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1. Review on 2-groups

Definition. A 2-group (or categorical group)
is a one object bigroupoid.

Notation:

e 2-group as a monoidal category = G

e 2-group as a one object bigroupoid = GJ1]

Example: Split 2-groups G[0] * A[l], with G
any group and A any G-module

(9,a') 0 (g,a) = (9,0’ + a)

91 @ g2 = 9192
(g1,a1) ® (g2, a2) = (9192, a1 + (g1 - a2))






Classification theorem. (Sinh, 1975) There

1$ a bijection

Equivalence
classes of
2-groups

G —

—

.

\

equivalence classes
of triples (G, A, [a])
with:

- (7 a group

- A a G-module

- [a] € H3(G, A)

(m0(G), m(G), [])

e m)(G) = iso- classes of objects in G

(a group with [A][A"] = [A ® A))

° 7T1(Gr) = Aut(g([)
(it has a my(G)-module structure)

o [a] € H?(m(G), m1(G)) is determined by the
components of the associator

af[Ai], [Az], [As]) ~ flaay,a,45)

/






Theorem. (Baez-Lauda, 2004) For any 2-
groups G and G/, let o, be classifying 3-
cocycles of G,G'. Then, there is a bijection

( . )
Isomorphism

classes of

morphisms

G5 @

\ /

where H" := C"/ B".

4 2-group S

 Triples (p, 3, [c])
with:

-p WQ(G) — 7'('0(@/) a
group morphism

- B:m(G) = m(G),
a mo(G)-module
morphism such that
B a] =o' p’]

- ] € H2(mo(G), m(G),)
such that

dc=Ba—ad p’

"







2. Bicategory of representations of a
2-group G over a bicategory €

Recall: for any group G and any category C

Rep.(G) < [G[1],C]

with G[1] = one object groupoid defined
by G.

Definition. Let G be any 2-group and € any
bicategory. The bicategory of representations of
G on € is the bicategory

Repe(G) = [G[1], €]

with G[1] = one object bigroupoid defined by G






Example. For any category C, let C|0] be the
corresponding (locally) discrete 2-category. Then

Repep)(G) = Repe(mo(G))|0]

(slightly better than for groups, because for any
group G and set X it is Repyxq(G) = X|[0]...)

Key point:
What 2-category € should we choose to get a

good theory of representations for 2-groups?







3. Kapranov and Voevodsky 2-vector
spaces

Definition (KV, 94). A 2-vector space over
K of rank n (n > 0) is a symmetric monoidal
category V equipped with a (left) action of Vect i
and such that it is equivalent (as a Vect g-module
category) to Vect’.

Example: G a finite group, K algebraically
closed. Then, Repyect, (G) is a 2-vector space
of rank

n = number of conjugacy classes of G

( - \
non equivalent

) . .
{ (O,., L K,...,0) } PR irreducible
( :

representations

of GG

bjects i
KV 2-vector spaces = ( OPJEEES 1 4 )

2-category 2Vect1§—V






A simple model of 2Vecty' .

2Vect§v 1s biequivalent to the 2-category 2Vectyk
with

e objects: categories Vect’, n > 0
e l-arrows: K-linear functors

e 2-arrows: natural transformations

Remark. There also exists a 2-category 2Mat g
of 2-matrices over K biequivalent to 2Vectk
(analog of Maty ~ Vecty).






4. Representation theory on 2Vectyk

A. Cohomological description of a representation

Put:

GL(n, K) = Equivyyeq, (Vect)

(General linear 2-group)

An object in Repyyec, (G) is a pair (Vect, F)
with

F=(F,F):G — GL(n, K)
a morphism of 2-groups (n is called the dimension
of the representation).

Remark. For any F,F' : G — GL(n, K),

FEF = F~F
(in 2Grps) (in Repe(G))






Lemma. Let n > 0. Then, GL(n, K) is split
and

mo(GL(n, K))
Wl(GL(n, K))

with 3, acting on (K*)" by
g - (/\17 IO )‘n) — ()‘0_1(1)7 ne )‘J_l(n))

2in
(K7)"

2112

Proposition. Let G be any 2-group and o

any classifying 3-cocycle of G. Then, up to

equivalence, a linear representation of G is given

by a quadruple (n, p, 8,c) with

e 1 a natural number > 0

o p:m(G) = X, a group morphism

e 3:m(G) — (K7), a morphism of my(G)-
modules such that |8 o] =0

o c € C*(my(G), (K*)2) a 2-cochain such that
oc=p «






Example: 1-dimensional linear representations

(“characters” of G)

Given by pairs (x, ¢), with x a m(G)-invariant
character of m(G) such that [y o] =0 and ¢ as
before.

In particular, there is a map
Z%(m(G), K*) — {“characters” of G}
2 — Z(z)
Z(z) defined by the pair (Vectg,I(z)), with
I(2): G = GL(1, K)

the trivial constant functor and non trivial monoidal
structure given by

Fy(g1,92)v = 2(91, g2)idy

Rmk. These representations generalize to any
dimension (purely cocyclic representations).






Theorem. (E, 2005) There is a bijection

Equivalence ( Equivalence )
classes of linear classes of
) —
representations quadruples
\ Of G ) \ (n7 p? /87 C) y
where (TL,;O,B,C) = (n/HO,)B,)CI) Zﬁ
on=n

e there exists a permutation o € X, such that

p'(g) = op(g)o™"
B'(u) =0 5(u)
¢ =[o-d

for all g € mo(G) and u € m(G).

Example: Let Dy, be the dihedral group thought
of as the split 2-group Zs[0] * Z,,[1]. Then

eq. classes of B { K* £ — 9 or odd

K*UK*, it m # 2 even

“characters”

of D2m






B. Categories of morphisms

e A geometric way of thinking of a pair
of representations.

Given representations (n, p, 5,¢) and (n', p', 6/, ),
let

Mn' ,n)={1,...,n'} x{1,...,n}

1(8,8") = {(',i) € M(n',n) | By = Bi}

(“intertwining points”)

Then:

e mo(G) acts (on the right) on M(n', n)
(¢,9) - g = (p'(9)~" ("), p9) " (0))
o If (¢/,1) € I(B,0'), the remaining points in

its mo(G)-orbit are also intertwinig. Hence

18,8)= || ©

OEOFbInt






Example: If n =7 and n’ = 5,

Intertwining 7o (G)-orbits

O1, 20, / \ O3, 20,

Geometric view of a pair of representations

(77p7187c) a"nd (57pl7/8,7cl)

zZO - Wo(@) X WQ(G) — f(O,K*)

C,(gla 92)

Z(’)(Qlag2) ~ 0(91 92)






e (Geometric interpretation of a
1-morphism (n, p,3,¢c) = (n/, 0, 5, ).

A 1-morphism (n, p, 8,¢) — (0, p’, ', ') is given
by a pair (H, ®) with
- H : Vecty — Vect}"é a K-linear functor

- ® a collection of natural isomorphisms

Vect"}( F4) Vect?(,.
H B() ¥
Vect”

Vecty — A

A object in G.

What about H 7

Up to isomorphism, H is given by a matrix R €
Mat,y,(N) ( the matrix of ranks).







Lemma. For any matriz R € Mat,/y,(N), let
Sup(R) = {(7,¢) € M(n',n) | Ry # 0}
Then, R is the matriz of ranks for some 1I-

morphism (n, p,3,¢) = (0, o/, 8, c) iff
o R is (¢, p)-invariant (Rp’(g)(i’),p(g)(i) = Ry;)

o Sup(R) € I(f', B)

Let us think of R as

R = {po: Eo — O}ocory,
po : Eo — O vector bundle

Hence
H ~ collection of vector bundles { Ep}

What about ¢ 7

Lemma. & is equivalent to a collection of pro-
jective right my(G)-actions {fp, O € Orbyy} of
cocycles {zp}, and covering the action of 7y(G)
on the orbits.






Example: If n =7 and n’ = 5,

(Eo,,00,) (Eo,00,)
pRE
O, 20, S % Y
s el
e 20
|

Geometric interpretation of a 1I-morphism

(7’p7lB’c) _> (57pl7/8l7cl)






e Geometric interpretation of 2-morphisms

collection of morphisms
of vector bundles
preserving the actions

{fo:Eo — Eyto

2-morphism <+—

Moreover, composition of 2-morphisms exactly
corresponds to the composition of these fo.

Hence:

Theorem. (E, 2005) For any (n,p,5,c) and
(n', o', B',c"), there is an equivalence
Hom((n7 p? /87 C>7 (n/7 10,7 /8,7 C,)) =

~ H BundWO(G)7ZO (O)
OGOrbInt






Example. For “characters” Z(x,c), Z(x/, )

X 7# X

/ 17
Hom(Z(x, ¢), Z(x,¢)) = { Reps_,(m0(G)), X = X’

with PRepy,(mo(G)) the category of projective
representations of my(G) with cohomology class
2] € H(m(G), K*).

In particular, if (x,c) = (X', ') are trivial

EndRCPQVeCtK (G) (Z) = RepVectK (7T0 (G) )

(equivalence of monoidal categories)

Rmk. Repyyeq, (G) is a monoidal 2-category
and Z is the unit object.






5. Reasons to study representations of
2-groups.

e It has been shown (Polesello-Waschkies, 2004)
that representations of a 2-group G in € may
be identified with locally constant stacks on a
suitable space X with values in €.

o If €is monoidal, Repy(G) inherits a monoidal
structure, and it has been shown (Mackaay,
1999) that 4-manifold invariants can be built
from certain monoidal 2-categories. Hence,
interesting invariants of 4-manifolds may pos-
sibly be built from this monoidal 2-category of
representations or from suitable deformations
of it.

e Possible applications to theoretical physics...



