
Morphisms of Rings

Robert Paré

Abstract Natural questions related to the double category of rings with ho-
momorphisms and bimodules lead to a reevaluation of what a morphism of
rings is. We introduce matrix-valued homomorphisms and then drop preser-
vation of identities, giving what are sometimes called amplification homomor-
phisms. We show how these give extensions of the double category of rings
and give some arguments justifying their study.

Introduction

In 1967 when I started my PhD under Jim Lambek’s direction, he had already
shifted his main interest from ring theory to category theory. I never had a
course in ring theory from him but I learned in his category theory course, and
in more detail, from his book [5], that rings were not necessarily commutative
but had an identity element 1, and that homomorphisms, in addition to
preserving sum and product, should also preserve 1.

In the last chapter of that same book, he introduces bimodules and their
tensor product and shows that it is associative and unitary up to isomor-
phism. The tensor product is of course only defined if the rings of scalars
match up properly just like composition in categories. It would seem then
that we have a sort of category whose objects are rings and whose mor-
phisms are bimodules. Although he doesn’t say so there (it wasn’t the place),
it’s clear from his later work that he knew then or shortly after that rings,
bimodules and linear maps form a bicategory [1].
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We are used to thinking of morphisms as structure-preserving functions, so
what are we to make of bimodules as morphisms? And what’s the relationship
with homomorphisms? These are the questions we address here.

In sections 1 and 2 we introduce the relevant double category theory mo-
tivated by the example which concerns us, viz. the double category of rings,
homomorphisms, bimodules and equivariant maps. We are led naturally to
matrix-valued homomorphisms, which gives us a graded category of rings
whose degree 1 part is the usual one. Accompanying this is a new double
category whose basic properties we expose. This is the content of sections
3 and 4. Then double categorical considerations lead to a further extension
of the category (and double category) of rings, to what have been called
amplification morphisms. Their basic properties are treated in section 5.

1 Double categories

The category of rings, Ring, has rings with 1 as objects and homomorphisms
preserving 1 as morphisms. This is a nice category. It is complete, cocomplete,
regular, locally finitely presentable, etc.

Given rings R and S, an S-R-bimodule M is a simultaneous left S-module
and right R-module whose left and right actions commute;

(sm)r = s(mr) .

If T is another ring andN a T -S-bimodule, the tensor product over S,N⊗SM
is naturally a T -R-bimodule. We have associativity isomorphisms

P ⊗T (N ⊗S M) ∼= (P ⊗T N)⊗S M

and unit isomorphisms

M ⊗R R ∼= M ∼= S ⊗S M

as clearly exposed in Chapter 5 of [5]. To keep track of the various rings
involved and what’s acting on what and on which side we can write

M : R • // S

to mean that M is an S-R-bimodule. Then the tensor product looks like a
composition

R S•M //R

T .

•
N⊗SM ��

S

T .

•N
��
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So we get a sort of category whose composition is not really associative nor
unitary but only so up to isomorphism. In order to formalize this we must
incorporate these isomorphisms into the structure. They are morphisms be-
tween morphisms, called 2-cells. Given two S-R-bimodulesM,M ′ : R • // S,
a 2-cell

R S

•M $$
R S

•
M ′

::�� φ

is a linear map of bimodules, i.e. a function such that

φ(m1 +m2) = φ(m1) + φ(m2)

φ(sm) = sφ(m)

φ(mr) = φ(m)r .

This is the data for a bicategory: objects (rings), arrows (bimodules), 2-
cells (linear maps). They can be composed in various ways and satisfy a
host of equations, all of which would seem obvious to anyone working with
bimodules. See the seminal work [1] for details.

Now we have a structure (rings) with two candidates for morphism, ho-
momorphism and bimodule, and we might ask which is the right one. In fact
they are both good but for different purposes. So a better question is, how
are they related? The answer will come from the theory of double categories.

A double category A has objects (A, B, C, D below) and two kinds of
morphism, which we call horizontal (f , g below) and vertical (v, w below).
These are related by a further kind of morphism, double cells as in

C D .
g
//

A

C

•v

��

A B
f // B

D .

•w

��

α +3

The horizontal arrows form a category HorA with composition denoted by
juxtaposition and identities by 1A. Cells can also be composed horizontally
also forming a category. The vertical arrows compose to give a bicategory
VertA whose 2-cells are the globular cells of A, i.e. those with identities on
the top and bottom

C C .
1C
//

A

C

•v

��

A A
1A // A

C .

•w

��
+3
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Vertical composition is denoted by • and vertical identities by idA. Finally
double cells can also be composed vertically (also denoted • and idf ). The
composition of cells is as associative and unitary as possible, provided the co-
herence isomorphisms are factored in to make the boundaries match. Rather
than give a formal definition, we will be better served by a couple of repre-
sentative examples. The reader is referred to [4] for a precise definition.

Example 1 The double category which will concern us here is the double
category of rings, Ring. Its objects are rings (with 1) and its horizontal arrows
are unitary homomorphisms. Its vertical arrows are bimodules. More precisely
a vertical arrow from R to S is an S-R-bimodule. A double cell

S S′
g
//

R

S

•M

��

R R′
f // R′

S′

•M ′

��

φ +3

is a map φ : M //M ′ which is linear in the sense that it preserves addition
and is compatible with the actions

φ(sm) = g(s)φ(m)

φ(mr) = φ(m)f(r) .

In other words it is an S-R-linear map from M to M ′ when the codomain is
made into an S-R-bimodule by “restriction of scalars”.

Horizontal composition of morphisms and cells is just function composi-
tion. Vertical composition is given by

T T ′
h
//

S

T

•N
��

S S′
g // S′

T ′

•N ′

��

ψ +3

S S′

R

S

•M

��

R R′
f // R′

S′

•M ′

��

φ +3

=

T T ′
h

//

R

T

•N⊗SM
��

R R′
f // R′

T ′

•N ′⊗S′M
′

��

ψ⊗gφ+3

where (ψ ⊗g φ)(n ⊗S m) = ψ(n) ⊗S′ φ(m). It is easily checked that this is
well defined and is associative in the appropriate sense, giving us the double
category Ring.

Example 2 A more basic example, and one to keep in mind, is the following.
The double category Rel has sets as objects and functions as horizontal ar-
rows, so HorRel = Set. A vertical arrow R : X • // Y is a relation between
X and Y and there is a unique cell
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Y Y ′
g
//

X

Y

•R
��

X X ′
f // X ′

Y ′

•R′

��
+3

if (and only if) we have

∀x,y(x ∼R y ⇒ f(x) ∼R′ g(y)) .

Rel is a strict double category in the sense that vertical composition is strictly
associative and unitary. Strict double categories were introduced by Ehres-
mann [2] and are (ignoring size considerations) the same as category objects
in Cat, the category of categories.

Ring on the other hand is a weak double category in that vertical compo-
sition is only associative and unitary up to coherent isomorphism as is clear
from the above discussion. We consider the weak double categories to be the
more important notion, certainly for this work, and call them simply dou-
ble categories without modifiers. They were introduced in [4], where more
examples can be found.

2 Companions and conjoints

Functions are often defined to be relations that are single-valued and every-
where defined. Category theorists would tend to take functions as primitive
and define relations in the category of sets, as subobjects of a product. Then
every function has an associated relation, its graph

Gr(f) = {(x, y)|f(x) = y} .

In any case there is a close relationship between functions and certain rela-
tions and this can be formulated in purely double category terms.

Definition 3 Let A be a double category, f : A //B a horizontal arrow, and
v : A • //B a vertical one in A. We say that v is a companion of f if we are
given cells, the binding cells

A B
f
//

A

A

•idA

��

A A
1A // A

B

•v

��
α and

B B
1B
//

A

B

•v

��

A B
f // B

B

• idB
��

β

such that
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A B
f
//

A

A

•idA

��

A A
1A // A

B

•v

��
α

B B
1B
//

A

B

A B
f // B

B

• idB
��

β =

A B′
f
//

A

A

•idA

��

A B
f // B

B′

• idB
��

idf

i.e. βα = idf , and

B B
1B
//

A

B

•v

��

A B
f // B

B

• idB
��

β

A B

A

A

•idA

��

A A
1A // A

B

•v

��
α

·= ·

B B
1B
//

A

B

•v

��

A A
1A // A

B

•v

��
1v

i.e. β•α ·= · 1v. The ·= · sign means equality once the canonical isomorphisms
(v • idA ∼= v ∼= idB •v) are inserted to make the boundaries agree.

Companions, when they exist, are unique up to isomorphism, and we use
the notation f∗ to denote a choice of companion for f . Companions compose:

(gf)∗ ∼= g∗ • f∗

and we also have
(1A)∗ ∼= idA .

It’s an easy exercise to show that in Rel, every function has a companion,
its graph (if v is a relation R, then α expresses the fact that Gr(f) ⊆ R, and
β that R ⊆ Gr(f)).

We see that companions give a precise meaning to expressions like “a
function is a relation such that...” or more generally “a horizontal arrow is
isomorphic to a vertical one”.

Proposition 4 (a) In Ring, every homomorphism f : R //S has a compan-
ion, namely S considered as an S-R-bimodule with actions • given by

s′ • s = s′s
s • r = sf(r) .

(b) A bimodule M : R • // S is a companion if and only if it is free on one
generator as a left S-module.

Proof (a) Denote by S : R • // S the bimodule in the statement, i.e. the
bimodule gotten from the S-S-bimodule S by “restriction of scalars” along
f on the right. Then we have cells
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R S
f
//

R

R

•R
��

R R
1R // R

S

•S
��

α +3

S S
1g
//

R

S

•S
��

R S
f // S

S

•S
��

β +3

α(r) = f(r) β(s) = s .

It’s an easy calculation to show that α and β are indeed cells and that βα =
idf and β • α ·= · 1S .

(b) Suppose the bimodule M : R • // S is free as a left S-module with
generator m0 ∈ M . Then for every r ∈ R there is a unique element s ∈ S
such that

m0r = sm0 .

Call this s, f(r), so that f(r) is uniquely determined by the equation

f(r)m0 = m0r .

It is easy to check that f is a homomorphism f : R // S. We check that
multiplication is preserved, as an example.

f(r1r2)m0 = m0r1r2

= f(r1)m0r2

= f(r1)f(r2)m0 .

So f(r1r2) = f(r1)f(r2). Also, while we are at it,

f(1)m0 = m01 = 1m0

so f(1) = 1.
Now define cells

R S
f
//

R

R

•R
��

R R
1R // R

S

•M
��

α +3 and

S S
1S
//

R

S

•M

��

R S
f // S

S

•S
��

β +3

by taking α(r) = m0r, and β(m) to be the unique element of S such that
β(m)m0 = m. The calculations showing that α and β are cells (i.e. linear
maps) and that the binding equations

βα = idf
β • α ·= · 1M

hold are easy exercises. We check
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S S
1S
//

R

S

•M

��

R S
f // S

S

•S
��

β +3

R S

R

R

•R
��

R R
1R // R

S

•M
��

α +3

·= ·

S S
1S
//

R

S

•M

��

R R
1R // R

S

•M
��

1M+3

in part to illustrate where the ·= · comes in. The left hand diagram has to be
modified by placing the canonical isomophism ρ−1 : M //M ⊗R R on the
left and λ : S⊗SM //M on the right to make the boundaries on both sides
of the equation the same. Then for m ∈M we have

λ(β ⊗ α)ρ−1(m) = λ(β ⊗ α)(m⊗ 1)

= λ(βm⊗ α1)

= (βm)(α1)

= (βm)(m01)

= m .

2

The generator for M is not unique. If m1 is another one, then there exists
an invertible element a ∈ S such that m1 = am0. If f0, f1 : R // S are the
homomorphisms corresponding to m0 and m1 respectively, then we have

f1(r)m1 = f1(r)am0 .

On the other hand, we also have

f1(r)m1 = m1r = am0r = af0(r)m0

so f1(r)a = af0(r) or
f1(r) = af0(r)a−1 .

We summarize this in the following proposition.

Proposition 5 If a bimodule M : R • // S is a rank one free left S-module,
then M ∼= f∗ for some homomorphism f : R // S. f is unique up to conju-
gation by a unit of S.

Conjugation by an element of S is actually an isomorphism in a 2-category
of rings. Every double category A (strict or not) has a horizontal 2-category,
Hor A. The objects are those of A, the 1-cells are the horizontal arrows of A,
and the 2-cells are the special cells of A, i.e. cells of the form
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A B .
g
//

A

A

•idA

��

A B
f // B

B .

• idB
��

α

Vertical composition of 2-cells, α and β, in HorA uses the canonical isomor-
phisms λ = ρ : id • id // id

A A

A

A

•idA

��

A AA

A

λ−1
A

A B
h
//

A

A

•idA

��

A BB

B

• idB
��

β

A B
g
//

A

A

•idA

��

A B
f // B

B

• idB
��

α

B B .

B

B

B BB

B .

• idB

��

λβ

A moderate amount of straightforward calculation shows thatHor A is indeed
a 2-category.

When applied to the double category Ring we get a 2-category whose
objects are rings, whose arrows are homomorphisms and whose 2-cells are
linear maps of the form

R S .
S
//

R

R

•R
��

R S
f // S

S .

•S
��

α +3

Such an α is determined by its value at 1. We have

α(r) = α(r · 1) = g(r)α(1)

= α(1 · r) = α(1)f(r) .

This gives the following.

Definition 6 The 2-category of rings, Ring , has rings as objects, homomor-
phisms as 1-cells and as 2-cells

R S ,

•
f

$$
R S ,

•
g

::��

elements s ∈ S such that for all r

sf(r) = g(r)s .
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This is not that surprising. If we think of a ring as a one-object additive
category, then homomorphisms are additive functors, and a 2-cell as above is
just a natural transformation. Nevertheless it can be useful to keep in mind.

There is a dual notion to companion, that of conjoint, which we spell out.

Definition 7 Let f : A // B be a horizontal arrow in a double category A
and v : B • //A a vertical one. We say that v is conjoint to f if we are given
cells (conjunctions)

A A
1A
//

A

A

•idA

��

A B
f // B

A

•v

��

ψ +3 and

B A
f
//

A

B

•v

��

A A
1A // A

A

• idA
��

χ +3

such that

A A
1A
//

A

A

•idA

��

A B
f // B

A

•v

��

ψ +3

A B
f
//

B

A

B B
1B // B

B

• idB
��

χ +3 =

A B
f
//

A

A

•idA

��

A B
f // B

B

• idB
��

idf+3 ,

i.e. χψ = idf , and

A A
1A
//

A

A

•idA

��

A BB

A

•v

��

ψ +3

A B
f
//

B

A

•v

��

B B
1B // B

B

• idB
��

χ +3

·= ·

A A
1A
//

B

A

•v

��

B B
1B // B

A

•v

��

1v +3 ,

i.e. ψ • χ ·= · 1v.

This definition looks very much like that of adjoint, and that is how we
think of it: v is right adjoint to f , even though they are different types of
arrows. That the notion is the vertical dual to that of companion is clear.

The double category Ring is isomorphic to its vertical dual

Ringco ∼= Ring .

The isomorphism takes a ring R to its opposite ring Rop, i.e., with mul-
tiplication switched. A homomorphism f : R // S gives a homomorphism
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fop : Rop //Sop (in the same direction) whereas an S-R-bimoduleM : R • // S
gives an Rop-Sop-bimodule Mop : Sop • //Rop (in the opposite direction).
So the results on companions are readily dualizable. We denote by f∗ a con-
joint for f . In Ring, every homomorphism f : R // S has a conjoint f∗,
namely S : S • //R with left action by R given by “restriction”

r • s = f(r)s .

3 Matrix-valued homomorphisms

We saw in the previous section how homomorphisms f : R //S correspond to
bimodules M : R • // S which are free on one generator as left S-modules.
What happens if M is free on p generators? We might expect these to corre-
spond to some kind of homomorphic relation from R to S associating to each
r ∈ R, not a unique element of S but rather p of them. This is not exactly
what happens, but we do get something interesting.

As a warm-up, let’s assume M is free on two generators m1,m2 as a left
S-module. Nothing is said about the right action (as before). Then for each
r ∈ R we get unique s11, s12, s21, s22 ∈ S such that

m1r = s11m1 + s12m2

m2r = s21m1 + s22m2 .

Let’s denote sij by fij(r). So to each r we associate not 2 but 4 elements of
S! Of course the “same” is true if M is free on p generators m1, . . . ,mp:

mir =

p∑
j=1

fij(r)mj .

Consider

mi(rr
′) =

p∑
j=1

fij(rr
′)mj

and
(mir)r

′ =
∑p
j=1 fij(r)mjr

′

=
∑p
j=1 fij(r) (

∑p
k=1 fjk(r′)mk)

=
∑p
k=1

(∑p
j=1 fij(r)fjk(r′)

)
mk .

So fik(rr′) =
∑p
j=1 fij(r)fjk(r′), i.e. we get a homomorphism

f : R //Matp(S)

into the ring of p× p matrices in S. This leads to the following:
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Theorem 8 (a) Any matrix-valued homomorphism f : R // Matp(S) in-
duces an S-R-bimodule structure on S(p).

(b) Any S-R-bimodule M : R • // S which is free on p generators as a left
S-module is isomorphic (as an S-R-bimodule) to S(p) with R-action induced
by a homomorphism f : R //Matp(S) as in (a).

(c) The homomorphism f in (b) is unique up to conjugation by an invert-
ible p× p matrix A in Matp(S).

Proof (a) Let S(p) denote the set of row vectors in S of length p, i.e. 1 × p
matrices. Then for any element s = [s1, . . . , sp] ∈ S(p) let

s′ • s = [s′s1, . . . , s
′sp]

and
s • r = sf(r) (matrix multiplication).

The bimodule conditions are easily verified.
(b) We saw just above how to construct a homomorphism f : R //Matp(S)

from a bimodule M : R • // S with an S-basis m1, . . . ,mp. It is uniquely
determined by

m • r = f(r)m

with m = column vector of mi’s. Because M is free on m1, . . . ,mp as an
S-module we already have an S-isomorphism

φ : S(p) //M

φ(s) = sm.

Now make S(p) into an S-R-bimodule as in (a), i.e. s • r = sf(r). Then

φ(s • r) = φ(sf(r))
= sf(r)m
= sm • r
= φ(s) • r ,

so φ is an S-R-isomorphism.
(c) This is the usual change of bases calculation. It’s just a question of

taking care to get everything on the right side. If m′ is another S-basis for
M we get an invertible S-matrix A such that

m′ = Am

so if f ′ is the homomorphism we get from m′, we have

m′ • r = f ′(r)m′

Am • r = f ′(r)Am
m • r = A−1f ′(r)Am
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so f(r) = A−1f ′(r)A. 2

We’d like to think of a homomorphism R //Mat(S) as a kind of homo-
morphic relation from R to S. So let’s look at some special cases.

Example 9 (Pairs of homomorphisms)
Let f, g : R // S be homomorphisms. Then we get a homomorphism

h : R //Mat2(S) given by

h(r) =

[
f(r) 0
0 g(r)

]
In general, we have the subring of diagonal matrices

S(p) ⊆Matp(S)

so p homomorphisms fi : R //S give a matrix-valued homomorphism f : R //Matp(S).

Example 10 (Derivations)
Let f : R //S be a homomorphism and d an f -derivation, i.e. an additive

function d : R // S such that

d(rr′) = d(r)f(r′) + f(r)d(r′) .

Then we get a homomorphism R //Mat2(S)

r 7−→
[
f(r) 0
d(r) f(r)

]
In fact the set of matrices

D =

{[
s 0
s′ s

]∣∣∣∣ s, s′ ∈ S}
is a subring of Mat2(S), and derivations correspond exactly to homomor-
phisms R //Mat2(S) that factor through D.

More generally we can consider the subring of lower triangular matrices

L =

{[
s 0
s′ s′′

]∣∣∣∣ s, s′, s′′ ∈ S} .

Then a homomorphism R //Mat2(S) that factors through L corresponds
to a pair of homomorphisms f, g : R //S and a derivation d from f to g, i.e.
an additive function d : R // S such that

d(rr′) = d(r)f(r′) + g(r)d(r′) .

Example 11 We give one more, somewhat mysterious, example to illustrate
the variety of morphisms we get just in the 2× 2 case. For any ring S we can
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construct a ring of “complex numbers” over S:

C(S) =

{[
s s′

−s′ s

]∣∣∣∣ s, s′ ∈ S} .

This is a subring of Mat2(S). A homomorphism R //Mat2(S) that factors
through C(S) corresponds to two additive functions c, s : R // S with the
properties

c(rr′) = c(r)c(r′)− s(r)s(r′)

s(rr′) = s(r)c(r′) + c(r)s(r′) .

Hopefully these examples will have convinced the reader that considering
homomorphisms R // Matp(S) as a kind of relation from R to S is an
interesting idea worth pursuing.

If they really are a kind of morphism from R to S we should be able to
compose them. To get an idea of how this might work, the previous theorem
says that a homomorphism f : R // Matp(S) corresponds to a bimodule
S(p) : R • // S and we know how to compose bimodules. So given another
homomorphism g : S //Matq(T ) we get T (q) : S • // T and if we compose
these we get

T (q) ⊗S S(p) ∼= T (q) ⊗S (⊕pS) ∼= ⊕p(T (q) ⊗S S) ∼= T (pq) .

So what we can expect is a graded composition, graded by the multiplicative
monoid of positive integers (N+, ·). If we are a bit more careful with the above
isomorphisms we get an explicit description of the graded composition.

For homomorphisms f : R //Matp(S) and g : S //Matq(T ), let f∗ =
S(p) : R • // S and g∗ = T (q) : S • // T be the bimodules induced by f and
g as in the above theorem. So we get a bimodule

g∗ ⊗S f∗ = T (q) ⊗S S(p) : R • // T .

Let e1, . . . , ep be the standard basis for S(p) and e′1, . . . , e
′
q the standard basis

for T (q). Then the e′j⊗ei for 1 ≤ i ≤ p, 1 ≤ j ≤ q form a basis for T (q)⊗SS(p).
We have

(e′j ⊗ ei)r = e′j ⊗ (
∑
k fki(r)ek)

=
∑
k e′j ⊗ fki(r)ek

=
∑
k e′jfki(r)⊗ ek

=
∑
k

∑
l glj(fki(r))e

′
l ⊗ ek .

So we apply f to r to get a p×p matrix and then apply g to each of the entries
to get a block p×p matrix of q×q matrices. Ordering the basis {e′j⊗ei} will
give us a (pq)× (pq) matrix. The ordering is arbitrary but a judicious choice
will make calculations easier and the block matrix picture suggests just such
a choice. We order them lexicographically from the right
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〈e′1 ⊗ e1, e
′
2 ⊗ e1, . . . , e

′
q ⊗ e1, e

′
1 ⊗ e2, . . . , e

′
q ⊗ ep〉

i.e. e′j ⊗ ei is in the j + q(i − 1) position. This gives us an isomorphism
MatpMatq(T ) ∼= Matpq(T ), and with the aid of this we can now compose f
with g to get a homomorphism R //Matpq(T ). This composition enlarges
the category of rings to an (N+, ·)-graded category. Of course associativity
and the unit laws have to be proved, which is a bit messy and a more general
categorical approach will clarify things.

First of all for any p, Matp(R) is functorial in R, i.e. we have a family of
functors Matp : Ring // Ring. Then the isomorphisms MatPMatq(R) ∼=
Matpq(R) are natural in R and they satisfy an associativity condition giving
us a graded monad.

Graded monads were explicitly defined as such in [3] but certainly go back
to Bénabou [1].

Definition 12 Let (M, ·, 1) be a monoid. An M -graded monad consists of a
category A and for each m ∈M an endofunctor Tm : A //A, together with
natural transformations

η : 1A // T1

and
µm,m′ : TmTm′ // Tmm′

satisfying unit laws

T1Tm Tmµ1,m
//

Tm

T1Tm

ηTm

��

Tm TmT1
Tmη // TmT1

Tm

µm,1

��

1Tm

��

and associativity

TmTm′m′′ Tmm′m′′ .µm,m′m′′
//

TmTm′Tm′′

TmTm′m′′

Tmµm′,m′′

��

TmTm′Tm′′ Tmm′Tm′′
µm,m′Tm′′ // Tmm′Tm′′

Tmm′m′′ .

µmm′,m′′

��

This is nothing but a lax functor

T : M // Cat

where M is the locally discrete one-object 2-category with 1-cells given by
the elements of M .

Proposition 13 (1) For every p ∈ N+, Matp is a functor Ring //Ring.
(2) For every p, q ∈ N+ we have a natural isomorphism µp,q : MatpMatq //Matpq.
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(3) The families 〈Matp〉p∈N+ , 〈µp,q〉p,q∈N+ together with the canonical iso-
morphism η : 1Ring

//Mat1 form an (N+, ·, 1)-graded monad Mat.

Proof (1)Matp(f) is application of f to a matrix entry-wise. This is obviously
functorial.
(2) An element of MatpMatq(R) is a p× p matrix of q× q matrices, and µpq
of such is just the pq× pq matrix we get by erasing the inside brackets. This
is also obviously natural.
(3) It is also clear that the 〈µpq〉 are associative, the only difference between
the two candidates being the order in which we erase the brackets inside the
“block block” matrix.

The unit η : 1Ring
//Mat1 consists in putting square brackets around an

element to make it a 1× 1 matrix, so the unit laws are equally transparent.
2

Given a graded monad T = (〈Tm〉, η, 〈µm,m′〉) we can construct a graded
Kleisli category AT. The objects are those of A and a morphism of degree
m, (m, f) : A //B in AT is a morphism f : A // TmB in A. Composition

A
(m,f) //B

(m′,g) // C

is given by A
f // TmB

Tmg // TmTm′C
µm,m′ // Tmm′C and units by

(1, ηA) : A // A. That AT is a graded category is an easy calculation, just
like for the usual Kleisli category.

We see now that our matrix-valued homomorphisms are exactly the Kleisli
morphisms for the graded monad Mat. This gives a new, larger category of
rings, RingMat.

Remark 14 Graded monads have recently appeared in the computer science
literature (see e.g. [3] and references there). Our Kleisli category is not the
same as theirs where their grading is on the objects rather than on the mor-
phisms. The theory of graded monads and its extension to double categories
is very interesting but that would take us too far afield so we leave it for
future work.

4 The graded double category of rings

We can extend the double category of rings by adding in the new graded
morphisms. The double category RingMat has objects all rings but horizontal
arrows are the graded ones, (p, f) : R //S, i.e. f : R //Matp(S). The vertical
arrows are still bimodules M : R • // S. A double cell
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S S′
(q,g)

//

R

S

•M

��

R R′
(p,f) // R′

S′

•M ′

��

φ +3

is a linear map (a cell in Ring)

S Matq(S
′)

g
//

R

S

•M

��

R Matp(R
′)

f // Matp(R
′)

Matq(S
′)

•Matq,p(M
′)

��

φ +3

where Matq,p(M
′) is the bimodule of q× p matrices with entries in M ′, with

the Matq(S
′) action given by matrix multiplication on the left, and similarly

for Matp(R
′).

Theorem 15 (1) RingMat is a double category.
(2) RingMat is vertically self dual, i.e. RingcoMat

∼= RingMat.
(3) Every horizontal arrow has a companion.

Proof (1) This is a straightforward but long and uninformative calculation,
best done in the context of graded monads, so is omitted here.
(2) This is not completely obvious because Matp(S)op is not the same as
Matp(S

op). As sets they are the same but the multiplications are different.
If we evaluate A times B in each of these, the b’s come before the a’s but in
the first case it’s column times row and the reverse in the second. But they
are isomorphic, the isomorphisms given by transpose

tS : Matp(S)op //Matp(S
op)

A 7−→ AT .

If we denote the opposite product by ∗, then

tS(A ∗B) = tS(BA) = (BA)T

whose (i, j)th entry is ∑
k

bjkaki .

On the other hand
tS(A)tS(B) = ATBT

whose (i, j)th entry is ∑
k

aki ∗ bjk =
∑
k

bjkaki .
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The vertical involution

Θ : RingcoMat
// RingMat

is defined on objects by taking the opposite ring

Θ(R) = Rop

and on vertical arrows, M : R • // S, it is as before:

Θ(M) : Sop • //Rop

is M considered as a left Rop right Sop bimodule. For a horizontal arrow
(p, f) : R // S, Θ(p, f) : Rop // Sop is given by

Rop
fop //Matp(S)op

tS //Matp(S
op) .

For a cell

S S′
(q,g)

//

R

S

•M

��

R R′
(p,f) // R′

S′

•M ′

��

φ +3

Rop R′op
Θ(p,f)

//

Sop

Rop

•M

��

Sop S′op
Θ(q,g) // S′op

R′op

•M ′

��

Θ(φ)+3

is given by

Rop Matp(R
′)op

f
//

Sop

Rop

•M

��

Sop Matq(S
′)op

g // Matq(S
′)op

Matp(R
′)op

•Matq,p(M
′)

��

φ +3

Matp(R
′)op Matp(R

′op) .
tR′
//

Matq(S
′)op

Matp(R
′)op

Matq(S
′)op Matq(S

′op)
tS′ // Matq(S

′op)

Matp(R
′op) .

•Matp,q(M
′)

��

tM′ +3

Here tM ′ is also taking transpose.
(3) Given a horizontal arrow (p, f) : R //S, i.e. a homomorphism f : R //Matp(S),
its companion is the bimodule

f∗ = S(p) : R • // S

introduced in the previous section. The binding cells
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R S
(p,f)

//

R

R

•R
��

R R
(1,1R) // R

S

•f∗
��

α +3 and

S S ,
(1,1S)

//

R

S

•f∗

��

R S
(p,f) // S

S ,

•S
��

β +3

are given by

α(r) = f(r)

R Matp(S)
f
//

R

R

•R

��

R Mat1(R)
η // Mat1(R)

Matp(S)

•Matp,1(S
(p))∼=Matp(S)

��

α +3

β(s) = s

S Mat1(S) .
η
//

R

S

•S(p)

��

R Matp(S)
f // Matp(S)

Mat1(S) .

•Mat1,p(S)=S
(p)

��

β +3

The verification of the linearity of α and β and the binding equations are
left to the reader. 2

Corollary 16 In RingMat, every horizontal arrow has a conjoint.

We can now describe the 2-cells in the 2-category HorRingMat explicitly
in terms of matrices.

Proposition 17 Given morphisms (p, f) and (q, g) : R //S in HorRingMat,
a 2-cell φ : (p, f) // (q, g) is a q × p matrix A with entries in S, such that
for every r ∈ R,

Af(r) = g(r)A .

Proof A 2-cell φ : (p, f) // (q, g) is a double cell in RingMat

R S
(q,g)

//

R

R

•R

��

R S
(p,f) // S

S

•S

��

φ +3

which is a double cell
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R Matq(S) .
g
//

R

R

•R

��

R Matp(S)
f // Matp(S)

Matq(S) .

•Matq,p(S)

��

φ +3

This is entirely determined by its value at 1

φ(r) = φ(1)f(r)
= g(r)φ(1) .

Take A = φ(1). 2

Remark 18 We only looked at free modules of finite rank, partly in prepa-
ration for the next section, but we can also consider infinite rank ones. Then
the matrices are row finite, i.e. for every i, aij = 0 except for finitely many
j. Now the distinction between row vectors and column vectors is clear. The
first have finite support whereas the second are arbitrary. The double cate-
gory we would get this way would not be vertically self dual. Every horizontal
arrow would still have a companion, the coproduct of copies of the codomain.
But conjoints don’t always exist. There is a candidate for the conjoint, the
product of copies of the codomain, but only one of the conjunctions general-
izes.

5 Adjoint bimodules

If, in a double category A, a horizontal arrow f : A //B has a companion f∗
and a conjoint f∗ then f∗ is left adjoint to f∗ in VertA. The unit and counit
of the adjunction are given by

A A
1A
//

A

A

•idA

��

A B
f // B

A

•f∗

��
ψ

A B

A

A

•idA

��

A A
1A // A

B

•f∗
��

α

and

B B .
1B
//

A

B

•f∗

��

A B
f // B

B .

• idB
��

β

A B

B

A

•f∗

��

B B
1B // B

B

• idB
��

χ

Definition 19 We say that an object B of a double category A is Cauchy
complete if every vertical arrow v : A • //B with a right adjoint is the com-
panion of a horizontal arrow. We say that A is Cauchy if every object is
Cauchy complete.
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Remark 20 The notion of Cauchy completeness for enriched categories
(which we are extending to double categories here) was introduced by Law-
vere in [6].

One might ask then, is the double category RingMat Cauchy? Not quite,
but almost. And this leads to a further generalization of morphism of rings.

Recall that two bimodules M : R • // S and N : S • //R are adjoint, or
more precisely M is left adjoint to N , if there are an S-S linear map

ε : M ⊗R N // S

and an R-R linear map
η : R //N ⊗S M

such that

M ⊗R R M∼=
//

M ⊗R N ⊗S M

M ⊗R R

::
M⊗Rη

M ⊗R N ⊗S M

MM S ⊗S M∼=
//

M ⊗R N ⊗S M

M

M ⊗R N ⊗S M

S ⊗S M

ε⊗SM

$$

and

R⊗R N N∼=
//

N ⊗S M ⊗R N

R⊗R N

::
η⊗RN

N ⊗S M ⊗R N

NN M ⊗S S∼=
//

N ⊗S M ⊗R N

N

N ⊗S M ⊗R N

M ⊗S S

N⊗Sε

$$

commute.
The following theorem is well-known.

Theorem 21 A bimodule M : R • // S has a right adjoint if and only if it
is finitely generated and projective as a left S-module.

It is easier to give a proof than to hunt down a reference which gives it in
the precise form we want. We do this after some preliminary remarks.
M is finitely generated, by m1, . . . ,mp say, if and only if the S-linear map

τ : S(p) //M

τ(s1 . . . sp) =
∑p
i=1 simi is surjective. If M is S-projective, then τ splits, i.e.

there is an S-linear map
σ : M // S(p)

such that τσ = 1M . In fact, M is a finitely generated and projective S-module
if and only if there exist p, τ, σ such that τσ = 1M .

Let the components of σ be σ1, . . . , σp : M // S. Then τσ = 1M means
that for every m ∈M we will have

m =

p∑
i=1

σi(m)mi
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i.e. the σi provide an S-linear choice of coordinates for m relative to the
generators m1 . . .mp. All of this is independent of R.

Proof (Of Theorem 21) Suppose M is left adjoint to N with notation as
above. Then η(1) =

∑p
i=1 ni ⊗mi. The first triangle equation gives for any

m
ε(m⊗ ni)mi = m .

So we take τ : S(r) //M to be

τ(s) =

n∑
i=1

simi

and
σi(m) = ε(m⊗ ni) .

Then τσ = 1µ and M is finitely generated and projective.
Conversely, take N = M∗ = HomS(M,S). We immediately get

ε : M ⊗R N // S

ε(m⊗ f) = f(m) .

If M is finitely generated and projective, we have τ : S(p) // M and
σ : M // S(p). Define η : R //N ⊗S M by

η(1) =

p∑
i=1

σi ⊗ τ(ei) .

The triangle equations are easily checked. 2

Given this theorem then, we see that S is Cauchy-complete in RingMat

if and only if every finitely generated projective left S-module is free. Com-
mutative rings with this property are of considerable interest in algebraic
geometry having to do with when vector bundles are trivial. If S is a PID or
a local ring then it is Cauchy. That polynomial rings are so is the content of
the Quillen–Suslin theorem, which is highly non trivial. The fact that Cauchy
completeness in RingMat leads to such questions gives some legitimacy to this
double category.

Finitely generated projective is the next best thing to free of finite rank,
so how does this relate to the previous sections?

For any r we can write

mir =

p∑
j=1

σj(mir)mj .

If we let fij(r) = σj(mir) we get
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mir =

p∑
j=1

fij(r)mj (*)

the same formula as in §3.

Theorem 22 (1) The functions fij define a non-unitary homomorphism
f : R //Matp(S).
(2) Any such homomorphism comes from a bimodule which is finitely gener-
ated and projective as a left S-module.

Proof (a) f is clearly additive.
Multiply (∗) by r′ on the right and apply σk to get

σk(mirr
′) =

p∑
j=1

fij(r)σk(mjr
′)

i.e.

fik(rr′) =

p∑
j=1

fij(r)fjk(r′) .

Thus f is a homomorphism R //Matp(S). fij(1) = σj(mi) and so corre-
sponds to the linear map στ : S(p) // S(p), which is not the identity unless
the mi form a basis.
(b) Given a homomorphism f : R //Matp(S), define M by

M =
{

s ∈ S(p) | sf(1) = s
}

.

M is an S-R-bimodule. First of all it’s clearly a sub left S-module of S(p).
Define the right action of R by

s • r = sf(r) .

sf(r)f(1) = sf(r1) = sf(r) so sf(r) ∈M . The bimodule equations automat-
ically hold because f is a homomorphism: the only thing to check is s •1 = s,
i.e. sf(1) = s, which is in the definition of M .

Define τ : S(p) //M by τ(s) = sf(1) and let σ : M // S(p) be the in-
clusion. Clearly τσ = 1M , so M is finitely generated projective as a left
S-module. The generators are τ(ei) = eif(1). Now let g : R //Matp(S) be
the homomorphism defined by

gij(r) = σj(eif(1) • r)

as in the discussion just before the statement of the theorem. Then

gij(r) = σj(eif(1)f(r)) = σj(eif(r))

which is the jth component of the ith column of f(r), i.e. gij(r) = fij(r). 2



24 Robert Paré

Homomorphisms R //Matp(S) have already appeared in the quantum
field theory literature (see e.g. [7]) where they are called amplifying homo-
morphisms or amplimorphisms for short.

Let’s define the double category Ampli whose objects are rings (with 1),
horizontal arrows are amplimorphisms R // S, i.e. non-unitary homomor-
phisms R // Matp(S) for some p. Composition is like for RingMat: first
apply f to an element r ∈ R to get a p× p matrix in S, and then apply g to
each entry separately to get a p× p block matrix of q× q matrices, and then
consider this as a (pq)× (pq) matrix.

Vertical arrows are bimodules M : R • // S and cells

S S′
(q,g)

//

R

S

•M

��

R R′
(p,f) // R′

S′

•M ′

��

φ +3

are cells

S Matq(S
′)

g
//

R

S

•M

��

R Matp(R
′)

f // Matp(R
′)

Matq(S
′)

•Matq,p(M
′)

��

φ +3

i.e. additive functions φ : M // Matq,p(M
′) such that for every m ∈ M ,

r ∈ R, s ∈ S we have
φ(mr) = φ(m)f(r)

φ(sm) = g(s)φ(m) .

Here we have taken the definition of cells to be the same as for RingMat,
which doesn’t refer to identities at all and doesn’t need modification. One
could instead define cells as S-R-linear maps from M into “Matq,p(M

′) with
scalars restricted” along f and g. For non-unitary homomorphisms, restric-
tion of scalars doesn’t work exactly as for unitary ones. A modification is
required to insure the unit conditions for the action. One has to look at
S-R-linear maps from M into

{A ∈Matq,p(M
′) | Af(1) = A = g(1)A} .

However this is easily seen to be equivalent to the definition we have given.

Theorem 23 (1) Ampli is a double category.
(2) Ampli is vertically self dual.
(3) Every horizontal arrow has a companion and a conjoint.
(4) Every adjoint pair of vertical arrows is represented by a horizontal one,
i.e. Ampli is Cauchy.
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Proof (1) Horizontal composition of arrows and cells is the same as for
RingMat, as is vertical composition. We check that the vertical composition
of cells, as given in RingMat, is well-defined even if g is not unitary. Consider
the composition of

T T ′ .
(l,h)

//

S

T

•N
��

S S′
(q,g) // S′

T ′ .

•N ′

��

ψ +3

S S′

R

S

•M

��

R R′
(p,f) // R′

S′

•M ′

��

φ +3

It is given by

T Matl(T
′)

h
//

R

T

•N⊗SM
��

R Matp(R
′)

f // Matp(R
′)

Matl(T
′)

•Matl,q(N
′)⊗Matq(S′)Matq,p(M

′)

��

ψ⊗gφ+3

followed by the canonical

Matl,q(N
′)⊗Matq(S′) Matq,p(M

′) //Matl,p(N
′ ⊗S′ M ′) .

ψ ⊗g φ is defined by

(ψ ⊗g φ)(n⊗S m) = ψ(n)⊗Matq(S′) φ(m)

and the only place that g enters is in the equation

(ψ ⊗g φ)(ns⊗S m) = (ψ ⊗g φ)(n⊗S sm)

i.e.
ψ(ns)⊗Matq(S′) φ(m) = ψ(n)⊗Matq(S′) φ(sm)

or
ψ(n)g(s)⊗Matq(S′) φ(m) = ψ(n)⊗Matq(S′) g(s)φ(m)

which clearly holds. “Unitarity” does not enter into it.
(2) The vertical duality is the same as for RingMat, i.e. taking the opposite
ring and adjusting the horizontal arrows by the use of transpose.
(3) Given an amplimorphism (p, f) : R // S, we’ve already constructed its
companion in Theorem 22:

(p, f)∗ = {s ∈ S(p) | sf(1) = s} .
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We have just to show that it’s actually a companion. Define the binding cells
as follows:

R S
(p,f)

//

R

R

•R
��

R R
(1,1R) // R

S

• (p,f)∗
��

α +3

S S
(1,1g)

//

R

S

•(p,f)∗

��

R S
(p,f) // S

S

•S
��

β +3

are the linear maps

R Matp(S)
f
//

R

R

•R
��

R R
1R // R

Matp(S)

•Matp,1((p,f)∗)

��

α +3

S S
1S

//

R

S

•(p,f)∗

��

R Matp(S)
f // Matp(S)

S

•Matl,p(S)

��

β +3

α(r) = f(r) β(s) = s .

In the definition of α, note that Matp,1((p, f)∗) is a p × 1 matrix of 1 × p
matrices so can be identified with a p × p matrix. We have to check that
the rows satisfy the defining property of (p, f)∗, sf(1) = s. This is done
simultaneously for all rows by f(r)f(1) = f(r) (the ith row is eif(r)f(1) =
eif(r)).

The existence of conjoints is dual.
(4) This is just a formal summary of the preceding discussion: M has a right
adjoint if and only if it is finitely generated and projective and this holds if
and only if it is induced by a non-unitary homomorphism into a matrix ring.

2

We can now describe explicitly, in terms of matrices, the 2-category
Ampli = HorAmpli. The objects are rings with 1, the morphisms are pairs
(p, f) where p is a positive integer and f : R //Matp(S) is a (not necessarily
unitary) homomorphism. Composition (p′, f ′)(p, f) is (p′p, h) where

h = (R
f //Matp(S)

Matp(f
′) //MatpMatp′(T ) ∼= Matp′p(T )) .

A 2-cell t : (p, f)⇒ (q, g) is an R-R linear map

R Matq(S)
g
//

R

R

•R

��

R Matp(S)
f // Matp(S)

Matq(S)

•Matq,p(S)

��

φ +3

which is uniquely determined by its value on 1, as
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φ(r) = φ(1 · r) = φ(1)f(r)
= φ(r · 1) = g(r)φ(1) .

Given any q × p matrix A such that Af(r) = g(r)A for all r, the function
φ(r) = Af(r) gives such a cell. However, different A’s may give the same φ.
Indeed (Af(1))f(r) = Af(r). To get uniqueness we have only to impose the
extra condition Af(1) = A. Note that the vertical identity transformation
on f is not Ip, the identity p× p matrix, which obviously doesn’t satisfy this
last condition, but rather f(1) itself.

We summarize this discussion in the following.

Proposition 24 The 2-category Ampli of amplifying homomorphisms has
unitary rings as objects, amplimorphisms (p, f) : R // S as morphisms and
as 2-cells φ : (p, f)⇒ (q, g), q × p matrices A such that
(1) Af(1) = A
(2) for every r ∈ R,Af(r) = g(r)A .
The identity 2-cell on (p, f) is the p× p matrix f(1).

Corollary 25 Two representations (p, f) and (q, g) of the same S-R-bimodule
are related as follows: There is a q × p matrix A and a p× q matrix B such
that
(1) Af(1) = A and Af(r) = g(r)A

(2) Bg(1) = B and Bg(r) = f(r)B

(3) AB = g(1) and BA = f(1) .

Postscript

Double category considerations have naturally led to generalizing homomor-
phisms to amplimorphisms which arose independently in connection with
quantum field theory. We also discovered a natural notion of 2-cell allowing
us to compare parallel amplimorphisms. These are called intertwiners in the
physics literature. Even if we restrict to actual homomorphisms the 2-cells
are not trivial and provide a good unifying notion.

Amplimorphisms of degree 1 are non-unitary homomorphisms. I don’t
know what Jim would make of that, but later in life he had turned his at-
tention to quantum mechanics, so I like to believe that he would be pleased
with these developments.
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In: Jacobs B., Löding C. (eds) Foundations of Software Science and Computation

Structures. FoSSaCS 2016. Lecture Notes in Computer Science, vol 9634. Springer,

Berlin, Heidelberg.
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