REPRESENTATION 2-CATEGORIES OF 2-GROUPS

Josep Elgueta

International Category Theory
Conference 2006

Contents of the talk

- 1. Review on 2-groups.
- 2. Bicategory of representations of a 2-group over an arbitrary bicategory \mathfrak{C} .
- 3. Kapranov and Voevodsky 2-vector spaces
- 4. Representation theory on $\mathsf{2Vect}_K$
- 5. Reasons to study representations of 2-groups

1. Review on 2-groups

Definition. A 2-group (or categorical group) is a one object bigroupoid.

Notation:

- 2-group as a monoidal category = \mathbb{G}
- 2-group as a one object bigroupoid = $\mathbb{G}[1]$

Example: Split 2-groups G[0] * A[1], with G any group and A any G-module

$$(g,a')\circ (g,a)=(g,a'+a) \ g_1\otimes g_2=g_1g_2 \ (g_1,a_1)\otimes (g_2,a_2)=(g_1g_2,a_1+(g_1\cdot a_2))$$

Classification theorem. (Sinh, 1975) There is a bijection

$$\left\{ \begin{array}{c} \text{Equivalence classes} \\ \text{classes of} \\ \text{2-groups} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{equivalence classes} \\ \text{of triples} \left(G, A, [\alpha] \right) \\ \text{with:} \\ \text{-} G \text{ a group} \\ \text{-} A \text{ a } G\text{-module} \\ \text{-} [\alpha] \in H^3(G, A) \end{array} \right\}$$

$$\mathbb{G} \mapsto (\pi_0(\mathbb{G}), \pi_1(\mathbb{G}), [\alpha])$$

- $\pi_0(\mathbb{G})$ = iso- classes of objects in \mathbb{G} (a group with $[A][A'] = [A \otimes A']$)
- $\pi_1(\mathbb{G}) = \operatorname{Aut}_{\mathbb{G}}(I)$ (it has a $\pi_0(\mathbb{G})$ -module structure)
- $[\alpha] \in H^3(\pi_0(\mathbb{G}), \pi_1(\mathbb{G}))$ is determined by the components of the associator

$$\alpha([A_1], [A_2], [A_3]) \sim f(\mathsf{a}_{A_1, A_2, A_3})$$

Theorem. (Baez-Lauda, 2004) For any 2groups \mathbb{G} and \mathbb{G}' , let α, α' be classifying 3cocycles of \mathbb{G} , \mathbb{G}' . Then, there is a bijection

$$\left\{ \begin{array}{l} \text{Isomorphism} \\ \text{classes of} \\ \text{2-group} \\ \text{morphisms} \\ \mathbb{G} \xrightarrow{F} \mathbb{G}' \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{Triples } (\rho,\beta,[c]) \\ \text{with:} \\ -\rho:\pi_0(\mathbb{G}) \to \pi_0(\mathbb{G}') \text{ a} \\ \text{group morphism} \\ -\beta:\pi_1(\mathbb{G}) \to \pi_1(\mathbb{G}')_\rho \\ \text{a } \pi_0(\mathbb{G})\text{-module} \\ \text{morphism such that} \\ [\beta \alpha] = [\alpha' \ \rho^3] \\ -[c] \in \widetilde{H}^2(\pi_0(\mathbb{G}),\pi_1(\mathbb{G}')_\rho) \\ \text{such that} \\ \partial c = \beta \ \alpha - \alpha' \ \rho^3 \end{array} \right\}$$

$$where \ \widetilde{H}^n := C^n/B^n.$$

where $\widetilde{H}^n := C^n/B^n$.

2. Bicategory of representations of a2-group G over a bicategory C

Recall: for any group G and any category C

$$\mathbf{Rep}_{\mathcal{C}}(G) \stackrel{\mathrm{def}}{=} [G[1], \mathcal{C}]$$

with G[1] = one object groupoid defined by G.

Definition. Let G be any 2-group and C any bicategory. The bicategory of representations of G on C is the bicategory

$$\mathsf{Rep}_{\mathfrak{C}}(\mathbb{G}) \stackrel{\mathrm{def}}{=} [\mathbb{G}[1], \mathfrak{C}]$$

with $\mathbb{G}[1]$ = one object bigroupoid defined by \mathbb{G}

Example. For any category C, let C[0] be the corresponding (locally) discrete 2-category. Then

$$\mathsf{Rep}_{\mathcal{C}[0]}(\mathbb{G}) \ = \ \mathbf{Rep}_{\mathcal{C}}(\pi_0(\mathbb{G}))[0]$$

(slightly better than for groups, because for any group G and set X it is $\mathbf{Rep}_{X[0]}(G) = X[0]...$)

Key point:

What 2-category $\mathfrak C$ should we choose to get a good theory of representations for 2-groups?

3. Kapranov and Voevodsky 2-vector spaces

Definition (KV, 94). A 2-vector space over K of rank n ($n \geq 0$) is a symmetric monoidal category \mathbb{V} equipped with a (left) action of \mathbf{Vect}_K and such that it is equivalent (as a \mathbf{Vect}_K -module category) to \mathbf{Vect}_K^n .

Example: G a finite group, K algebraically closed. Then, $\mathbf{Rep}_{\mathbf{Vect}_K}(G)$ is a 2-vector space of rank

n = number of conjugacy classes of G

$$\left\{ \begin{array}{c} (0, \dots, K, \dots, 0) \\ i = 1, \dots, n \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{non equivalent} \\ \text{irreducible} \\ \text{representations} \\ \text{of } G \end{array} \right\}$$

KV 2-vector spaces =
$$\begin{pmatrix} \text{objects in a} \\ 2\text{-category } 2\text{Vect}_K^{\text{KV}} \end{pmatrix}$$

A simple model of $2\text{Vect}_K^{\text{KV}}$.

 $2Vect_K^{KV}$ is biequivalent to the 2-category $2Vect_K$ with

- objects: categories \mathbf{Vect}_K^n , $n \ge 0$
- 1-arrows: K-linear functors
- 2-arrows: natural transformations

Remark. There also exists a 2-category $2\mathsf{Mat}_K$ of 2-matrices over K biequivalent to $2\mathsf{Vect}_K$ (analog of $\mathbf{Mat}_K \simeq \mathbf{Vect}_K$).

4. Representation theory on 2Vect_K

A. Cohomological description of a representation

Put:

$$\mathbb{GL}(n, K) \equiv \mathsf{Equiv}_{\mathsf{2Vect}_{\mathsf{K}}}(\mathbf{Vect}_{K}^{n})$$
(General linear 2-group)

An object in $\mathsf{Rep}_{\mathsf{2Vect}_{\mathsf{K}}}(\mathbb{G})$ is a pair $(\mathbf{Vect}_K^n, \mathbb{F})$ with

$$\mathbb{F} = (F, F_2) : \mathbb{G} \to \mathbb{GL}(n, K)$$

a morphism of 2-groups (n is called the dimension of the representation).

Remark. For any $\mathbb{F}, \mathbb{F}' : \mathbb{G} \to \mathbb{GL}(n, K)$,

$$\begin{array}{ccc} \mathbb{F}\cong\mathbb{F}' & \Longrightarrow & \mathbb{F}\simeq\mathbb{F}' \\ (\mathrm{in}\ 2\mathsf{Grps}) & & (\mathrm{in}\ \mathsf{Rep}_{\mathfrak{C}}(\mathbb{G})) \end{array}$$

Lemma. Let $n \geq 0$. Then, $\mathbb{GL}(n, K)$ is split and

$$\pi_0(\mathbb{GL}(n,K)) \cong \Sigma_n$$

 $\pi_1(\mathbb{GL}(n,K)) \cong (K^*)^n$

with Σ_n acting on $(K^*)^n$ by

$$\sigma \cdot (\lambda_1, \dots, \lambda_n) = (\lambda_{\sigma^{-1}(1)}, \dots, \lambda_{\sigma^{-1}(n)})$$

Proposition. Let \mathbb{G} be any 2-group and α any classifying 3-cocycle of \mathbb{G} . Then, up to equivalence, a linear representation of \mathbb{G} is given by a quadruple (n, ρ, β, c) with

- n a natural number > 0
- $\rho: \pi_0(\mathbb{G}) \to \Sigma_n \ a \ group \ morphism$
- $\beta: \pi_1(\mathbb{G}) \to (K^*)^n_\rho \ a \ morphism \ of \ \pi_0(\mathbb{G})$ - $modules \ such \ that \ [\beta \ \alpha] = 0$
- $c \in C^2(\pi_0(\mathbb{G}), (K^*)^n_{\rho})$ a 2-cochain such that $\partial c = \beta \alpha$

Example: 1-dimensional linear representations ("characters" of G)

Given by pairs (χ, c) , with χ a $\pi_0(\mathbb{G})$ -invariant character of $\pi_1(\mathbb{G})$ such that $[\chi \alpha] = 0$ and c as before.

In particular, there is a map

$$Z^2(\pi_0(\mathbb{G}), K^*) \longrightarrow \{\text{``characters'' of } \mathbb{G}\}$$
 $z \mapsto \mathcal{I}(z)$

 $\mathcal{I}(z)$ defined by the pair (**Vect**_K, $\mathbb{I}(z)$), with

$$\mathbb{I}(z): \mathbb{G} \to \mathbb{GL}(1,K)$$

the *trivial constant functor* and non trivial monoidal structure given by

$$F_2(g_1, g_2)_V = z(g_1, g_2) \mathrm{id}_V$$

Rmk. These representations generalize to any dimension (purely cocyclic representations).

Theorem. (E, 2005) There is a bijection

$$\left\{ \begin{array}{c} \text{Equivalence} \\ \text{classes of linear} \\ \text{representations} \\ \text{of } \mathbb{G} \end{array} \right\} \ \longleftrightarrow \ \left\{ \begin{array}{c} \text{Equivalence} \\ \text{classes of} \\ \text{quadruples} \\ (n,\rho,\beta,c) \end{array} \right\}$$

where $(n, \rho, \beta, c) \simeq (n', \rho', \beta', c')$ iff

- $\bullet n = n'$
- there exists a permutation $\sigma \in \Sigma_n$ such that

$$\rho'(g) = \sigma \rho(g) \sigma^{-1}$$
$$\beta'(u) = \sigma \cdot \beta(u)$$
$$[c'] = [\sigma \cdot c]$$

for all $g \in \pi_0(\mathbb{G})$ and $u \in \pi_1(\mathbb{G})$.

Example: Let D_{2m} be the dihedral group thought of as the split 2-group $\mathbb{Z}_2[0] * \mathbb{Z}_m[1]$. Then

$$\left\{ \begin{array}{l} \text{eq. classes of} \\ \text{"characters"} \\ \text{of } D_{2m} \end{array} \right\} = \left\{ \begin{array}{l} K^*, & \text{if } m = 2 \text{ or odd} \\ K^* \sqcup K^*, & \text{if } m \neq 2 \text{ even} \end{array} \right.$$

B. Categories of morphisms

• A geometric way of thinking of a pair of representations.

Given representations (n, ρ, β, c) and (n', ρ', β', c') , let

$$M(n',n) \equiv \{1,\ldots,n'\} \times \{1,\ldots,n\}$$

$$I(\beta, \beta') \equiv \{(i', i) \in M(n', n) \mid \beta'_{i'} = \beta_i\}$$
("intertwining points")

Then:

- $\pi_0(\mathbb{G})$ acts (on the right) on M(n', n) $(i', i) \cdot g = (\rho'(g)^{-1}(i'), \rho(g)^{-1}(i))$
- If $(i', i) \in I(\beta, \beta')$, the remaining points in its $\pi_0(\mathbb{G})$ -orbit are also intertwinig. Hence

$$I(eta,eta') = igsqcup_{\mathcal{O} \in \mathsf{Orb}_{\mathsf{Int}}} \mathcal{O}$$

Example: If n = 7 and n' = 5,

Intertwining $\pi_0(\mathbb{G})$ -orbits $\mathcal{O}_1, z_{\mathcal{O}_1}$ $\mathcal{O}_2, z_{\mathcal{O}_2}$

Geometric view of a pair of representations $(7, \rho, \beta, c)$ and $(5, \rho', \beta', c')$

$$z_{\mathcal{O}}: \pi_0(\mathbb{G}) \times \pi_0(\mathbb{G}) \to \mathcal{F}(\mathcal{O}, K^*)$$

$$z_{\mathcal{O}}(g_1, g_2) \sim \frac{c'(g_1, g_2)}{c(g_1, g_2)}$$

• Geometric interpretation of a 1-morphism $(n, \rho, \beta, c) \rightarrow (n', \rho', \beta', c')$.

A 1-morphism $(n, \rho, \beta, c) \to (n', \rho', \beta', c')$ is given by a pair (H, Φ) with

- $H: \mathbf{Vect}_K^n \to \mathbf{Vect}_K^{n'}$ a K-linear functor
- Φ a collection of natural isomorphisms

$$\begin{array}{c|c} \mathbf{Vect}_K^n \xrightarrow{F(A)} \mathbf{Vect}_K^{n'} \\ H \middle\downarrow & \stackrel{\Phi(A)}{\Leftrightarrow} & \downarrow H \\ \mathbf{Vect}_K^n \xrightarrow{F'(A)} \mathbf{Vect}_K^{n'} \end{array}$$

A object in \mathbb{G} .

What about H?

Up to isomorphism, H is given by a matrix $R \in \operatorname{Mat}_{n' \times n}(\mathbb{N})$ (the <u>matrix of ranks</u>).

Lemma. For any matrix $R \in \operatorname{Mat}_{n' \times n}(\mathbb{N})$, let

$$\operatorname{Sup}(\mathsf{R}) \equiv \{(i', i) \in M(n', n) \mid R_{i'i} \neq 0\}$$

Then, R is the matrix of ranks for some 1-morphism $(n, \rho, \beta, c) \rightarrow (n', \rho', \beta', c')$ iff

- R is (ρ', ρ) -invariant $(R_{\rho'(g)(i'), \rho(g)(i)} = R_{i'i})$
- $Sup(R) \subseteq I(\beta', \beta)$

Let us think of R as

$$R \equiv \{p_{\mathcal{O}} : E_{\mathcal{O}} \to \mathcal{O}\}_{\mathcal{O} \in \mathsf{Orb}_{\mathsf{Int}}}$$

$$p_{\mathcal{O}} : E_{\mathcal{O}} \to \mathcal{O} \text{ vector bundle}$$

$$\mathsf{dim}_K E_{\mathcal{O}} = R_{i'i} \quad (i', i) \in \mathcal{O}$$

Hence

 $H \sim \text{collection of vector bundles } \{E_{\mathcal{O}}\}\$

What about Φ ?

Lemma. Φ is equivalent to a collection of projective right $\pi_0(\mathbb{G})$ -actions $\{\theta_{\mathcal{O}}, \mathcal{O} \in \mathsf{Orb}_{\mathsf{Int}}\}$ of cocycles $\{z_{\mathcal{O}}\}$, and covering the action of $\pi_0(\mathbb{G})$ on the orbits.

Example: If n = 7 and n' = 5,

Geometric interpretation of a 1-morphism

$$(7, \rho, \beta, c) \rightarrow (5, \rho', \beta', c')$$

• Geometric interpretation of 2-morphisms

2-morphism
$$\longleftrightarrow$$
 $\left(\begin{array}{c} \text{collection of morphisms} \\ \text{of vector bundles} \\ \text{preserving the actions} \\ \{f_{\mathcal{O}} : E_{\mathcal{O}} \to E'_{\mathcal{O}}\}_{\mathcal{O}} \end{array}\right)$

Moreover, composition of 2-morphisms exactly corresponds to the composition of these $f_{\mathcal{O}}$.

Hence:

Theorem. (E, 2005) For any (n, ρ, β, c) and (n', ρ', β', c') , there is an equivalence

$$\begin{aligned} \mathbf{Hom}((n,\rho,\beta,c),(n',\rho',\beta',c')) &\simeq \\ &\simeq \prod_{\mathcal{O} \in \mathsf{Orb}_{\mathsf{Int}}} \mathbf{Bund}_{\pi_0(\mathbb{G}),z_{\mathcal{O}}}(\mathcal{O}) \end{aligned}$$

Example. For "characters" $\mathcal{I}(\chi,c)$, $\mathcal{I}(\chi',c')$

$$\mathbf{Hom}(\mathcal{I}(\chi,c),\mathcal{I}(\chi,c')) \simeq \left\{ \begin{array}{ll} \mathbf{1}, & \chi \neq \chi' \\ \mathbf{PRep}_{[c'-c]}(\pi_0(\mathbb{G})), & \chi = \chi' \end{array} \right.$$

with $\mathbf{PRep}_{[z]}(\pi_0(\mathbb{G}))$ the category of projective representations of $\pi_0(\mathbb{G})$ with cohomology class $[z] \in H^2(\pi_0(\mathbb{G}), K^*)$.

In particular, if $(\chi, c) = (\chi', c')$ are trivial

$$\mathbf{End}_{\mathsf{Rep}_{\mathsf{2Vect}_{\mathsf{K}}}(\mathbb{G})}(\mathcal{I}) \; \simeq \; \mathbf{Rep}_{\mathbf{Vect}_{K}}(\pi_{0}(\mathbb{G}))$$

(equivalence of monoidal categories)

Rmk. $\mathsf{Rep}_{\mathsf{2Vect}_{\mathsf{K}}}(\mathbb{G})$ is a monoidal 2-category and \mathcal{I} is the unit object.

5. Reasons to study representations of 2-groups.

- It has been shown (Polesello-Waschkies, 2004) that representations of a 2-group \mathbb{G} in \mathfrak{C} may be identified with locally constant stacks on a suitable space X with values in \mathfrak{C} .
- If \mathfrak{C} is monoidal, $\mathfrak{Rep}_{\mathfrak{C}}(\mathbb{G})$ inherits a monoidal structure, and it has been shown (Mackaay, 1999) that 4-manifold invariants can be built from certain monoidal 2-categories. Hence, interesting invariants of 4-manifolds may possibly be built from this monoidal 2-category of representations or from suitable deformations of it.
- Possible applications to theoretical physics...