Lax-algebraic theories and closed objects

Dirk Hofmann
University of Aveiro
dirk@mat.ua.pt

A lax-algebraic theory \mathscr{T} is a triple $\mathscr{T}=(\mathbb{T}, \vee, \xi)$ consisting of
a monad $\mathbb{T}=(T, e, m)$, a quantale $\mathrm{V}=(\mathrm{V}, \otimes, k)$ and
a map $\xi: T \vee \rightarrow \mathrm{~V}$
such that
$\left(\mathrm{M}_{\mathrm{e}}\right) 1_{\mathrm{v}} \leq \xi \cdot e_{\mathrm{v}}$,
$\left(\mathrm{M}_{\mathrm{m}}\right) \quad \xi \cdot T \xi \leq \xi \cdot m_{\mathrm{v}}$,

$\left(\mathrm{Q}_{\bigvee}\right)\left(\xi_{X}\right)_{X}: P_{\mathrm{V}} \rightarrow P_{\mathrm{V}} T$ is a natural transformation.

Examples.

(a). $\mathscr{I}_{\mathrm{V}}=\left(\mathbb{1}, \mathrm{V}, 1_{\mathrm{V}}\right)$ is a strict lax-algebraic theory.
(b). Let $\mathbb{T}=(T, e, m)$ be a monad where T is taut and let V be a (ccd)-quantale. Then $\mathscr{T}_{\mathrm{V}}=\left(\mathbb{T}, \mathrm{V}, \xi_{\mathrm{v}}\right)$ is a lax-algebraic theory, where

$$
\xi_{\mathrm{v}}: T \mathrm{~V} \rightarrow \mathrm{~V}, \mathfrak{x} \mapsto \bigvee\{v \in \mathrm{~V} \mid \mathfrak{x} \in T(\uparrow v)\}
$$

(c). $\mathscr{L}_{\mathrm{v}}^{\otimes}=\left(\mathbb{L}, \mathrm{V}, \xi_{\otimes}\right)$ is a strict lax-algebraic theory for each quantale V , where

$$
\begin{aligned}
\xi_{\otimes}: L \mathrm{~V} & \rightarrow \mathrm{~V} . \\
\left(v_{1}, \ldots, v_{n}\right) & \mapsto v_{1} \otimes \ldots \otimes v_{n} \\
() & \mapsto k
\end{aligned}
$$

The bicategory V-Mat:

- objects: sets X, Y, \ldots
- morphism: V-matrices $r: X \times Y \rightarrow \mathrm{~V}$,
- composition: $s \cdot r(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)$

We extent $T:$ Set \rightarrow Set to $T_{\xi}: \mathrm{V}$-Mat \rightarrow V-Mat by putting

$$
\begin{aligned}
T_{\xi} r: T X \times T Y & \rightarrow \mathrm{~V} . \\
(\mathfrak{x}, \mathfrak{y}) \quad \mapsto & \bigvee_{\substack{\mathfrak{w} \in T(X \times Y): \\
T \pi_{X}(\mathfrak{w})=\mathfrak{x}, T \pi_{Y}(\mathfrak{w})=\mathfrak{y}}} \xi \cdot \operatorname{Tr}(\mathfrak{w})
\end{aligned}
$$

Here

$$
T(X \times Y) \xrightarrow{T r} T \vee \xrightarrow{\xi} \vee .
$$

The following statements hold.
(a). For each V-matrix $r: X \longrightarrow Y, T_{\xi}\left(r^{\circ}\right)=T_{\xi}(r)^{\circ}$.
(b). For each function $f: X \rightarrow Y, T f \leq T_{\xi} f$ and $T f^{\circ} \leq T_{\xi} f^{\circ}$.
(c). $T_{\xi} s \cdot T_{\xi} r \leq T_{\xi}(s \cdot r)$ provided that T satisfies (BC), and $T_{\xi} s \cdot T_{\xi} r \geq T_{\xi}(s \cdot r)$ provided that $\left(\mathrm{Q}_{\otimes}^{\bar{\otimes}}\right)$ holds.
(d). The natural transformations e and m become op-lax, that is, for every V -matrix $r: X \longrightarrow Y$ we have the inequalities:

$$
e_{Y} \cdot r \leq T_{\xi} r \cdot e_{X}, \quad m_{Y} \cdot T_{\xi} T_{\xi} r \leq T_{\xi} r \cdot m_{X}
$$

$$
\begin{array}{cc}
T_{\xi} T_{\xi} X & \xrightarrow{m_{X}} T_{\xi} X \\
T_{\xi} T_{\xi} r \downarrow & \leq \\
T_{\xi} T_{\xi} Y & { }_{m_{Y}} \\
\downarrow & T_{\xi} r \\
\xi
\end{array}
$$

Let $\mathscr{T}=(\mathbb{T}, \mathrm{V}, \xi)$ be a lax-algebraic theory.

- A \mathscr{T}-algebra (\mathscr{T}-category) is a pair $(X, a: T X \mapsto X)$ s.t.

$$
k \rightarrow a(\dot{x}, x)
$$

and

$$
T_{\xi} a(\mathfrak{X}, \mathfrak{x}) \otimes a(\mathfrak{x}, x) \rightarrow a\left(m_{X}(\mathfrak{X}), x\right)
$$

- A map $f: X \rightarrow Y$ between \mathscr{T}-algebras (X, a) and (Y, b) is a lax homomorphism (\mathscr{T}-functor) if

$a(\mathfrak{x}, x) \rightarrow b(T f(\mathfrak{x}), f(x))$.
- The resulting category of \mathscr{T}-algebras and lax homomorphisms we denote by \mathscr{T}-Alg.

Examples.

(a). For each quantale $\mathrm{V}, \mathscr{I}_{\mathrm{v}}$ - $\mathrm{Alg}=\mathrm{V}$-Cat.

In particular, $\mathscr{I}_{2}-\mathrm{Alg} \cong$ Ord and $\mathscr{I}_{\mathrm{P}_{+}}-\mathrm{Alg} \cong$ Met.
(b). \mathscr{U}_{2} - $\mathrm{Alg} \cong$ Top.
(c). $\mathscr{U}_{P_{+}}-\mathrm{Alg} \cong \mathrm{Ap}$.
(d). $\mathscr{L}_{\mathrm{v}}^{\otimes}-\mathrm{Alg} \cong$ V-MultiCat.

Let $\mathscr{T}=(\mathbb{T}, \mathrm{V}, \xi)$ and $\mathscr{T}^{\prime}=\left(\mathbb{T}^{\prime}, \mathrm{V}^{\prime}, \xi^{\prime}\right)$ be lax-algebraic theories.

- A morphism $(j, \varphi): \mathscr{T}^{\prime} \rightarrow \mathscr{T}$ of lax-algebraic theories is a pair (j, φ) consisting of
a monad morphism $j: \mathbb{T}^{\prime} \rightarrow \mathbb{T}$ and
a lax homomorphism of quantales $\varphi: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ such that $\xi^{\prime} \cdot T^{\prime} \varphi \leq \varphi \cdot \xi \cdot j_{\mathrm{v}}$

From now on we consider a strict lax-algebraic theory $\mathscr{T}=(\mathbb{T}, \vee, \xi)$ where \mathbb{T} satisfies $(B C)$.

Examples.

(a). The identity theory \mathscr{I}_{V}, for each quantale V .
(b). For each quantale V , the theory $\mathscr{L}_{\mathrm{v}}^{\otimes}=\left(\mathbb{L}, \mathrm{V}, \xi_{\otimes}\right)$.
(c). Any lax-algebraic theory $\mathscr{T}=(\mathbb{T}, \mathrm{V}, \xi)$ with a (BC)-monad \mathbb{T}, $\otimes=\wedge$ and ξ a Eilenberg-Moore algebra.
(d). The theory $\mathscr{U}_{P_{+}}=\left(\mathbb{U}, P_{+}, \xi_{+}\right)$.

Then

- V becomes a \mathscr{T}-algebra $\left(\mathrm{V}, \operatorname{hom}_{\xi}\right)$ where $\operatorname{hom}_{\xi}=$ hom $\cdot \xi$, that is,

$$
\operatorname{hom}_{\xi}(\mathfrak{v}, v)=\operatorname{hom}(\xi(\mathfrak{v}), v)
$$

- the tensor product \otimes on V can be transported to \mathscr{T}-Alg by putting $(X, a) \otimes(Y, b)=(X \times Y, c)$ where

$$
c(\mathfrak{w},(x, y))=a(\mathfrak{x}, x) \otimes b(\mathfrak{y}, y)
$$

When $X \otimes_{\text {_ }}$ has a right adjoint __ ${ }^{X}$?
Note that

$$
\frac{1 \rightarrow Y^{X}}{X \otimes 1 \rightarrow Y}
$$

Hence we consider

$$
\{f: \hat{X} \rightarrow Y \mid f \text { is a lax homomorphism }\}
$$

where

$$
\hat{a}(\mathfrak{x}, x)= \begin{cases}a(\mathfrak{x}, x) & \text { if } T!(\mathfrak{x})=e_{1}(\star) \\ \perp & \text { else }\end{cases}
$$

and

$$
d(\mathfrak{p}, h)=\bigwedge_{\substack{\mathfrak{q} \in T\left(Y_{\begin{subarray}{c}{X \\
\mathfrak{q} \mapsto \mathfrak{p}} }}, x \in X\right.}\end{subarray}} \operatorname{hom}\left(a\left(T \pi_{X}(\mathfrak{q}), x\right), b(T \operatorname{ev}(\mathfrak{q}), h(x))\right)
$$

Letv $X=(X, a)$ be a \mathscr{T}-algebra.

- Assume that $a \cdot T_{\xi} a=a \cdot m_{x}$. Then d is transitive.
- Assume that the structure d on V^{X} is transitive. Then $a \cdot T_{\xi} a=a \cdot m_{X}$.
- Each \mathbb{T}-algebra is closed in \mathscr{T}-Alg.
- Each V-category is closed in \mathscr{T}-Alg provided that $T e \cdot e=m^{\circ} \cdot e$.

The following assertions hold.

- $\bigwedge: \mathrm{V}^{I} \rightarrow \mathrm{~V}$ is a lax homomorphism.
- $\operatorname{hom}\left(v,,_{-}\right): \mathrm{V} \rightarrow \mathrm{V}$ is a lax homomorphism for each $v \in \mathrm{~V}$.
- $v \otimes_{-}: \mathrm{V} \rightarrow \mathrm{V}$ is a lax homomorphism for each $v \in \mathrm{~V}$ which satisfies

- For each \mathbb{T}-algebra $I, \bigvee: \mathrm{V}^{I} \rightarrow \mathrm{~V}$ is a lax homomorphism.

\mathscr{T}-Kleisli.

objects: sets X, Y, \ldots
morphism: V-matrices $a: T X \longrightarrow Y$.
composition: $b \circ a:=b \cdot T_{\xi} a \cdot m_{x}^{\circ}$,

Then $e_{X}^{\circ}: T X \longrightarrow X$ is a lax identity for "o", that is

$$
a \circ e_{X}^{\circ}=a \quad \text { and } \quad e_{X}^{\circ} \circ a \geq a \text {. }
$$

Moreover, $c \circ(b \circ a)=(c \circ b) \circ a$.
$(X, a: T X \longrightarrow X)$ is a \mathscr{T}-algebra iff $e_{X}^{\circ} \leq a$ and $a \circ a \leq a$.

Example: \mathscr{U}_{2}

- e_{X}° is also a left unit (precisely) if we restrict ourself to those $a: U X \longrightarrow Y$ where $\{\mathfrak{x} \in U X \mid a(\mathfrak{r}, y)=$ true $\}$ is closed in $U X$.
- This restriction of \mathscr{U}_{2}-Kleisli is 2-equivalent to CSet (where a morphism from X to Y is a finitely additive map $c: P X \rightarrow P Y)$.

Let $X=(X, a)$ and $Y=(Y, b)$ be \mathscr{T}-algebras.

- A (\mathbb{T}, V)-bimodule $\psi:(X, a) \rightarrow(Y, b)$ is a matrix $\psi: T X \longrightarrow Y$ such that $\psi \circ a \leq \psi$ and $b \circ \psi \leq \psi$.
- For (\mathbb{T}, V)-categories (X, a) and (Y, b), and a V-matrix $\psi: T X \mapsto Y$, the following assertions are equivalent.
(a). $\psi:(X, a) \longrightarrow(Y, b)$ is a (\mathbb{T}, V)-bimodule.
(b). Both $\psi:|X| \otimes Y \rightarrow \mathrm{~V}$ and $\psi: X^{\mathrm{op}} \otimes Y \rightarrow \mathrm{~V}$ are (\mathbb{T}, V)-functors.

