonly write E ′ for the
class of those maps every pullback of which is in E ; clearly E ′ is the greatest
pullback-stable class contained in E , and it coincides with E precisely when E
is pullback-stable; of course E ′ is closed under composition. When the exterior
of the commutative diagram (2.6), whose top and bottom edges are (E ,M)-
factorizations, is a pullback, the interior squares need not in general be pullbacks
– but they are so if e′ ∈ E ′. For then if we form the commutative diagram

ē - m -

u

?
e′

- ?

w

m′
- ?

v

wherein the right square is a pullback and mē = me, the left square is a pullback
too, so that ē ∈ E and m ∈ M, whence there is an isomorphism x with xe = ē
and mx = m. In particular, when E is pullback-stable, pulling back the M-part
and the E-part of an (E ,M)-factorization gives another (E ,M)-factorization; so
that we may equally say that (E ,M)-factorizations are pullback-stable. By a
further ellipsis, we shall simply call a factorization system (E ,M) stable when
E is pullback-stable.

2.12. IfM is any class of maps in C, we shall writeM/B for that full subcategory
of the slice category C/B whose objects are those f : A→ B lying inM. When
(E ,M) is a factorization system, it is clear that each M/B is reflective in
C/B: the reflexion of f : A→ B is m: C → B, with unit e: A→ C (or rather
e: (A, f)→ (C,m) in C/B), where f = me is the (E ,M)-factorization of f .

There are however more general pullback-stable classes M for which each
M/B is reflective in C/B. We say a few words about these, chiefly as a back-
ground for the formulation in Section 6.1 below of our central aims. Since our
real concern, however, is only with factorization systems, the following analysis
is not needed for our positive results; accordingly we omit various details of the
proofs, referring the reader instead to Im and Kelly [9], which organizes and
extends some results of MacDonald and Tholen [19] and of Tholen [23].

To give a classM of maps in C is to give (the objects of) a full subcategory
M̃ of the arrow-category C2; this full subcategory is replete if, as we shall
suppose, M is closed under composition with isomorphisms. If a map f in C,
seen as an object of C2, admits a reflexion m into M̃, one easily sees that the
unit (q, x): f → m of the reflexion has x invertible, and so may be taken to
have the form (q, 1): f → m. Suppose henceforth that C has pullbacks; one goes
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10 A. CARBONI ET AL.

on to show that the subcategory M̃ is reflective in C2 if and only if (a) M is
pullback-stable (compare Remark 2.3 above) and (b) each M/B is reflective in
C/B.

This situation may be expressed in the language of fibrations. The fibration
C2 → C given by the codomain functor may be denoted, in the language of
indexed categories, by B 7→ C/B; then, because M is pullback-stable, B 7→
M/B is a subfibration. When each M/B is reflective in C/B, we may say
that this subfibration is fibrewise reflective; but we should call it a reflective
subfibration only when the reflexion functors C/B → M/B commute with
pullbacks and thus constitute a map of fibrations. Clearly the fibrewise-reflective
subfibration arising as above from a factorization system (E ,M) is a reflective
subfibration precisely when this factorization system is stable. What we now
assert is that not every fibrewise-reflective subfibration arises from a factorization
system.

Suppose indeed that C has pullbacks and that we have such a fibrewise-
reflective subfibration, given by the class M. Let the reflexion into M/B of a
typical f : A→ B be m: C → B, with unit q: A→ C as in

A
q - C

@
@
@
@
@

f
R 	�

�
�
�
�

m

B

(2.7)

.

To say that m is invertible here is to say that 1B: B → B is also a reflexion of f
into M/B; and this, by Proposition 2.6, is to say that f ∈M↑. Accordingly, if
we write E for M↑, we have

m is invertible in (2.7) if and only if f ∈ E . (2.8)

We now show that the following are equivalent:

(i) (E ,M) is a factorization system;
(ii) M is closed under composition;
(iii) in each reflexion (2.7), we have q ∈ E .

Since (iii) implies (i) by Section 2.8 and (i) implies (ii) by Proposition 2.9, we
have only to show that (ii) implies (iii). With the reflexion of f into M/B
given by (2.7), let the reflexion of q into M/C be given by n: D → C, with
unit r: A → D. Then, since mn ∈ M while (2.7) is the reflexion of f into
M/B, there is a unique t with tq = r and mnt = m. From m(nt) = m1 and
(nt)q = nr = q = 1q, the uniqueness clause for the reflexion gives nt = 1; and
now from n(tn) = n1 and (tn)r = tq = r = 1r, the uniqueness clause for the
second reflexion gives tn = 1. So n is invertible, whence q ∈ E by (2.8).
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ON LOCALIZATION AND STABILIZATION FOR FACTORIZATION SYSTEMS 11

When C is finitely complete and finitely cocomplete, the class M of regular
monomorphisms satisfies (a) and (b) above, but is not in general closed under
composition – for instance, when C is the dual of the category of small cate-
gories. Here, then, is a fibrewise-reflective subfibration for which (E ,M) is not
a factorization system.

3. Revision of Factorization Systems Derived from Reflective
Subcategories

3.1. We suppose henceforth that our category C is finitely complete. Let X be a
full replete reflective subcategory of C, the inclusion functor being H: X → C,
and the reflexion I: C → X with its unit η: 1 → HI being so chosen that the
counit is an identity IH = 1. Where confusion is unlikely we often suppress H ,
writing X for HX and writing ηA: A→ IA. We define on C a prefactorization
system (E ,M) by setting

E = (H(morX ))↑, M = (H(morX ))↑↓; (3.1)

note that, because f ↓ Hg if and only if If ↓ g, we have (as was pointed out in
[8, Lemma 4.2.1])

f ∈ E if and only if If is invertible; (3.2)

from which it follows that such a prefactorization system satisfies

if e ∈ E and ef ∈ E then f ∈ E . (3.3)

Observe that in particular we have

ηA: A→ IA lies in E . (3.4)

Whenever C, besides admitting finite limits, also admits arbitrary intersections
of subobjects (or even of strong subobjects, by which we mean those represented
by strong monomorphisms) – and therefore in most cases of practical interest –
this prefactorization system (E ,M) is actually a factorization system. A detailed
study was made by Cassidy, Hébert, and Kelly [6]; the following lemma and
proposition are contained in their Theorem 3.3 (which is in fact more general
still, dealing with an arbitrary adjunction rather than a reflexion). First we write
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12 A. CARBONI ET AL.

a diagram in C that we shall often refer to below – namely

A

@
@
@
@
@

w

R

HHHHHHHHHHH

ηA

j

A
A
A
A
A
A
A
A
A
A
A
A

f

U

C
u
- IA

B
?

v

ηB
- IB

?

If

(3.5)

,

where f : A→ B is any map in C and the square is a pullback. Note that, since
If lies in M by (3.1), Proposition 2.2(b) gives

v ∈M. (3.6)

3.2. LEMMA. Let f : A → B be such that If is a coretraction in C, and
moreover such that, whenever f = ip with i a strong monomorphism lying in
M, we have i invertible. Then If is invertible; that is, f ∈ E .

Proof. Since coretractions are strong monomorphisms and strong monomor-
phisms are stable under pullbacks, (3.6) shows that v is a strong monomorphism
in M. By the hypothesis on f , the map v is invertible; so that we may as well
take v in (3.5) to be 1 and w to be f . The square and the upper triangle in (3.5)
now read ηB = If .u and uf = ηA; applying I we get 1 = If.Iu and Iu.If = 1,
so that If is indeed invertible.

3.3. PROPOSITION. Let C admit, besides finite limits, all intersections of strong
subobjects. Then the prefactorization system (E ,M) is a factorization system,
with the factorization of f : A→ B constructed as follows. Having formed (3.5)
by pulling back, write i: D → C for the intersection of all those strong subobjects
of C, lying in M, through which w factorizes; then w = ig for some g. Now
vi ∈M and g ∈ E , so that f = (vi)g is the (E ,M)-factorization of f .

Proof. Since v ∈ M by (3.6) and i ∈ M by Proposition 2.2(d), we have
vi ∈ M by Proposition 2.2(a); it remains only to show that g ∈ E . Since
applying I to the top triangle of (3.5) gives Iu.Ii.Ig = Iu.Iw = IηA = 1, the
map Ig is a coretraction; by virtue of its construction, therefore, g lies in E by
Lemma 3.2.

3.4. We continue by recalling some further observations from [6]. For a category
C satisfying the conditions of Proposition 3.3, the process assigning to X the
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ON LOCALIZATION AND STABILIZATION FOR FACTORIZATION SYSTEMS 13

factorization system (E ,M) given by (3.1) is a functor Φ from the ordered set
R of all full replete reflective subcategories of C (ordered by inclusion) to the
ordered set F of all factorization systems on C. In the other direction we have
a functor Ψ: F → R, sending a factorization system (E ,M) to the full replete
subcategory Y of C determined by those objects Y for which the map Y → 1
into the terminal object lies inM; that Y is reflective in C follows from Section
2.11 above, since Y may be identified with the slice category M/1 and C with
the slice category C/1; if the (E ,M)-factorization of A→ 1 is A→ Ā→ 1, the
reflexion of A into Y is Ā, with unit A→ Ā. In fact Ψ is the right adjoint to Φ,
for we have

ΨΦ = 1, ΦΨ 6 1. (3.7)

To see the first of these observe that, when ΦX = (E ,M), the map ηA: A→
IA lies in E by (3.4) while the map IA → 1 lies in M by (3.1) – since the
terminal object 1 surely lies in the reflective X . The (E ,M)-factorization of
A→ 1 thus being A→ IA→ 1, we see that A→ 1 lies in M precisely when
A→ IA is invertible; that is, precisely when A ∈ X .

As for the second assertion of (3.7), write X for Ψ(E ,M), write (E ,M) for
ΦX , and consider for a map f : A→ B in C the diagram

A
ηA - IA

u - 1

B

f

?

ηB
- IB

?

If

v
- 1
?

1

;

by the description above of the reflexion onto Ψ(E ,M), we have ηA, ηB ∈ E
and u, v ∈ M. Consequently we have If ∈ M by Proposition 2.2(b), so that
If is invertible precisely when it belongs to E . By Proposition 2.2(b) again, this
time in the dual form, If ∈ E if and only if If.ηA ∈ E ; that is, if and only if
ηBf ∈ E . Since E consists of those f with If invertible, we have

f ∈ E if and only if ηBf ∈ E . (3.8)

Certainly, then, f ∈ E if f ∈ E ; so that (E ,M) 6 (E ,M), as asserted in (3.7).
Accordingly, Φ identifies the ordered set R with a full and coreflective sub-

ordered-set of F. We have seen that any factorization system in the image of
Φ satisfies (3.3); and in fact the converse is also true. For if (E ,M) satisfies
(3.3), we see from (3.8) that E ⊂ E ; which gives (E ,M) = ΦΨ(E ,M). Such
factorization systems are said to be reflective. The example where C is the cate-
gory of sets, E is the surjections, and M is the injections, shows that not every
factorization system is reflective.
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14 A. CARBONI ET AL.

3.5. Consider again the prefactorization system ΦX = (E ,M) defined as in (3.1)
from a full replete reflective subcategory X of the finitely-complete C, and the
diagram (3.5) wherein the square is a pullback. It may happen that w ∈ E for
every map f in C: when this is so, f = vw is already the (E ,M)-factorization
of f , and (E ,M) is a factorization system on C regardless of whether C admits
intersections of strong subobjects. In such cases the reflexion of C onto X was
said in [6] to be simple; Theorem 4.1 of [6] includes, among other things, the
equivalence of the following two conditions:

(a) the reflexion of C onto X is simple;
(b) a map f : A→ B in C lies in M if and only if the diagram

A
ηA - IA

B

f

?

ηB
- IB

?

If (3.9)

is a pullback.

Proof. Given (a) we have to prove the “only if” part of (b), since the “if”
part is automatic by Proposition 2.2(b); in other words, we are to prove that w
is invertible in (3.5) when f ∈ M. But w ∈ M when f ∈ M by (3.6) and
Proposition 2.2(c); so that w is invertible since w ∈ E by (a).

Turning to the converse, we are, for a general f : A → B, to show that w ∈ E
in (3.5). Consider the commutative diagram

C
ηC - IC

C

1

?

u
- IA

?

Iu

B

v

?

ηB
- IB

?

If

;

the bottom square is a pullback by the construction of (3.5), while the exterior
is a pullback by (b) since v ∈ M by (3.6) and since applying I to the bottom
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square gives If.Iu = Iv; therefore the top square too is a pullback. However
Iu.Iw.u = u.1C , since Iu.Iw = 1 by applying I to the top triangle of (3.5); so
that the pullback property of the top square above gives Iw.u = ηC . Applying
I now gives Iw.Iu = 1, establishing the invertibility of Iw.

3.6. The reflexion of C onto X was said in [6] to be semi-left-exact if every
pullback diagram

C
u - X

B

v

?

ηB
- IB

?

g (3.10)

with X ∈ X has u ∈ E . Clearly a semi-left-exact reflexion is simple; for then in
(3.5) we have u ∈ E , giving w ∈ E by (3.3) since ηA ∈ E by (3.4). Example 4.4
of [6] shows that a simple reflexion need not be semi-left-exact; while Theorem
4.3 of [6] gives two further conditions equivalent to semi-left-exactness – namely
(i) I preserves the pullback of f and g if g ∈ M; (ii) every pullback of an E
by an M is an E . The reader will find it easy to reconstruct the proofs of these
equivalences.

In his work on a general categorical version of Galois theory, part of which we
shall revise in Section 5 below, Janelidze approached the matter of a reflective full
subcategory X of C from a different angle. For each B ∈ C we have a functor
IB: C/B → X/IB sending f : A → B to If ; and this functor has a right
adjoint HB: X/IB → C/B sending g: X → IB to its pullback v as in (3.10).
To ask that each HB be fully faithful, or equivalently that the counit IBHB → 1
be invertible, is precisely to ask that u belong to E in (3.10), and thus to ask
the reflexion to be semi-left-exact. The full fidelity of HB being important for
the Galois theory, Janelidze [12] called reflexions with this property admissible
– a usage later followed by Janelidze and Kelly in their study [15] of central
extensions.

It would accordingly seem that admissiblity and semi-left-exactness are two
names for the same thing. However Janelidze’s Galois theory involves not only a
full reflective subcategory X of C, but also a pullback-stable class Θ of maps in
C; his C/B denotes not the slice category itself, but the full subcategory of this
whose objects are the maps in Θ; and thus his admissibility requires that u belong
to E in the pullback (3.10) only when g ∈ Θ. The reflexion of the category of
groups onto that of abelian groups is (see [15, Theorem 3.4]) admissible when Θ
consists of the surjections, but not when it consists of all maps (take B in (3.10)
to be the symmetric group on three elements, and X to be the identity group
1). For the work on central extensions in [15], Θ was in fact the surjections;
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16 A. CARBONI ET AL.

but in many applications of Galois theory (for example to field extensions, or to
covering spaces) Θ consists of all maps. Since we restrict ourselves to this latter
case in the present article, we may use “admissible” for “semi-left-exact”.

3.7. The reflexion of C onto X was said in [6] to have stable units if every
pullback of each unit ηB: B → IB lies in E ; that is, if u in the pullback
(3.10) lies in E whether or not X ∈ X . That this condition is strictly stronger
than admissibility was shown in [6, Example 4.6]. We leave it to the reader to
verify that having stable units is equivalent to the preservation by I of all those
pullbacks

A
g - C

B

f

?

h
- Z
?

k (3.11)

in C for which Z ∈ X .

3.8. Stronger still is the condition that I preserve all pullbacks; which, since it
trivially preserves 1, is to say that it is left exact. As was observed in [6, Example
4.9], the reflexion of abelian groups onto the torsion-free ones has stable units,
but is not left exact. In this case of left-exact I, the reflective X is said to be
a localization of C. As was shown in [6, Theorem 4.7], the left-exactness of
I is equivalent to the condition that every pullback of an E be an E . So the
localizations of C correspond to those factorization systems (E ,M) which are
both reflective (that is, satisfy (3.3)) and stable (in the sense of Section 2.11);
these have been called the local factorization systems.

3.9. It may sometimes be convenient below to consider on C a factorization
system (E ,M) which is not a reflective one, but is related to a (full, replete)
reflective subcategory X of C by the fact that E consists of those maps inverted
by the reflexion I which lie in a certain class F of epimorphisms. The following
observations on this situation generalize [6, Proposition 5.5] – and improve it, in
the sense that they require of C only finite limits, and not general intersections
of subobjects.

Suppose, then, that X is a reflective subcategory as in Section 3.1, and that
(E ,M) = ΦX is the prefactorization system defined by (3.1); if C only has
finite limits, (E ,M) may fail to be a factorization system. Suppose, however,
that we are given on C a factorization system (F ,N ), for which F is contained
in the class of epimorphisms; and consider, in the ordered set of prefactorization
systems on C, the join

(E ,M) = (E ,M) ∨ (F ,N ), (3.12)
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ON LOCALIZATION AND STABILIZATION FOR FACTORIZATION SYSTEMS 17

observing that, by Section 2.1, we have

E = E ∩ F , M⊃M∪N . (3.13)

So E consists of those f ∈ F inverted by I. Now in fact:

(E ,M) is a factorization system, and f : A → B lies in M if and only if the
map

〈f, ηA〉: A→ B × IA (3.14)

lies in N .
Proof. Given f : A → B, form the diagram (3.5) as before. Since v ∈ M,

we certainly have v ∈ M. Let the (F ,N )-factorization of w be w = ne; then
n ∈ M since n ∈ N , so that we have f = (vn)e where vn ∈ M. The
map e, being epimorphic because it lies in F , is taken by the left adjoint I
to an epimorphism Ie in X . However I applied to the top triangle of (3.5)
gives Iu.In.Ie = Iu.Iw = IηA = 1, showing that the epimorphism Ie is a
coretraction; accordingly it is invertible. Thus e lies in E and hence in E∩F = E ,
and f = (vn)e is the (E ,M)-factorization of f . Clearly f ∈ M precisely
when e here is invertible, which is to say that w ∈ N . However we have
〈f, ηA〉 = 〈v, u〉w, and 〈v, u〉: C → B × IA is an equalizer, thus lying in N by
Proposition 2.5. We conclude from Proposition 2.2 that w ∈ N if and only if
〈f, ηA〉 ∈ N .

Let us write W for the full reflective subcategory M/1 of C. Since we get the
reflexion of A into W by taking the (E ,M)-factorization of A → 1, it follows
from the above that this reflexion is given by ρA: A→ JA, where

A
ρA
- JA

σA
- IA

is the (F ,N )-factorization of ηA. Of course the object A lies in W if and only
if ηA ∈ N ; and by Proposition 2.5 this is equally to say that there is some
n: A→ X with n ∈ N and X ∈ X . ThusW may be called the N -hull of X .

The example where C is the category of sets, X is {1},F is the surjections,
and N is the injections shows that, in general, the factorization system (E ,M)
is not reflective.

4. Revision of Descent Theory

4.1. Descent theory has a long history, going back to work of Grothendieck
around 1959, and has become much better explicated and understood following
the contributions of later authors; there is now available a convenient survey
of the ideas in modern language by Janelidze and Tholen [17], which is to be
augmented by a sequel [18]. Drawing chiefly on the first of these, we review
here only the simple results we need below.
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18 A. CARBONI ET AL.

We continue to suppose that C is a category with finite limits. By a precategory
object P in C, or just a precategory in C for short, is meant a diagram of the
form

P2

q -
m -

r
-
P1

d -

� e

c
-
P0 (4.1)

satisfying the conditions

de = ce = 1, dr = cq, dm = dq, cm = cr. (4.2)

With the obvious notion of morphism, precategories in C constitute a functor
category [P, C], where Pop is the evident subcategory of the simplical category
∆. Every category object in C determines a precategory, and Cat(C) is a full
subcategory of [P, C]; the precategory P is a category precisely when the square
represented by the second equation in (4.2) is a pullback and the “composition
operation” m satisfies the associativity and unit laws; equivalently, the precat-
egory P in C is a category in C precisely when each C(A,P ) is a category in
Set.

A category P in C is called a groupoid, or a preorder, or an equivalence
relation, when each C(A,P ) is so – similarly for a group or a monoid; it is easy
to give elementary formulations of these properties in terms of the data above. Of
course a category is an equivalence relation precisely when it is both a groupoid
and a preorder. We may also call a category P a pregroupoid if there is some
k: P1 → P2 with qk = 1 and mk = ed. What we need from this notion is that
any functor C → D carries pregroupoids in C to pregroupoids in D, and that a
category is a groupoid if and only if it is a pregroupoid.

The diagonal functor ∆: C → [P, C] being fully faithful, we may identify an
object B of C with its image ∆B, which is the category

B

1 -
1 -

1
-
B

1 -

� 1

1
-
B (4.3)

,

it is of course an equivalence relation. A precategory P is isomorphic to such a
B if and only if every map in (4.1) is invertible; whereupon we call P a discrete
category.
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4.2. A morphism f : P → Q of precategories, given by components fi: Pi → Qi,
is said to be a discrete opfibration if each of the squares

P2
q - P1

d - P0

Q2

f2

?

q
- Q1

?

f1

d
- Q0

?

f0 (4.4)

is a pullback. Clearly discrete opfibrations are closed under composition; g is a
discrete opfibration whenever fg and f are so; and every pullback in [P, C] of a
discrete opfibration is a discrete opfibration. The following are easy to verify in
the case C = Set, and are accordingly true – arguing with generalized elements
– for any finitely-complete C:

(a) when P and Q are categories, the left square in (4.4) is a pullback if the
right square is one;

(b) if f : P → Q is a discrete opfibration, then P is a category [resp. a groupoid,
a preorder, an equivalence relation] whenever Q is so.

Given a precategory Q, we write CQ for the full subcategory of the slice
category [P, C]/Q determined by the discrete opfibrations P → Q. For reasons
that we shall not break off to explain here – they will be clear to those familiar
with internal category theory – CQ is called the category of (internal) actions
of the precategory Q in C; it is easy to see, for instance, that we get the usual
notion of action when Q is a group or a monoid. Any morphism g: R → Q of
precategories induces by pullback a functor [P, C]/Q → [P, C]/R, which carries
discrete opfibrations to discrete opfibrations and thus restricts to a functor

Cg: CQ → CR. (4.5)

Consider CB when the precategory B is just an object B of C. Clearly every
map f : A→ B in C is a discrete opfibration; and one easily sees that a general
f : P → B in [P, C] is a discrete opfibration if and only if P is a discrete
category. It follows that we have a full inclusion

C/B → CB (4.6)

which is equivalence of categories.

4.3. For any map p: E → B in C, its kernel-pair d, c: E ×B E → E extends in
an obvious way to an equivalence relation

E ×B E ×B E

q -
m -

r
-
E ×B E

d -

� e

c
-
E (4.7)
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in C; let us denote this by B ∈ Cat(C) ⊂ [P, C]. The map p admits, in Cat(C),
a factorization

E
p′′
- B

p′
- B , (4.8)

where p′′ and p′ are the evident morphisms. (Although we do not need this, (4.8)
is an internal-category-theory instance of the well-known factorization of any
functor into a p′′ that is bijective on objects and a p′ that is fully faithful.) The
map p: E → B is said to be an effective descent map if the functor

Cp
′
: CB → CB (4.9)

is an equivalence of categories; this is equally to say that its composite with
(4.6), which we denote by

p#: C/B → CB, (4.10)

is an equivalence of categories.
This apparently ad hoc definition admits of the following explanation. The

functor p∗: C/B → C/E given by pulling back along p has the left adjoint p!

given by composition with p, so that we have a monad T = p∗p! on C/E; the
comparison functor from C/B to the Eilenberg-Moore category of T -algebras,
and the forgetful functor from this last to C/E, give a diagram

C/B
q - T-Alg

@
@
@
@
@

p∗

R 	�
�
�
�
�

C/E

(4.11)

.

On the other hand, the factorization p = p′p′′ of (4.8) gives us by (4.5) the
diagram

CB
Cp
′

- CB

@
@
@
@
@

Cp
R 	�

�
�
�
�

Cp
′′

CE

(4.12)

.

The point now is that a somewhat long but essentially straightforward calculation
allows us to identify, modulo the equivalence (4.6), the diagram (4.11) with
(4.12). Accordingly we conclude that p: E → B is an effective descent map
precisely when p∗: C/B → C/E is monadic.
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4.4. It will be convenient to adopt the following notation for the effect of
p#: C/B → CB on a typical object f : A → B of C/B. For the domain of
p#(f) we write Ā, so that we have in [P, C] a pullback

Ā
s - A

B

p#(f)

?

p′
- B
?

f (4.13)

;

and for the components of p#(f) we write fi: Ai → Bi, where i = 0, 1, 2. Since
B denotes (4.7), we have of course B0 = E; and the squares of the diagram

A2
q - A1

d - A0
s0 - A

B2

f2

?

q
- B1

f1

?

d
- B0

f0

?

p
- B
?

f (4.14)

are pullbacks, the rightmost square being the 0-component of the pullback (4.13)
– which we may record as

(p#(f))0 = p∗(f). (4.15)

Similarly, for the effect of p# on a morphism

A
h - C

@
@
@
@
@

f
R 	�

�
�
�
�

g

B

in C/B, we write simply

Ā
p#(h) - C

@
@
@
@
@

p#(f)
R 	�

�
�
�
�

p#(g)

B

(4.16)

,
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with hi: Ai → Ci for the components of h. Note that there is no real ambiguity
in the meaning of p#(h), since the diagram

Ā
s - A

C

p#(h)

?

t
- C
?

h (4.17)

,

wherein t is the analogue for C of the s of (4.13), is also a pullback.

4.5. Observe that, since a monadic functor reflects isomorphisms, a map f :A→
B is invertible if its pullback along some effective descent map p: E → B is
invertible. We could give an alternative direct argument for this: if the pullback
f0 of f along p in (4.14) is invertible, so are the further pullbacks f1 and f2,
whence p#(f) is invertible; since p#(f) is the image under the equivalence p# of
the map f : f → 1B in C/B, it follows that f is invertible.

The following consequence of this is useful:

4.6. LEMMA. In a finitely-complete C, suppose that the exterior and the left
square of the commutative diagram

C
s - A

t - M

E

g

?

p
- B
?

f

q
- N
?

h (4.18)

are pullbacks. Then the right square is a pullback if p is an effective descent
map.

Proof. Let the pullback of h along q be

D
v - M

B

u

?

q
- N
?

h (4.19)

,
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and let w: A → D be the unique map with vw = t and uw = f . Since the
exterior of (4.18) and the diagram (4.19) are pullbacks, so too (by a classical and
simple result) is

C
ws - D

E

g

?

p
- B
?

u

.

Accordingly p∗(w) is invertible in C/E; so that w is invertible in C/B, and
hence in C, as desired.

4.7. We need the following three results about effective descent maps:

(a) In an exact category, the effective descent maps are precisely the regular
epimorphisms.

(b) In any finitely complete C, the effective descent maps are stable under pull-
backs.

(c) In any finitely complete C, the effective descent maps are closed under com-
position.

The first, which is classical, can be found in the survey article [17]. The second
was proved by Sobral and Tholen [22], and the third by Reiterman, Sobral, and
Tholen [21]; these authors supposed C to admit coequalizers as well as finite
limits, but it seems on examining their proofs that this is unnecessary. (In any
case, C does admit coequalizers in our specific applications below.)

5. Revision of Categorical Galois Theory

5.1. We recall here the essence of the Galois theory developed by Janelidze in
the articles [12, 13], and [14], restricting ourselves to the case where the class
Θ mentioned in Section 3.6 above consists of all maps.

We begin with a reflexion of C onto X as in Section 3.1, and the prefactoriza-
tion system (E ,M) = ΦX introduced there; but we now suppose this reflexion
to be admissible (also called semi-left-exact) in the sense of Section 3.6. Thus
(E ,M) is a factorization system on our finitely-complete C, whether or not gen-
eral intersections of strong subobjects exist.

As we said in Section 3.6, it is precisely in this admissible case that the
functor HB: X/IB → C/B sending g: X → IB to its pullback along ηB is
fully faithful. This pullback lies of course in the pullback-stable M; while any
f : A → B in M is such a pullback by (b) of Section 3.5. Thus the image of
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HB is just the full subcategoryM/B of C/B, and the restrictions of IB and of
HB give an adjoint equivalence

IB HB: X/IB 'M/B. (5.1)

In this context of Galois theory, the maps f : A → B that lie in M/B are
often called the trivial coverings of B. More generally, if p: E → B is an
effective descent map, the map f : A→ B is said to be split by (E, p) when the
pullback p∗(f) = g in

C
s - A

E

g

?

p
- B
?

f (5.2)

lies inM, and so constitutes a trivial covering of E; the full subcategory of C/B
given by all such f is denoted by Spl(E, p). A map f : A → B is said to be a
covering of B if it is split by some effective descent map p: E → B; so that the
coverings constitute in C/B a full subcategory

CovB =
⋃
p

Spl(E, p). (5.3)

This is in fact a directed union; for if p1: E1 → B and p2: E2 → B are
effective descent maps, so too by Section 4.7 above is the diagonal p of the
pullback

E - E2

E1

?

p1

- B
?

p2 (5.4)

,

and clearly each Spl(Ei, pi) is contained in Spl(E, p). Often there is an individual
effective descent map p: E → B for which Cov B = Spl(E, p); this is true, for
example, by an easy argument, if there is an effective descent map p: E → B
for which E is projective with respect to all effective descent maps.

The goal of Galois theory is, in the first place, to describe for a given effective
descent map p: E → B the category Spl(E, p); this in turn provides a description
of Cov B, whether as the union (5.3) or as an individual Spl(E, p). We set out
as follows towards this goal.
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5.2. The reflexion I a H: X → C induces a reflexion

[P, I] [P,H]: [P,X ] −→ [P, C] (5.5)

between the functor categories of Section 4.1, with unit [P, η]; it does no harm
to write simply I,H , and η for [P, I], [P,H], and [P, η], treating (5.5) as an
extension of the reflexion I a H: X → C, where C is embedded in [P, C]
by the fully-faithful diagonal ∆: C → [P, C], and so on. Because a pullback
like (3.10) in the functor category is formed pointwise, the reflexion (5.5) is
again admissible. Applying to it the functor Φ of Section 3.4 gives a reflective
factorization system – which we still call (E ,M) – on [P, C]. It is immediate
that a map f : P → Q in [P, C] lies in M if and only if each of its components
fi: Pi → Qi lies in the classM of C; similarly for E . Accordingly, forQ ∈ [P, C],
the equivalence (5.1) generalizes to

IQ HQ: [P,X ]/IQ ' M/Q. (5.6)

Given an object f : P → Q of M/Q, and its image If in [P,X ]/IQ, we
have as in (3.9) a pullback

P
ηP - IP

Q

f

?

ηQ
- IQ

?

If (5.7)

.

Now if If is a discrete opfibration (in [P,X ] or in [P, C] – it makes no difference),
so too is its pullback f . On the other hand, if f is a discrete opfibration, so is
If ; for the components fi of f lie in M, and (by Section 3.6) I preserves the
pullback of u and v if u ∈M. Thus (5.6) restricts further to an equivalence

IQ HQ: X IQ ' CQ ∩M/Q. (5.8)

5.3. Let us specialize now to the case where Q is the B arising as in Section
4.3 from an effective descent map p: E → B. The right side of (5.8) becomes
CB ∩M/B; consider, therefore, which of the maps f : A → B are carried into
this subcategory by the equivalence p#: C/B → CB of (4.10). The image p#(f)
is the (f0, f1, f2) given by the pullbacks in (4.14), which lies in the pullback-
stableM precisely when f0 lies inM; and f0 is another name for the p∗(f) = g
of (5.2). Thus p#(f) lies in M precisely when f ∈ Spl(E, p). This gives us the
fundamental theorem of Galois Theory:
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THEOREM. Let I a H: X → C be an admissible reflexion for a finitely
complete C, and let p: E → B be an effective descent map in C. Then there is
an equivalence of categories

Spl(E, p) ' X I(B) (5.9)

sending f : A→ B to the image under I of p#(f).

Since B is an equivalence relation and hence a groupoid, the precategory I(B) in
X is a pregroupoid, by Section 4.1; it is called the Galois pregroupoid Gal(E, p)
– or GalX (E, p) when the subcategory X needs to be specified – of the extension
(E, p) of the object B of C. Let us record (5.9) again in the form

Spl(E, p) ∼= XGal(E,p). (5.10)

Consider in C the diagram of pullbacks

E ×B E ×B E ×B E
m- E ×B E ×B E

q- E ×B E
d - E

E ×B E ×B E

n

?

q
- E ×B E

?

r

d
- E
?

c

p
- B
?

p (5.11)

,

where

d(x, y) = x, c(x, y) = y, q(x, y, z) = (x, y), r(x, y, z) = (y, z),

m(x, y, z, t) = (x, y, z), and n(x, y, z, t) = (y, z, t).

It is easy to see that, if I preserves the two pullbacks on the left in (5.11), the
Galois pregroupoid Gal(E, p) is actually a category – and hence a groupoid –
in X ; it is then of course called the Galois groupoid of (E, p). When Gal(E, p)
is a groupoid, it is a group if and only if IE is the terminal object 1, and is
then called the Galois group of (E, p); very commonly, an object E of C with
IE = 1 is said to be connected.

5.4. Let us say a word about the special case where the reflexion of C onto X is
not only admissible, but has stable units in the sense of Section 3.7, or is even
a localization. In the first of these cases, I preserves such pullbacks as (3.11),
where Z ∈ X ; in the second, I preserves all pullbacks. In the stable-units case,
therefore, I preserves all the pullback-squares in (5.11) if B ∈ X ; and it does
so in the localization case for all B ∈ C. This means that Gal(E, p) is nothing
but the equivalence relation given by the kernel in X of Ip: IE → IB. If we
had a general result that I preserves effective descent maps (which is certainly
the case in many important examples), we could now conclude from (5.10) and
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the equivalence (4.10) that Spl(E, p) ' X/IB; however we can in fact give a
direct proof of this:

For any effective descent map p: E → B, every f : A → B in Spl(E, p) is
a trivial covering in the stable-units case for B ∈ X , and in the localization
case for all B; so that here the equivalence (5.1) may be written as X/IB ∼=
Spl(E, p).

Proof. Consider the commutative diagram

C
s - A

ηA - IA

E

g

?

p
- B
?

f

ηB
- IB

?

If (5.12)

wherein the left square is a pullback; so that g ∈ M since f ∈ Spl(E, p). The
exterior of (5.12) is equal to the exterior of

C
ηC - IC

Is - IA

E

g

?

ηE
- IE

?

Ig

Ip
- IB

?

If (5.13)

,

and here the left square is a pullback by Section 3.5 because g ∈ M, and the
right square is a pullback since I preserves the left-hand pullback in (5.12); so
the exterior of (5.12) is a pullback. Now the right square of (5.12) is a pullback
by Lemma 4.6, giving f ∈M.

6. Localization and Stabilization for Factorization Systems

6.1. We turn now to our central results. On the finitely-complete C, let (E ,M)
be any factorization system; it need not be reflective, although the “Galois
theory” case where (E ,M) arises as in Section 5.1 from an admissible reflexion
is an important one, occurring in our three chief examples below.

A map f : A → B is often said to possess a property P locally if there is
some effective descent map p: E → B for which the pullback p∗(f) possesses
the property P . Let us write M∗ for the class of those maps that are locally in
M; so that f ∈M∗ precisely when p∗(f) ∈M for some effective descent map
p: E → B. In the Galois-theory case, the maps in M∗/B are just those we
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called in Section 5.1 the coverings of B, while those in M/B were called the
trivial coverings of B. In general, we have of course M⊂M∗, and every map
that is locally in M∗ is (by (c) of Section 4.7) already in M∗; we may say that
M∗ is formed from M by localization.

This classM∗ is pullback-stable: supposing that fu = kh is a pullback square
where f ∈ M∗, and that fs = pg as in (5.2) is a pullback square with p an
effective descent map and with g ∈ M, form a pullback square pn = kq. Now
the map q∗(h) = q∗k∗(f) ∼= n∗p∗(f) = n∗(g) lies in the pullback-stable M,
while q is an effective descent map by (b) of Section 4.7; so that h ∈M∗.

We may ask whetherM∗ is reflective in C2 – which by Section 2.12 above is
equally to ask that each M∗/B be reflective in C/B. Counter-examples that we
shall give in Section 10 show that it need not be so, even in the Galois-theory
situation; yet it is indeed so in many important cases: an article in preparation by
Janelidze and Kelly will establish this “reflectivity of coverings” under various
alternative and often-satisfied hypotheses.

If we have a case where each M∗/B is reflective in C/B, we may ask
whether M∗ is closed under composition; recall from Section 2.12 that this is
so precisely when (M∗↑,M∗) is a factorization system on C. Further counter-
examples in Section 10 show that this need not be so; but once again, there are
interesting cases where it is so.

Recall now, from Section 2.11 above, the class E ′ consisting of those maps
every pullback of which lies in E ; it is the largest pullback-stable class contained
in E , and may be said to arise from E by stabilization. It turns out, as we shall
see in Proposition 6.7, that e ↓ m whenever e ∈ E ′ and m ∈ M∗; so that we
always have

E ′ ⊂M∗↑. (6.1)

Our counter-examples go on to show – even in the Galois-theory situation – that
(M∗↑,M∗) may well be a factorization system with (6.1) a strict inclusion.

The point of the present article is that, in spite of all these counter-examples,
there are important cases – including but not restricted to Galois-theory ones –
where (E ′,M∗) is indeed a factorization system on C; in such cases, this stable
factorization system (E ′,M∗) may be said to arise from (E ,M) by simultane-
ously localizingM and stabilizing E . (Note that, sinceM∗↑ ⊂M↑ = E because
M∗ ⊃ M, it follows from (6.1) that M∗↑ must be E ′ whenever (M∗↑,M∗)
is a stable factorization system. In fact, by (6.1) and (2.8), M∗↑ must be E ′ if
eachM∗/B is a reflective (and not merely a fibrewise-reflective) subfibration of
C/B.)

We shall now develop necessary and sufficient conditions on an arbitrary fac-
torization system (E ,M), in order that (E ′,M∗) should be another factorization
system; then we apply these to our positive examples in Sections 7, 8, and 9
below, before turning in Section 10 to the counter-examples mentioned above.
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We begin with a series of simple observations on relations between E , M, E ′,
M∗, and effective descent maps.

6.2. Our proof in Section 6.1 above that M∗ is pullback-stable clearly used no
property of M other than its pullback-stability; accordingly we have:

For any pullback-stable class N of maps in C, the class N ∗ given by the maps
locally in N is again pullback-stable.

In particular, the class E ′∗ is pullback-stable.

6.3. Although the factorization system (E ,M) that we start with will not in
general be stable, it may happen that the (E ,M)-factorization f = me of a
particular f : A → B has e ∈ E ′; in this case we shall say that the (E ,M)-
factorization of f is stable. Using these terms, we can re-phrase an observation
from Section 2.11: if the top and bottom edges of (2.6) are (E ,M)-factorizations,
the bottom one of which is stable, and if the exterior of (2.6) is a pullback, then
each of the interior squares is a pullback.

6.4. From the factorization system (E ,M) on C we get (just as in the more
special case of Section 5.2 above) a factorization system – still called (E ,M) –
on [P, C], by taking f : P → Q to be in E or inM when each of its components
fi: Pi → Qi is so. Then of course a general f : P → Q has the (E ,M)-
factorization

P
e
- R

m
- Q, (6.2)

where each fi has the (E ,M)-factorization miei. We shall need the following:

If a discrete opfibration f : P → Q has in [P, C] the (E ,M)-factorization (6.2),
and if the (E ,M)-factorization f0 = m0e0 is stable, then e and m are discrete
opfibrations.

Proof. In the commutative diagram

P2
q - P1

d - P0

R2

e2

? q - R1

?

e1

d - R0

?

e0

Q2

m2

? q - Q1

?

m1

d - Q0

?

m0

,

the interior squares on the right are pullbacks by (4.4) and Section 6.3; then e1,
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being the pullback of e0 ∈ E ′, itself lies in E ′, so that the interior squares on the
left are pullbacks for the same reasons.

Note what are in effect trivial special cases:

6.5. PROPOSITION. A discrete opfibration f : P → Q lies in E if f0 ∈ E ′, and
lies in M if f0 ∈M.

The following will be central to our argument:

6.6. PROPOSITION. If e ∈ E ′∗ and m ∈M∗ we have e ↓ m.
Proof. Since M∗ is pullback-stable, it suffices by Proposition 2.6 to exhibit

a unique diagonal in any commutative

A
e - B

D

u

?

m
- B
?

1 (6.3)

with e ∈ E ′∗ and m ∈ M∗. There are effective descent maps p1: E1 → B and
p2: E2 → B such that p∗1(e) ∈ E ′ and p∗2(m) ∈ M; so that, if p: E → B is
the diagonal in the pullback (5.4) of p1 and p2, it is by (c) of Section 4.7 an
effective descent map with p∗(e) ∈ E ′ and p∗(m) ∈ M (since E ′ and M are
pullback-stable). Applying to (6.3) the equivalence of categories p#: C/B → CB

of (4.10), we get (using the notation of Section 4.4) a commutative square

Ā
p#(e)- B

D

p#(u)

?

p#(m)
- B

?

1 (6.4)

.

Recall from that section, and from (4.15) in particular, that p#(e) and p#(m)
are discrete opfibrations with (p#(e))0 = p∗(e) and (p#(m))0 = p∗(m). By
Proposition 6.5, we have p#(e) ∈ E since (p#(e))0 ∈ E ′ and p#(m) ∈ M since
(p#(m))0 ∈M; thus there is a unique diagonal in (6.4) and hence – because p#

is an equivalence – a unique diagonal in (6.3).

We can in fact simplify Proposition 6.6:
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6.7. PROPOSITION. E ′∗ = E ′; and if e ∈ E ′ and m ∈M∗ we have e ↓ m.
Proof. The second statement being a weakening of Proposition 6.6, we need

only the first; and since E ′ ⊂ E ′∗ trivially, we need only that E ′∗ ⊂ E ′. But since
M⊂M∗, Proposition 6.6 gives E ′∗ ⊂M↑ = E ; and since E ′∗ is pullback-stable
by Section 6.2, we in fact have E ′∗ ⊂ E ′.

6.8. LEMMA. If a map f : A → B in C lies in M∗, and if its (E ,M)-
factorization f = me is stable, then e is invertible and f ∈M.

Proof. To say that the factorization f = me is stable is to say that e ∈ E ′.
Besides having e ↓ m, therefore, we have e ↓ f by Proposition 6.7; so that e is
invertible by the dual of Lemma 2.7.

6.9. We agreed in Section 6.3 to call the (E ,M)-factorization f = me of
f : A→ B stable when e ∈ E ′. It is accordingly appropriate to say that the
(E ,M)-factorization of f is locally stable if there is some effective descent map
p: E → B for which the (E ,M)-factorization of the pullback p∗(f) is stable.

It is clear that each of the classes E ′ and M∗ contains the identities and is
closed under composition with isomorphisms. It follows therefore from Section
2.8, given Proposition 6.7, that (E ′,M∗) is a factorization system if and only if
every f : A → B has a factorization f = ng with n ∈ M∗ and g ∈ E ′. Our
central result is the following:

THEOREM. (E ′,M∗) is a factorization system if and only if every (E ,M)-
factorization is locally stable.

Proof. First suppose that (E ′,M∗) is a factorization system. If f : A→ B has
the (E ′,M∗)-factorization f = ng, there is an effective descent map p: E → B
for which the pullback k = p∗(n) of the element n of M∗ lies in M. When we
now pull back g as well, to get a diagram

-

h

? - ?

g

k

?
p

- ?

n

in which each square is a pullback, we have h ∈ E ′ since g ∈ E ′. So the (E ,M)-
factorization kh of p∗(f) is stable.
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For the converse, consider any f : A→ B; by hypothesis, there is some effec-
tive descent map p: E → B such that the (E ,M)-factorization of p∗(f) is stable.
In the notation of Section 4.4, we have the discrete opfibration p#(f): Ā → B;
let its (E ,M)-factorization in [P, C] be p#(f) = me. By (4.14), the 0-component
of this is nothing but the stable (E ,M)-factorization m0e0 of f0 = p∗(f);
now it follows from Section 6.4 that m like f is a discrete opfibration. Since
p#: C/B → CB is an equivalence of categories, there is some n: C → B in C
with p#(n) ∼= m; and we can take this isomorphism to be an equality p#(n) = m,
after adjusting suitably the factorization me of p#(f). Then again, since p# is an
equivalence, there is a unique g: f → n in C/B with p#(g) = e. Besides the
pullback square (4.13) for f , we have a similar one for n and one like (4.17) for
g; the 0-components of these are the pullback squares in

A0
s - A

C0

e0

?

t
- C
?

g

B0

m0

?

p
- B
?

n

.

Since p is an effective descent map and m0 ∈ M, we have n ∈ M∗; again,
since t too is an effective descent map by (b) of Section 4.7 and since e0 ∈ E ′,
we have g ∈ E ′∗, and so g ∈ E ′ by Proposition 6.7. Thus we have as desired an
(E ′,M∗)-factorization ng of f .

6.10. The theorem above may not be easy to apply: where is one to search for
an effective descent map p: E → B for which the (E ,M)-factorization of p∗(f)
is stable? The following notion – which leads only to a sufficient condition –
narrows the search in suitable cases. Call an object E of C stabilizing if the
(E ,M)-factorization of every map x: D → E is stable. The theorem above
clearly gives:

PROPOSITION. (E ′,M∗) is a factorization system if, for each B ∈ C, there is
an effective descent map p: E → B with E stabilizing; in which case we say
that there are enough stabilizing objects.

6.11. Let us call an object E of C projective, in our present context, if C(E, p) is
a surjection in Set for each effective descent map p; and let us say that there are
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enough projectives if for every B there is some effective descent map p: E → B
with E projective. The following gives, in a sense, a necessary and sufficient
condition; although it is clearly no easier to apply than the criterion of Proposition
6.10 above:

PROPOSITION. When there are enough projectives, (E ′,M∗) is a factorization
system if and only if every projective is stabilizing.

Proof. The “if” part is clear from Proposition 6.10. For the “only if” part, let
f : A→ B with B projective; by Theorem 6.9, there is an effective descent map
p: E → B for which the (E ,M)-factorization of p∗(f) is stable; because B is
projective, there is some h: B → E with ph = 1; now the (E ,M)-factorization
of h∗p∗(f), like that of p∗(f), is stable; but h∗p∗(f), to within isomorphism,
is f .

6.12. REMARK. Note finally that the question whether (E ′,M∗) is a factor-
ization system becomes trivial when the original factorization system (E ,M) is
stable, so that E ′ = E ; for then every object is stabilizing. It follows that in this
case we have M∗ =M (which it is also quite easy to prove directly).

7. The (Monotone, Light)-Factorization for Compact Spaces

7.1. For our first example we take C to be the category of compact Haus-
dorff spaces. In this category the monomorphisms are the injections and every
monomorphism is regular, while the epimorphisms are the surjections and every
epimorphism is regular; moreover C, being monadic over Set by a result of
Manes, is an exact category.

Let X be the full subcategory of C given by the totally disconnected spaces
(often called the Stone spaces); it is of course closed in C under both subobjects
and quotient objects. It is well known that the inclusion H of X into C has a left
adjoint I, the unit ηA: A→ IA for which is the canonical projection of A onto
the set IA of its components, this set being given the quotient topology with
respect to ηA; see, for example, [2, Ch. II, §4, No. 4, Prop. 7].

We take for (E ,M) the reflective factorization system ΦX derived as in
Section 3.1 above from this reflexion. By (3.2), a map f : A → B lies in E
precisely when f induces a bijection between the components of A and those of
B. If f lies in E ′ – that is, if every pullback of f lies in E – then in particular
every pullback of f along b: 1 → B lies in E ; which is to say that the fibre
f−1(b) is connected. Following Whyburn [25], we call a map f monotone when
each of its fibres is connected; we remind the reader that a connected space
has one component, and is accordingly never empty. Observe now that every
pullback of a monotone map is monotone; and that any monotone f lies in E ,
since the inverse image of a component H of B must be a single component of
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A. (For if f−1(H) is the disjoint union of two non-empty closed sets K and L,
each f−1(b) for b ∈ H lies wholly in K or in L, so that H is the disjoint union
of the non-empty closed sets f(K) and f(L) – a contradiction.) Thus

E ′ consists of the monotone maps. (7.1)

7.2. Since the unit ηB: B → IB is clearly monotone, it lies in E ′, and every
pullback of it lies in E ; thus the reflexion of C onto X has stable units in the sense
of Section 3.7, and is a fortiori admissible in the sense of Section 3.6; so that
we find ourselves in the Galois-theory situation of Section 5.1. By Sections 3.6
and 3.5, the map f : A→ B lies in M – or equivalently, is a trivial covering in
the sense of Section 5.1 – precisely when (3.9) is a pullback; to require this is
clearly to require that, for each component H of B, every component of f−1(H)
is mapped by f bijectively – and hence homeomorphically – onto H . Note that
the reflexion is not left exact: I does not preserve the equalizer of the two maps
from 1 to the unit interval picking out its two ends.

The Stone–Čech compactification βS of any discrete space S, being a sub-
space of some 2Y , is totally disconnected; that is, βS ∈ X . Any map f : A→ βS
factorizes therefore as

A
ηA
- IA

m
- βS ; (7.2)

and here m, being a map in X , lies in M. Because ηA ∈ E ′, we conclude that
the object βS is stabilizing in the sense of Section 6.10. Now in fact there are
enough stabilizing objects. For, the category C being exact, the effective descent
maps (by (a) of Section 4.7) are the regular epimorphisms, which here are the
surjections; and for each B ∈ C we have the canonical surjection β|B| → B,
where |B| is the underlying set of B. By Proposition 6.10, therefore, we conclude
that (E ′,M∗) is a factorization system.

It remains to determine the class M∗. The map f : A → B in C is said
– see for example Whyburn [25] – to be light if each of its fibres is totally
disconnected. The fact that every map f : A → B of compact metric spaces
has a factorization f = ng with n light and g monotone was first proved by
Eilenberg [7]; by establishing the following, we recapture this classical result,
without the “metric” restriction.

7.3. THEOREM. The classes E ′ and M∗ above consist respectively of the
monotone maps and the light ones, and constitute a stable factorization system
(E ′,M∗) on the category of compact Hausdorff spaces.

Proof. It remains only to identifyM∗ with the light maps. If f : A→ B lies
in M∗, so too by Section 6.2 does any pullback of f ; in particular the pullback
along b: 1→ B. Thus, for some surjection E → 1, the pullback of f along

E - 1
b
- B
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lies in M. But then, for e ∈ E , the pullback of f along

1
e
- E - 1

b
- B

lies inM. This pullback being f−1(b)→ 1, we conclude (either from Section 3.4,
or from the explicit description ofM above) that f−1(b) is totally disconnected.
Thus f is light.

Conversely, if f : A → B is light, so too is its pullback along the canonical
surjection β|B| → B; this pullback, since it has totally disconnected fibres and
a totally disconnected codomain β|B|, is a trivial covering by the first paragraph
of Section 7.2; thus it lies in M, and f lies in M∗.

7.4. Observe that M∗/1 = X ; since M∗ 6=M, it follows that the factorization
system (E ′,M∗) is not reflective.

7.5. Once we know the existence of a factorization f = ng with n light and
g monotone, we can describe it explicitly; for the codomain C of g must be
the set of all the components of all the fibres of f , with the quotient topology
corresponding to the evident map g.

7.6. As an illustration of the fact that we can apply Theorem 6.9, in the form
of Proposition 6.10, to a factorization system that is not reflective, let C,X , E
and M be as above, but take as a new starting-point the non-reflective factor-
ization system (E ,M) of (3.12), where F consists of the surjections in C (the
epimorphisms) and N of the injections (the monomorphisms). So E consists of
the surjections f : A→ B which induce a bijection between the components of
A and those of B – a class that is strictly smaller than E . In fact, however, E

′
and

E ′ coincide: for every f ∈ E ′ is surjective, its fibres being connected and thus
non-empty. Since the factorization (7.2) of any A→ βS has m ∈M ⊂M and
ηA ∈ E ′ = E

′
, it follows that βS is stabilizing not only for (E ,M) but also for

(E ,M). By Proposition 6.10, therefore, (E
′
,M

∗
) is another stable factorization

system. However, since E
′

coincides with E ′, it must be the case that M
∗

coin-
cides withM – as the reader may easily verify directly, with the knowledge from
Section 3.9 that f : A → B lies in M if and only if 〈f, ηA〉 is injective, which
is just to say that, for each component H of B, every component of f−1(H) is
mapped by f injectively into H .

7.7. Note that this reflexion of C onto X , being admissible, provides a new
application for the Galois theory of Section 5 – namely to the classification of
the light maps f : A → B in C, these being the “coverings” in this case. By
Section 5.1 we have in fact Cov B ' Spl(β|B|, p), where p: β|B| → B is the
canonical projection; for β|B| is projective in C. Thus (5.10) gives

CovB ' XGal(β|B|,p). (7.3)
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Since in the present case the reflexion has stable units, Section 5.4 tells us that
every covering of B is trivial when B ∈ X ; but this is of course clear directly,
and we in fact used it in the proof of Theorem 7.3.

From another point of view, what we have here is a Galois theory for the
category of C∗-algebras; for this of course is the dual of C.

8. The Example of Hereditary Torsion Theories

8.1. Our second example is in fact a family of examples, the central and paradig-
matic one being that where C is the category of abelian groups and (E ,M) is
the reflective factorization system ΦX corresponding to the reflective full sub-
category X of torsion-free groups. The general example in the family involves
the abstraction of this situation provided by the notion, recalled below, of an
hereditary torsion theory on an abelian category C (which is in fact coextensive
with that of an hereditary radical).

The present example, although on the face of things concerned with quite a
different area of mathematics, in fact behaves formally very much indeed like
the last one – roughly with “torsion object” replacing “connected space” and
“torsion-free object” replacing “totally disconnected space”. As in that example,
the factorization system (E ,M) we begin with arises as ΦX from an admissible
reflexion – indeed one with stable units – of C onto a full subcategory X ; so that
M∗ is the class of coverings classified by the corresponding Galois theory. One
difference is that, this time, the application of Galois theory fails to be a new one
– but only just: an article [16], very recently prepared by Janelidze, Márki, and
Tholen, considers a generalization of Janelidze’s Galois theory to the situation of
a general radical, and so contains the Galois theory of the present example as a
special case. The new insights that are provided by our results here are that the
class M∗ of coverings is part of a factorization system (M∗↑,M∗), for which
in fact M∗↑ = E ′. Indeed – and this, by Section 7.6, is in stark contrast to the
situation in the last example – if we take for E the class of epimorphisms in E ,
then the factorization system (E ,M) of Section 3.9 coincides with (E ′,M∗).

Supposing for the remainder of this section that C is abelian, we begin by
recalling the notions of torsion theory and of hereditary torsion theory for such a
C, examining them in the light of the results of Section 3 above. (A more complete
analysis of them in this light can be found in [6], along with generalizations to
various non-abelian C.)

8.2. We may identify a full subcategory Y of the abelian C with the set of its
objects. Given such a Y we define a new full subcategory Y→ to consist of those
X for which every map f : Y → X with Y ∈ Y is zero. Clearly Y→ is closed
in C under subobjects; when it is reflective, therefore, the units of the reflexion
are epimorphic. (In fact – see [6, Thm. 5.7] – it always is reflective if C admits
all cointersections of quotient objects.) Again, it is immediate that Y→ is closed
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in C under extensions – in the sense that, if a subobject A of B lies in Y→ and
the quotient B/A lies in Y→, then B itself lies in Y→.

Dually we define, for a full subcategory X , the full subcategory X←; of
course we always have X←→← = X←. A pair (Y,X ) of full subcategories for
which Y→ = X and X← = Y is called a torsion theory on C, provided that X
is reflective and Y coreflective in C. To obtain more insight into torsion theories,
we begin by examining X← for a general reflective X .

8.3. Suppose, then, that ηA: A→ IA is a reflexion of C onto X ; write (E ,M)
for the prefactorization system ΦX of Section 3.1, and denote the kernel of ηA
by ζA: TA→ A.

PROPOSITION. The following conditions on A ∈ C are equivalent:

(i) A ∈ X←;
(ii) ηA = 0;
(iii) ζA: TA→ A is invertible;
(iv) IA = 0;
(v) the map 0→ A lies in E .

Proof. Clearly (i), (ii), and (iii) are equivalent, while (iv) and (v) are equiva-
lent by (3.2). The equivalence of (ii) and (iv) is a simple property of any reflexion
in a pointed category.

8.4. As we remarked in Section 8.2, X← is coreflective if C admits all inter-
sections of subobjects; but, whether the latter is true or not, X← is coreflective
by (v) of Proposition 8.3 whenever X is reflective and the prefactorization sys-
tem (E ,M) is a factorization system: for, dualizing observations in Section 3.4,
we find the coreflexion of A into X← by taking the (E ,M)-factorization of
0→ A. In particular, X← is coreflective whenever the reflexion I of C onto X
is simple in the sense of Section 3.5. When X← is coreflective, the coreflexion
σA: SA→ A is monomorphic, since X← is closed in C under quotient objects.
Because SA ∈ X← and IA ∈ X , we have

ηAσA = 0: SA→ IA. (8.1)

Accordingly σA factorizes through ζA via a monomorphism

ψA: SA→ TA. (8.2)

PROPOSITION. For a reflective X the following are equivalent:

(i) X← is coreflective and ψ: S → T is invertible;
(ii) TA ∈ X← for each A;
(iii) IT = 0;
(iv) ζT : T 2 → T is invertible.
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Proof. (ii), (iii), and (iv) are equivalent by Proposition 8.3. Since the core-
flexion S has σS: S2 ∼= S, we conclude that (i) implies (iv). It remains to show
that (ii) implies (i); that is, that ζA: TA → A is a coreflexion of A into X←

when (ii) holds. Indeed, let f : Y → A with Y ∈ X←; then ηAf = 0, so that
f = ζAg for some g – a unique one, since ζA is monomorphic.

8.5. Following [6], we may call the reflexion I of C onto X normal if it satisfies
the equivalent conditions of Proposition 8.4. We shall be concerned only with the
case where X is closed under subobjects, so that each ηA is epimorphic; then the
first assertion of the following gives a simple characterization of normality:

PROPOSITION. When the reflexion ηA: A → IA of C onto X has every
ηA epimorphic, it is normal if and only if it has stable units. The reflexion is
certainly normal if X is closed in C, not only under subobjects, but also under
extensions.

Proof. Suppose that I is normal, let the square in the diagram

C
u - A

�
�
�
�
�

k
�

TB
ζB

- B
?

v

ηB
- IB

?

g (8.3)

be a pullback, and define k by uk = 0, vk = ζB; then, by a classical argument,
k = keru. Since ηB is epimorphic, so is its pullback u; whence u = cokerk.
Because I is a left adjoint, we have Iu = coker (Ik) in X . But ITB = 0 by the
normality of I, so that Ik = 0 and Iu is invertible; thus u ∈ E , as required. For
the converse, consider (8.3) in the case A = 0; then C = TB and v = ζB. Since
the reflexion has stable units, Iu is invertible, so that ITB = IC ∼= IA = 0;
hence I is normal.

Suppose now that X is also closed in C under extensions, and consider the
pushout

TA
ηTA- ITA

A

ζA

?

u
- X
?

v (8.4)

,

noting that u like ηTA is epimorphic, while v like ζA is monomorphic. Since
ηAζA = 0, there is a unique w: X → IA defined by wu = ηA, wv = 0; and w =
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coker v by the dual of the classical argument mentioned above. Because ITA and
IA belong to X , which is closed under extensions, we have X ∈ X ; accordingly
u = tηA for some t, which like u is epimorphic. Now ηA = wu = wtηA gives
wt = 1, whence w is invertible since t is epimorphic. Thus v = 0, so that
ITA = 0 and I is normal.

8.6. To give a torsion theory (Y,X ), therefore, it suffices to give a reflective
full subcategory X closed under subobjects and extensions, and to set Y = X←.
For then the reflexion I of C onto X is normal by Proposition 8.5, whence Y is
coreflective by Proposition 8.4, the coreflexion σA: SA → A being the kernel
of ηA: A→ IA, so that we have an exact sequence

0 - SA
σA

- A
ηA
- IA - 0 ; (8.5)

and now, by Proposition 8.3, we have A ∈ Y→ precisely when σA = 0; which
by (8.5) is to say that Y→ = X .

The paradigmatic example of a torsion theory is that where C is the category
of abelian groups and X the reflective subcategory of torsion-free groups; then
SA is the torsion subgroup of A, and Y consists of the torsion groups. By analogy
with this case, the objects of Y in a general torsion theory may be called torsion
objects, and those of X torsion-free objects.

8.7. Since the reflexion I onto X in the case of a torsion theory has stable units
by Proposition 8.5, it is a fortiori simple by Section 3.7, so that the corresponding
prefactorization system ΦX = (E ,M) is a factorization system by Section 3.5.
The following provides an elegant alternative description of torsion theories, in
terms of factorization systems:

PROPOSITION. If (Y,X ) is a torsion theory, the coreflective factorization
system corresponding to the coreflective Y coincides with the reflective factor-
ization system (E ,M) corresponding to the reflective X . Conversely, if a fac-
torization system (E ,M) is both reflective and coreflective, we have a torsion
theory (0/E ,M/0).

Proof. For f : A→ B we have a commutative diagram

0 - SA
σA - A

ηA - IA - 0

0 - SB

Sf

?

σB
- B

f

?

ηB
- IB

?

If

- 0

(8.6)

.

Since the reflexion I is simple, we have by Section 3.5 that f ∈M if and only
if the right square in (8.6) is a pullback; in an abelian C, however, this is equally
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to say that Sf is invertible, or that f belongs to the class M̃ of the coreflective
factorization system (Ẽ ,M̃) corresponding to the coreflective Y .

Suppose conversely that the factorization system (E ,M) is both reflective
and coreflective, and write X for the reflective M/0 and Y for the coreflective
0/E . Then Y = X← by Proposition 8.3, and dually X = Y→.

8.8. A torsion theory (Y,X ) is said to be hereditary if Y is closed in C under
subobjects. Clearly the basic torsion theory (torsion groups, torsion-free groups)
on Ab is hereditary, but its dual ((torsion-free groups)op, (torsion groups)op) on
Abop is not. We need just one fact about hereditary torsion theories:

PROPOSITION. The torsion theory (Y,X ) is hereditary if and only if the
coreflexion S of C onto Y is left exact as a functor S: C → C.

Proof. If Y is closed under subobjects, the kernel in C of a map in Y lies in
Y , and is therefore the kernel in Y; thus the inclusion Y → C preserves kernels,
whence S: C → C preserves kernels since the coreflexion C → Y , being a
right adjoint, does so. Since S automatically preserves finite products when C is
abelian, S is left exact. For the converse, consider a monomorphism i: A→ Y
with Y ∈ Y, and let i be the kernel in C of f : Y → B. Since S is left exact,
Si is the kernel of Sf . Because σY is invertible, there is some j: A → SY
with σY j = i. Since σB.Sf.j = fσY j = fi = 0 and σB is monomorphic, we
have Sf.j = 0. Accordingly j = Si.k for some k: A→ SA, giving i = σY j =
σY .Si.k = iσAk and hence 1 = σAk. Since σA is monomorphic, it is invertible;
so that A ∈ Y , as desired.

8.9. REMARK. A subfunctor σ: S → 1 of the identity is called an hereditary
radical if S is left exact (which implies that S2 ∼= S) and if the cokernel η: 1→ I
of σ has I2 ∼= I. It follows at once that hereditary radicals on C are in bijection
with hereditary torsion theories.

When injective envelopes exist in C, it is classical that there is a bijection
between hereditary torsion theories (Y,X ) on C and localizations Z of C, where
X is found as the subobject-closure of Z. For an account in the present language,
see [6, Thm. 9.17].

8.10. Suppose henceforth that (E ,M) is the reflective factorization system ΦX
where (Y,X ) is a torsion theory on C. For a map f : A → B we have by
Proposition 8.7

f ∈M if and only if Sf is invertible. (8.7)

The class E consists of those f for which If is invertible; these are the f for
which

(i) f∗(SB) 6 SA, (ii) imf + SB = B; (8.8)
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for (i) is the assertion that If is monomorphic in (8.6) and (ii) the assertion that
it is epimorphic. Since SA 6 f∗(SB) for any f , we may equally write (i) as an
equality

f∗(SB) = SA; (8.9)

which is the assertion that the left square in (8.6) is a pullback.
Write E ⊂ E for the class of epimorphisms in E ; by (8.8), it consists of the

epimorphisms f satisfying (8.9). As in Section 3.9, we have a factorization system
(E ,M) where f ∈ M if and only if 〈f, ηA〉: A → B × IA is monomorphic;
that is, if and only if ker f ∩ SA = 0. Thus

f ∈M if and only if ker f is torsion-free. (8.10)

This being so, it is easy to give explicitly the (E ,M)-factorization f = me
of f : A→ B; one finds that e is the canonical epimorphism A→ A/K, where
K = SA ∩ ker f .

8.11. PROPOSITION. The class E is pullback-stable if the torsion theory (Y,X )
is hereditary; and then E ⊂ E ′.

Proof. Let g be a pullback h∗(f) of f ∈ E ; then g like f is epimorphic, so
that it remains to establish for g the analogue of (8.9). In the diagram

SC
Sk - SA

σA - A

SD

Sg

?

Sh
- SB

?

Sf

σB
- B
?

f

,

the left square is a pullback because the left-exact S preserves pullbacks, while
the right square is a pullback by (8.9); hence the exterior is a pullback. This
exterior, however, is equally the exterior of

SC
σC - C

k - A

SD

Sg

?

σD
- D
?

g

h
- B
?

f

,

whose right square is a pullback; so the left square too is a pullback, as desired.
Then, since the stable E is contained in E , it is contained in E ′.
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8.12. PROPOSITION. When the torsion theory (Y,X ) is hereditary, every
object X of X is stablizing for (E ,M).

Proof. A map f : A→ X with X ∈ X factorizes as mηA for some m: IA→
X. Since ηA ∈ E by (3.4) while m, being a map in X , lies in M, this is
the (E ,M)-factorization of f . But ηA, being epimorphic, in fact lies in E ; by
Proposition 8.11, therefore, it lies in E ′, and is thus stabilizing in the sense of
Section 6.10.

8.13. THEOREM. Let (Y,X ) be an hereditary torsion theory, and suppose that
for each A ∈ C there is an epimorphism p: X → A with X ∈ X . Then (E ′,M∗)
is a factorization system, coinciding with (E ,M).

Proof. Since, by (a) of Section 4.7, the effective descent maps in the abelian
and hence exact C are the epimorphisms, (E ′,M∗) is a factorization system by
Proposition 6.10. It remains to show that E = E ′; by Proposition 8.11 it suffices
for this to show that E ′ ⊂ E , or equally that every g: C → D in E ′ is epimorphic.
Choose an epimorphism p: B → D with B ∈ X , and form the pullback

A
s - C

B

f

?

p
- D
?

g

.

Since p is epimorphic, g will be epimorphic if f is so – which is indeed the case,
for im f + SB = B by (8.8) because f ∈ E , while SB = 0 because B ∈ X .

8.14. REMARK. If there are enough projectives in C, the condition that every
A ∈ C be an epimorphic image of some X ∈ X is equivalent to the condition
that all the projectives lie in X (which we take to be replete). For the non-trivial
direction, consider a projective P , and let p: X → P be an epimorphism with
X ∈ X ; then, since P is projective, we have 1P = ph for some h: P → X;
whence P , as a retract of the object X of the reflective X , itself lies in X .

8.15. REMARK. Our paradigmatic hereditary torsion theory on Ab certainly
has this property that the projectives are torsion-free, and hence provides an
example of Theorem 8.13; as do other hereditary torsion theories on Ab, such
as that where Y consists of the 2-torsion groups and X of the groups without
2-torsion. There are many further such examples where C is a module-category
R-Mod for some ring R.

Yet there are hereditary torsion theories on a category C of the form R-Mod for
which the projective R does not lie in X . Take, for instance, C to be Ab × Ab =
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(Z × Z)-Mod, with X given by the objects (A, 0) and Y by the objects (0, B);
certainly R = Z×Z = (Z,Z) does not lie in X . However it is quite trivial that
(E ′,M∗) is a factorization system in this case; it coincides indeed with (E ,M).
For lack of time, we have not determined whether every hereditary torsion theory,
say on C = R-Mod, gives rise to a factorization system (E ′,M∗).

9. The (Separable, Purely Inseparable) Factorization System for
Algebras

9.1. Turning to yet another seemingly diverse area of mathematics, we consider
for a field k the category P of finite-dimensional commutative k-algebras, and
the full subcategory Q of P given by the semi-simple algebras; we shall take
for our C either the dual Pop of P, or else the dual Qop of Q. In fact we deal
primarily with the latter case, since this suffices to illustrate the main points while
admitting a significantly shorter treatment; we describe the results for the former
case in a remark, leaving the reader to verify the details.

Each of P and Q admits finite limits, preserved by the underlying-set functor,
and also admits finite colimits: the pushout in P of f : A→ B and g: A→ C is
given by B ⊗A C, while their pushout in Q is the quotient of this by its radical
R, consisting of the nilpotent elements; the initial object either in P or in Q is
of course given by k itself.

For an object P of P, the atoms among its idempotents induce an (essentially
unique) expression

P = P1 × P2 × · · · × Pn (9.1)

of P as a product of indecomposables; when P has zero radical and thus is
semi-simple, so too is each Pj . If Q ∈ P has a similar expression

Q = Q1 ×Q2 × · · · ×Qm, (9.2)

a map f : P → Q in P is of course given by components πif : P → Qi for
1 6 i 6 m, where the πi: Q → Qi are the projections. The atomic idempotent
ej in P corresponding to Pj is taken by πif to some idempotent in Qi, which
must be 0 or 1; and because ejek = 0 for j 6= k while

∑
ej = 1, there is for

each i exactly one j – we may call it φi – for which (πif)(ej) is non-zero. It
follows that πif is a composite

P1 × · · · × Pn
πφi
- Pφi

fi
- Qi . (9.3)

In summary, then, a map f : P → Q in P is given by a function φ: m → n
together with maps fi: Pφi → Qi for 1 6 i 6 m.

The indecomposable algebras are those whose only idempotents are 0 and 1;
they are the algebras that are local rings, and they form a category L. Those
which are also semi-simple are just the fields K that are finite extensions of k;
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they form a category K. We can express the description above of the objects and
the maps by writing

Pop ' FamLop, Qop ' FamKop, (9.4)

where Fam A denotes the category of finite families of objects of the category
A – a concept that we now recall.

9.2. Given any categoryA, we have a category FamA of finite families of objects
of A; we shall denote it here by C, so that in the examples of (9.4) our category
C is either Pop or Qop. (Of course one could deal equally with infinite families;
it is just that we use below only finite ones.)

An object of C = FamA is a pair (X,A) where X is a finite set (which
we may see as a discrete category) and A: X → A is a functor; that is to say,
(Ax)x∈X is an X-indexed family of objects of A. A map (X,A)→ (Y,B) in C
is a pair (φ, f), where φ: X → Y is a function and f : A → Bφ: X → A is
a (natural) transformation; that is, f consists of maps fx: Ax → Bφx in A for
x ∈ X. These maps in C are composed in the obvious way.

It is often of course convenient to denote an object (X,A) of C by a single
letter such as C, and equally to denote a map (φ, f): (X,A) → (Y,B) in C
by a single letter such as h: C → D. Where confusion is unlikely, it may be
intuitively helpful to denote (X,A), thought of as the family (Ax)x∈X , by the
single letter A itself. It is otherwise for maps: the risk of misunderstanding in
writing f for (φ, f) so much outweighs any slight gain in brevity of expression
that we rarely do so – diagram (9.13) below being an exception.

The category C admits finite coproducts: the initial object is the unique (X,A)
with X empty, while (X,A) + (Y,B) is given by (A,B): X + Y → A. The
indecomposable objects of C – those that cannot be written non-trivially as a
coproduct – are those of the form (1,K) where K ∈ A; they form a full subcat-
egory of C equivalent to A itself, and often identified with it. In some contexts, it
is natural to call the indecomposable objects connected. Each (Y,B) ∈ C admits
an essentially unique decomposition

(Y,B) =
∑
y∈Y

(1, By) (9.5)

as a coproduct of indecomposables. When we denote (Y,B) by the single letter
B, as suggested above, and identify A with its image in C, we may write (9.5)
as

B =
∑
y∈Y

By; (9.6)

but of course (9.6) may well represent a coproduct in C wherein the By are not
indecomposables but arbitrary objects.

The category C = FamA is easily seen to be what is called an extensive
category in the language of Carboni, Lack, and Walters [5]; by this is meant that,
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for any finite coproduct (9.6), the functor sending a family (fy: Ay → By)y∈Y of
maps to their coproduct

∑
fy:

∑
Ay →

∑
By is an equivalence of categories

∏
y∈Y

C/By ' C/B. (9.7)

As these authors show, it suffices to require this when Y has just two elements.
In particular, returning to the case where (9.6) is the canonical decomposition

(9.5) of (Y,B), an object (φ, f): (X,A) → (Y,B) of the right side of (9.7) is
(essentially) uniquely expressible in the form

(φ, f) =
∑
y∈Y

gy:
∑
y∈Y

Cy →
∑
y∈Y

By; (9.8)

we have only to set

Cy =
∑
φx=y

Ax, (9.9)

and to take gy: Cy → By to be the map given by

(gy)x = fx. (9.10)

9.3. We intend to develop the theory as far as we can for a general category of
the form C = Fam A, before returning in Section 9.12 to our examples (9.4). To
make progress, we need information about pullbacks in a category of the form
Fam A. For a general A, this need not admit pullbacks at all; but our examples
of C in (9.4) certainly have pullbacks.

We first observe that we can describe all pullbacks in C very simply in terms
of pullbacks of maps between indecomposables. Suppose we have in C maps
(φ, f): (X,A) → (Y,B) and (ψ, g): (Z,C) → (Y,B). First form, in Set, the
pullback

W
α - X

Z

β

?

ψ
- Y
?

φ (9.11)

,
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and write a typical element of W as a triple w = (x, y, z) where φx = y = ψz.
Now, for each such w, consider in C the pullback

Dw
kw - Ax

Cz

hw

?

gy
- By

?

fx (9.12)

,

where Ax, By, and Cz are of course indecomposables; in general Dw will not
be indecomposable. However we can form in C the coproduct D =

∑
w∈W Dw;

and we have in C the diagram

D
k - A

C

h

?

g
- B
?

f (9.13)

,

where A, B, and C stand for (X,A), (Y,B), and (Z,C), while f and g stand
for (φ, f) and (ψ, g), and h and k denote the evident maps in C given by the hw
and the kw. We leave to the reader the easy verification – it suffices to use an
indecomposable as a test-object – of the fact that:

The diagram (9.13) is a pullback in C. (9.14)

It may have mnemonic value to formulate this, albeit somewhat imprecisely,
as ∑

Ax ×∑By

∑
Cz =

∑
Ax ×By Cz, (9.15)

it being understood that the Ax, By , Cz here are indecomposables.

9.4. Given (9.14), the reader will find it easy to verify that, if

Dx
kx - Ax

Cx

hx

?

gx
- Bx

?

fx (9.16)
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is, for each x in the finite set X, a pullback diagram in C (whose vertices are
not at all required to be indecomposable), then so too is the diagram

∑
Dx

∑
kx-

∑
Ax

∑
Cx

∑
hx

? ∑
gx
-
∑

Bx

?

∑
fx (9.17)

.

9.5. The reader will also easily verify that, for every g: C → B in C, the
diagram

C + C + · · ·+ C
g + g + · · ·+ g- B +B + · · ·+B

C

δ

?

g
- B
?

δ (9.18)

,

wherein each δ is a co-diagonal, is a pullback.
Suppose now that we have maps fx: Ax → B for x ∈ X, and that for each

x ∈ X we have a pullback

Dx
kx - Ax

C

hx

?

g
- B
?

fx (9.19)

.

By Section 9.4, these pullbacks give rise to a pullback of the form (9.17), wherein
however each gx: Cx → Bx is a copy of g: C → B; pasting this on top of
(9.18) produces a pullback

∑
Dx

∑
kx-

∑
Ax

C

h = (hx)

?

g
- B
?

f = (fx) (9.20)

.
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If now in (9.20) we take C to be
∑
Cz and g to be (gz) where gz : Cz → B,

and then use again the result of (9.20), but now with g replacing f , we conclude
that ∑

Ax ×B
∑

Cz =
∑
x,z

Ax ×B Cz. (9.21)

Finally, if we replace B here by a coproduct
∑
By, and take f and g to be given

by maps fx: Ax → Bφx and gz: Cz → Bψz for suitable φ and ψ, we re-find
(9.15) – but now with no requirement that theAx, By , Cz be indecomposable.

9.6. We have seen that the indecomposable objects of C = FamA – those of
the form (1,K) where K ∈ A – form a full subcategory equivalent to A. There
is another full subcategory X of C formed by the discrete objects (which might
also be called the totally disconnected objects): these are the objects (X,∆1),
where ∆1: X → A is the constant functor at the terminal object 1 of A (which
certainly exists in our examples (9.4), the initial object k of P lying in K and
hence in L). In fact X is nothing but the category of finite sets, the functor
X 7→ (X,∆1) providing the identification.

The inclusion H: X → C clearly has a left adjoint I, with I(X,A) =
(X,∆1), and with η(X,A): (X,A) → I(X,A) = (X,∆1) given by the iden-
tity X → X and the unique maps !: Ax → 1; so that

η(X,A) = (1X , !): (X,A)→ (X,∆1). (9.22)

We write (E ,M) for the reflective prefactorization system ΦX on C given by
this reflexion, noting that (3.2) gives:

(φ, f): (X,A)→ (Y,B) lies in E if and only if

φ: X → Y is bijective. (9.23)

For the coproduct
∑
fx:

∑
Ax →

∑
Bx of a finite family (fx: Ax →

Bx)x∈X of maps in C, we have∑
fx lies in E if and only if each fx lies in E ; (9.24)

the “if” part is true for any prefactorization system, by Proposition 2.2(d), but
here (9.23) gives “only if” as well.

It follows easily from Section 9.3 that, for a general φ = (φ,∆1): (X,∆1)→
(Y,∆1) in X , we have in C the pullback

(X,D)
(1X , !)- (X,∆1)

(Y,B)

(φ, 1)

?

(1Y , !)
- (Y,∆1)

?

(φ,∆1) (9.25)

,
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wherein Dx = Bφx. Since the top edge of (9.25) is in E by (9.23), we con-
clude that the reflexion of C onto X is admissible in the sense of Section 3.6;
accordingly, by Section 3.5, the prefactorization system (E ,M) is a factorization
system.

In contrast to the examples in Sections 7 and 8 above, this reflexion does
not have stable units in general. For consider the pullback (3.11) in our C,
where Z = 1 and B, C are indecomposable; to say that I preserves this pull-
back is to say that B × C is indecomposable; but this is generally false in our
examples (9.4).

9.7. Using the calculation in Section 9.3 of pullbacks in C (in a case where the
basic pullbacks (9.12) are trivial), we find the diagram (3.5) in the present case
to be:

(X,A)

@
@
@
@
@
@
@
@

(1, f)

R

HHHHHHHHHHHHHHHHHH

(1, !)

j

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

(φ, f)

U

(X,Bφ)
(1, !)

- (X,∆1)

(Y,B)
?

(φ, 1)

(1, !)
- (Y,∆1)

?

(φ,∆1)

(9.26)

.

It follows from Sections 3.6 and 3.5 that

(φ, f) = (φ, 1)(1, f) (9.27)

is the (E ,M)-factorization of (φ, f). Since (φ, f) lies in M precisely when its
E-part (1, f) in (9.27) is invertible, we conclude that

(φ, f): (X,A)→ (Y,B) lies in M if and

only if each fx: Ax → Bφx is invertible. (9.28)

If we again consider a family (fx: Ax → Bx)x∈X of maps in C, and its
coproduct

∑
fx:

∑
Ax →

∑
Bx, we conclude from (9.28) that∑

fx lies in M if and only if each fx lies in M. (9.29)
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Equally, for a family of maps fx: Ax → B, (9.28) gives:

a map f = (fx):
∑

Ax → B lies in M if and

only if each fx does so. (9.30)

9.8. Let us now determine the class E ′. This class E ′ is a subclass of E , and
(φ, f): (X,A) → (Y,B) lies in E , as we have seen in (9.23), if and only
if φ is bijective; accordingly we may as well simplify by considering a map
(1, f): (X,A) → (X,B) given by components fx: Ax → Bx, these Ax and
Bx being of course objects of A, and hence indecomposable. This is a circum-
stance in which it is particularly useful to write (1, f): (X,A) → (X,B) as∑
fx:

∑
Ax →

∑
Bx, and to call it f : A→ B.

It is immediate from Section 9.3 that fx: Ax → Bx is the pullback along the
injection Bx →

∑
Bx of f =

∑
fx:

∑
Ax →

∑
Bx; since E ′ is pullback-stable,

it follows that fx ∈ E ′ for each x when f ∈ E ′. The converse, however, is also
true: any g: C → B is by (9.8) of the form

∑
gx:

∑
Cx →

∑
Bx, so that by

(9.17) the pullback of f by g is
∑
g∗x(fx), which lies in E by (9.24) when each

fx lies in E ′.
It remains therefore to determine which of the maps f : A→ B, where both

A and B are indecomposable, lie in E ′. For this it is clearly necessary, by (9.23),
that in each pullback

D
k - A

C

h

?

g
- B
?

f

whereC too is indecomposable, we haveD indecomposable. In fact this condition
is also sufficient, since a general map g into the indecomposable B has the form
(gx):

∑
Cx → B with each Cx indecomposable, and by (9.20) the pullback

g∗(f) is
∑
g∗x(f) – which by (9.24) lies in E when each of its summands does

so.
It follows of course from the second paragraph of this section that, for any

family of maps fx: Ax → Bx, we have∑
fx lies in E ′ if and only if each fx lies in E ′. (9.31)

9.9. We shall need the observation that, if the maps px: Ex → Bx are effective
descent maps in C for each x ∈ X, so too is p =

∑
px:

∑
Ex →

∑
Bx. The
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point is that the diagram

C/
∑

Bx
p∗- C/

∑
Ex

∏
(C/Bx)

+

6

∏
p∗x

-
∏

(C/Ex)

6

+

commutes to within isomorphism by (9.17), while the vertical arrows are equiv-
alences by (9.7); so that p∗ like

∏
p∗x is monadic.

9.10. We turn to consideration of the f : A → B in M∗, reducing the question
to the case of indecomposable A and B:

PROPOSITION. The map (φ, f): (X,A)→ (Y,B) of C lies inM∗ if and only
if each fx: Ax → Bφx does so.

Proof. First, we can use (9.8) to write f as
∑
gy:

∑
Cy →

∑
By, with the

By of course indecomposable. If f here lies in M∗, so too does each gy; for
M∗ is pullback-stable by Section 6.1, and gy is by Section 9.3 the pullback of f
along the coproduct-injection (1, By) → (Y,B) of (9.5). Conversely, f lies in
M∗ when each gy does so; for if py: Ey → By are effective descent maps with
each p∗y(gy) in M, then p =

∑
py is an effective descent map by Section 9.9,

while (9.17) tells us that p∗(f) =
∑
p∗y(gy), and the latter lies inM by (9.29).

We are thus reduced to the case of a map f = (fx):
∑
Ax → B in C, where

B and the Ax are indecomposable. If f lies in M∗, so too does each fx; for
by (9.20) the pullback p∗(f) along an effective descent map p has components
p∗(fx), and these lie in M by (9.30) when p∗(f) does so. Conversely, f lies
in M∗ when each fx does so. For let px: Ex → B be effective descent maps
with p∗x(fx) ∈ M, and let p: E → B be the fibred product of the px, which
is an effective descent map by (b) and (c) of Section 4.7. Then, since M is
pullback-stable by Proposition 2.2, each p∗(fx) = (p∗(f))x lies in M, whence
p∗(f) ∈M by (9.30), so that f ∈M∗.

9.11. We return now to the examples C = Pop and C = Qop of Section 9.1.
The basic results on separable and purely inseparable field extensions can be
found in van der Waerden [24, Ch. IV, Section 44], or in the later Jacobson
[11, Ch. I, Sections 8 and 9]; these results are of course non-trivial only when
the characteristic π of our base-field k is non-zero, since otherwise every finite
extension is separable. We recall the following well-known result:

LEMMA. If A is a separable extension field of the field B, while C is a
semisimple B-algebra, then the B-algebra A⊗B C is also semisimple.
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Proof. It suffices to consider the case where C is indecomposable, and is
thus itself an extension field of B. The separable extension A of B is a simple
extension B(a), and therefore has the form B[x]/φ(x)B[x] where φ[x] is an
irreducible polynomial with distinct zeros αi. We are to show that A⊗B C has
no nilpotents; and since (A ⊗B −) preserves monomorphisms – see, for this,
the proof of Proposition 9.12 below – it suffices to show that A ⊗B E has no
nilpotents, where E is some extension field of C. We so choose E that φ(x)
decomposes in E[x] into linear factors; then

A⊗B E ∼= E[x]/φ(x)E[x] ∼=
∏

(E[x]/(x − αi)E[x]),

and this has no nilpotents since E[x]/(x − αi)E[x] ∼= E.

9.12. PROPOSITION. If the map f : B → A of Q is the inclusion of a field B
into a separable extension field A, then f : A → B is an effective descent map
in each of Pop and Qop.

Proof. In each case we are to prove f∗: C/B → C/A monadic. When C =
Pop, the functor f∗ is

(A⊗B −)op: (B − Alg)op → (A− Alg)op; (9.32)

so that it suffices by Beck’s monadicity results (see in particular Mac Lane
[20, Ch. VI, Section 7, Ex. 3]) to show that (A⊗B −) is left exact and reflects
isomorphisms. In fact it suffices to show that the composite U(A⊗B−) has these
properties, where U is the forgetful functor A-Alg → B-Mod; for U preserves
and reflects finite limits. This is indeed the case, since A as a B-module is a
direct sum n ·B of copies of B, so that A⊗B C as a B-module is just the direct
sum n · C of n copies of C.

So far, we have not used the separability of A; but we need it, via its conse-
quence Lemma 9.11, in the case C = Qop. There, by Lemma 9.11, the functor
f∗ is merely the restriction of (9.32) to the semisimple algebras. This surely
reflects isomorphisms; moreover the restriction of (A ⊗B −) is left exact since
the semisimple B-algebras are reflective in B-Alg and hence closed under limits,
and similarly for A-algebras.

9.13. PROPOSITION. If the map f : B → A of Q is the inclusion of a field B
into a separable extension field A, then the map f : A→ B of Qop lies inM∗.

Proof. Let A = B(a) ∼= B[x]/φ(x)B[x] as in the proof of Lemma 9.11, and
let p: B → E be the inclusion of B into the splitting field of φ(x); then, since p
is a separable extension, p: E → B is by Proposition 9.12 an effective descent
map in Qop. The pullback p∗(f) in Qop is the corresponding pushout in Q, which
by Lemma 9.11 is E → A⊗B E; and (by the argument in the proof of Lemma
9.11) this is a diagonal map E → E × E × · · · ×E in Q, so that in Qop it lies
in M by (9.28).
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9.14. PROPOSITION. The map f : B → A of Q given by a field extension,
seen as a map f : A→ B in Qop, lies in E ′ if and only if the extension is purely
inseparable.

Proof. For the “if” part it suffices – since E ′ is closed under composition by
Section 2.11 – to suppose that A is a simple extension B[x]/ψ(x)B[x], where
the irreducible ψ(x) has the form xπ

e
− b for some b ∈ B. By Section 9.8,

to show that f ∈ E ′ is to show that, for every field extension g: B → C, the
pushout (A⊗BC)/R in Q (where R is the radical) is indecomposable; for which
it suffices that A⊗B C be indecomposable – or equally that it contain no non-
trivial idempotent. Without loss of generality we may replace C by a further
extension D over which ψ(x) decomposes into linear factors – so that ψ(x) has
the form (x− d)π

e
; now

A⊗B D ∼= (B[x]/ψ(x)B[x]) ⊗B D ∼= D[x]/ψ(x)D[x]

= D[x]/(x− d)π
e

D[x] ∼= D[x]/xπ
e

D[x],

and this clearly has no non-trivial idempotent.
For the converse, let C be the separable closure of B in A, so that f is

the composite of the separable extension g: B → C and the purely inseparable
extension h: C → A. Let C = B(a) ∼= B[x]/φ(x)B[x] where the irreducible
φ(x) has the distinct zeros αi for 1 6 i 6 n; and write p: B → E for the
inclusion of B into the splitting field E of φ(x). Because f ∈ E ′, it follows
from Section 9.8 that the pushout in Q of f and p – which by Lemma 9.11 is
E⊗B A since p is a separable extension – has no non-trivial idempotents. Thus,
since E⊗B h: E⊗B C → E⊗B A is monomorphic, E⊗B C has no non-trivial
idempotents. As in the proof of Lemma 9.11, however, E ⊗B C is the product
of n copies of E; it follows that n = 1, so that in fact C = B and the extension
f : B → A is purely inseparable.

9.15. THEOREM. On Qop, the classes E ′ and M∗ constitute a factorization
system (E ′,M∗). The map (φ, f): (X,A) → (Y,B) of Qop lies in E ′ precisely
when φ is a bijection and each fx: Bφx → Ax is a purely inseparable extension
in Q; and it lies in M∗ precisely when each fx is a separable extension. The
(E ′,M∗)-factorization in Qop of a general (φ, f) is

(X,A)
(1, h)
- (X,C)

(φ, g)
- (Y,B), (9.33)

where

Bφx
gx
- Cx

hx
- Ax (9.34)

is the decomposition in Q of the field extension fx: Bφx → Ax into a separable
extension gx and a purely inseparable extension hx, formed by taking for Cx the
separable closure of Bφx in Ax.
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Proof. That E ′ consists precisely of the maps described above follows from
Section 9.8 and Proposition 9.14. That the maps (φ, f) with each fx a separable
extension do lie in M∗ follows from Propositions 9.10 and 9.13. Thus (9.33)
provides an (E ′,M∗) -factorization for a general map (φ, f). As we observed
in the second paragraph of Section 6.9, this is all that we need – in the light of
Proposition 6.7 – to conclude that (E ′,M∗) is a factorization system. It remains
to show that the only maps (φ, f) in M∗ are those with each fx: Bφx →
Ax separable; but this follows from (9.33) and (9.34), since (φ, f) lies in M∗

precisely when its E ′-part (1, h) in (9.33) is invertible; that is, when all the hx
of (9.34) are invertible, so that all the fx are separable.

9.16. REMARK. Similar but longer calculations, which we leave to the reader,
give a corresponding result for Pop. Once again (E ′,M∗) is a factorization sys-
tem. Write RA for the radical of the algebra A, and SA for its semisimple quo-
tient A/RA. Then the map (φ, f): (X,A)→ (Y,B) of Pop lies in E ′ precisely
when φ is a bijection and each Sfx: SBφx → SAx is a purely inseparable exten-
sion in Q; while (φ, f) lies in M∗ precisely when each Rfx: RBφx → RAx is
an isomorphism and each Sfx: SBφx → SAx is a separable extension in Q.

9.17. REMARK. There is a factorization system (F ,N ) on Pop for which N
consists of the surjections in P and F of the monomorphisms in P; so that
F consists of the epimorphisms in Pop, and N of the regular monomorphisms
there. This gives us, as in Section 3.9, a factorization system (E ,M), where
E = E∩F . For our example of compact Hausdorff spaces, we found in Section 7.6
that (E

′
,M

∗
) was a factorization system coinciding with (E ′,M∗); while for our

example of hereditary torsion theories with the projectives torsion-free, we found
in Theorem 8.13 that (E ′,M∗) was (E ,M) itself – which then, as in Remark
6.12, coincides with (E

′
,M

∗
). In the case of Pop, the situation is quite different:

although (E
′
,M

∗
) too turns out to be a factorization system, it fails to coincide

with (E ′,M∗). In fact, as the reader may verify, the map (φ, f): (X,A)→ (Y,B)
of Pop lies in M

∗
precisely when each Sfx: SBφx → SAx is a separable

extension in Q and each Rfx: RBφx → RAx is a surjection in P.
When we return to Q, however, the radicals are all zero, and once again

(E
′
,M

∗
) coincides with (E ′,M∗).

10. The Counter-Examples

10.1. We turn now to the counter-examples promised in Section 6.1. For the
first, we are to produce a factorization system (E ,M), of the form ΦX for an
admissible reflexion of C onto a full subcategory X , for which M∗/B is not
reflective in C/B.

APCS184S.tex; 6/03/1997; 15:03; v.4; p.54



ON LOCALIZATION AND STABILIZATION FOR FACTORIZATION SYSTEMS 55

We take for C the category of sheaves on a connected and locally-connected
topological space P , thinking of such a sheaf A as a space with a local home-
omorphism A → P ; note that A like P is locally connected. Since pullbacks
of local homeomorphisms are local homeomorphisms in the category Top of
topological spaces, pullbacks in C are formed as in Top.

It is convenient to identify a set S with the corresponding discrete space,
and then to identify it further with the constant sheaf given by the projection
S × P → P ; we have here an isomorphism of the category of sets with the full
subcategory X of C given by the constant sheaves. If πA denotes the set (or
discrete space) of components of A ∈ C, the canonical map A → πA in Top is
continuous, and the corresponding map ηA: A → πA × P in C is the unit of a
reflexion I of C onto X .

Thus a map f : A → B in C lies in E precisely when it induces a bijection
between the components of A and those of B; it follows easily from this that the
reflexion of C onto X is admissible in the sense of Section 3.6, and a fortiori is
simple. Accordingly f : A→ B lies in M precisely when (3.9) is a pullback –
which is to say that f is a sum of projections

∑
Si×Bi →

∑
Bi, where the Bi

are the components of B and the Si are discrete; as in Section 5.1, we call such
an f a trivial covering of B. Of course a trivial covering of a connected B, such
as P itself, is a constant sheaf S ×B → B.

The effective descent maps in the topos C, which is of course an exact cat-
egory, are the epimorphisms by (a) of Section 4.7. It follows at once that the
maps inM∗/B – which are those we called the coverings of B in Section 5.1 –
are just the coverings in the ordinary sense of this word: a map f : A→ B is a
covering if each b ∈ B has an open neighbourhood U over which the restriction
f∗(U) → U of f has the form of a projection S × U → U for some discrete
space S.

A connected object B of C is said to be simply connected ifM∗/B =M/B;
that is, if every covering of B is trivial. Moreover an object B is said to be locally
simply connected if each b ∈ B has a simply-connected open neighbourhood.

Barr and Diaconescu show, in [1, Thm. 6], that M∗/P is reflective here in
C/P if and only if there exists an epimorphism p:E → P such that M∗/P =
Spl(E, p), in the sense of Section 5.1. In their discussion following this theorem,
they further point out that this reflectivity obtains whenever P is locally simply
connected; and that, when it does obtain, P has a simply-connected universal
covering (by which is meant a connected and weakly-initial object inM∗/P ).

If we take for P a locally-connected space which lacks a universal covering,
such as the union in the plane, for n ∈ N, of the circles of centre (0, 1/n) and
radius 1/n, we have our desired counter-example whereM∗/P is not reflective
in C/P .

10.2. Let us again take C as in Section 10.1, but now with P the simply-connected
space given by the unit disk {(x, y)|x2 +y2 6 1} in the plane. Here every B ∈ C
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is locally simply connected, so that each M∗/B is reflective in C/B by the
result above of Barr and Diaconescu. In this C, moreover, M∗ is closed under
composition. For suppose that f : A → B and g: B → C lie in M∗, and let
c ∈ C. If U is a simply-connected open neighbourhood of c in C, the covering
g∗(U) → U has the form of a projection S × U → U for a discrete S; while
for s ∈ S the covering f∗({s} × U) → {s} × U has the form of a projection
Ts × {s} × U → {s} × U for a discrete Ts. So the map (gf)∗(U) → U is the
projection R× U → U where R =

∑
s∈S Ts, and gf is indeed a covering.

By Section 2.12, therefore, (M∗↑,M∗) is a factorization system. We shall
now observe that M∗↑ 6= E ′, so that we have the third of the counter-examples
promised in Section 6.1.

Let A be the subset {(x, y) | 0 < y 6 1} of the plane, and let f : A → P
be given by f(x, y) = (y cosx, y sinx); clearly f is a local homeomorphism
and hence a map in C. Suppose that the reflexion into M∗/P of the object f
of C/P is g: B → P , with unit h: A → B. The covering g is necessarily a
projection S × P → P with S discrete; and now, since A is connected, h must
be of the form kf where k = s × 1: P → S × P for some s ∈ S. Because h
is the unit of the reflexion and kgh = kf = h, we have kg = 1; accordingly
S = {s}, g = 1P , and h = f . Thus f ∈ M∗↑ by Section 2.12. Yet if U is the
subset of P given by the points whose distance from (1/2, 0) is less than 1/4,
the restriction f∗(U) → U of f is not in E , since f∗(U) is not connected; so
f /∈ E ′.

10.3. It remains to give what was the second of the counter-examples promised
in Section 6.1: a factorization system (E ,M) arising as ΦX from an admissible
reflexion, and having each M∗/B reflective in C/B, but with M∗ not closed
under composition.

Taking any non-trivial group G, write C̃ for the category G-Set of sets with a
G-action. Those objects whose G-action is trivial form a reflective full subcate-
gory X̃ , isomorphic to the category of sets; write (Ẽ ,M̃) for the corresponding
reflective factorization system ΦX̃ . One verifies easily that the reflexion here is
admissible, and moreover that M̃∗ consists of all the maps in C̃. Accordingly Ẽ ′

reduces, by Proposition 6.7, to the isomorphisms alone, and (Ẽ ′,M̃∗) is trivially
a factorization system. So this is yet one more positive, although trivial, example
of the question raised in Section 6.1; but we use it here only to construct the
counter-example we seek. The one property of it that we make use of is the fact
that M̃∗/1 strictly contains M̃/1 = X̃ , so that there is some C /∈ X̃ with C → 1
in M̃∗; any other example with this property would do as well.

Write C for the category obtained from C̃ by adding a new terminal object T ;
thus C(A,B) = C̃(A,B) for A,B ∈ C̃, while C(A,T ) = {tA} and C(T,A) is
empty for A ∈ C̃, and C(T, T ) = 1T . Note that C admits finite limits, while C̃ is
closed in C under pullbacks. Write X for the full subcategory of C given by T
and the objects of X̃ ; it is reflective in C, the reflexion of A being its reflexion in
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X̃ when A ∈ C̃, and being T when A = T . This reflexion of C onto X is easily
seen to be admissible; write (E ,M) for the corresponding reflective factorization
system ΦX .

Clearly a map p: E → B in C̃ is an effective descent map in C if and only if
it is so in C̃. Of course the identity 1T : T → T is an effective descent map in
C. For E ∈ C̃, the unique tE : E → T is not an effective descent map in C; for
t∗E does not reflect isomorphisms, sending the non-invertible 1→ T (where 1 is
the terminal object of C̃) to the invertible 1×E → E.

It follows that M∗/B = M̃∗/B for B ∈ C̃, while M∗/T =M/T = X . If
we choose C ∈ C̃ as in the second paragraph of this section, the map C → 1
is in M̃∗ and hence in M∗, while 1 → T is also in M∗; but their composite
C → T is not in M∗ since C /∈ X .
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