

Main themes

• Modelling connected 3-types:

Homotopy theory \longrightarrow cat²-groups (Loday).

Higher category theory —— Tamsamani's weak 3-groupoids (with 1 object)

- Comparison problem.
- Semistrictification results for Tamsamani's weak 3-groupoids with 1 object.

Cat^n -groups as homotopy models

- <u>Definition</u> $Cat^n(Gp) = Cat(Cat^{n-1}(Gp))$ $Cat^0(Gp) = Gp$
- Multinerve $\mathcal{N}: \mathsf{Cat}^n(\mathsf{Gp}) \to [\Delta^{n^{op}}, \mathsf{Gp}]$
- Classifying space of $G \in \text{Cat}^n(Gp)$ BG = BNG.
- Weak equivalence $f: \mathcal{G} \to \mathcal{G}'$ mor(Cat $^n(Gp)$) s.t. Bf weak homotopy equivalence.
- Theorem

[Whitehead n = 1]

[Loday; Bullejos-Cegarra-Duskin; Porter, $n \ge 1$]

$$\overline{B}: \frac{\operatorname{Cat}^n(\operatorname{Gp})}{\sim} \simeq \mathcal{H}o\left(\substack{\operatorname{connected} \\ n+1-\operatorname{types}} \right): \overline{\mathcal{P}}$$

Tamsamani's model: n=2

Segal maps

 $\mathcal C$ category with finite limits, $\phi \in [\Delta^{op}, \mathcal C]$

$$n \geq 2$$
 $\eta_n : \phi_n \to \phi_1 \times_{\phi_0} \cdots^n \times_{\phi_0} \phi_1$.

<u>fact</u>: ϕ nerve of object of Cat $\mathcal{C} \Leftrightarrow$

 η_n isomorphism for all $n \geq 2$.

ullet Tamsamani's weak 2-nerves, \mathcal{N}_2 .

$$\overline{\phi \in [\Delta^{2^{op}}, \mathsf{Set}] \quad \phi_n = ([n], -)}$$

- (i) ϕ_n nerve of category of all $n \geq 0$.
- (ii) ϕ_0 constant.
- (iii) Segal maps equivalences of categories $\forall n \geq 2$.

• Weak 2-groupoids T_2 , $\phi \in \mathcal{N}_2$ s.t.

- (i) ϕ_n nerve of groupoid, $\forall n \geq 0$.
- (ii) $T\phi: \Delta^{op} \to \text{Set nerve of groupoid}$ $(T\phi)_n = \pi_0 \phi_n$

• External equivalences of 2-nerves

$$f: \phi \to \psi$$
 $\phi_1 = \coprod_{x,y \in \phi_0} \phi_{(x,y)}$

(i)
$$\phi_{(x,y)} \rightarrow \psi_{(fx,fy)}$$

(ii)
$$Tf$$

equivalences of categories.

Tamsamani's model: n=3

ullet Tamsamani's weak 3-nerves, \mathcal{N}_3 .

$$\phi \in [\Delta^{3^{op}}, \operatorname{Set}] \quad \phi_n = ([n], -, -)$$

- (i) $\phi_n \in \mathcal{N}_2 \ \forall \ n \geq 0$.
- (ii) ϕ_0 constant.
- (iii) Segal maps equivalences of 2-nerves $\forall n \geq 2$.
- Weak 3-groupoids T_3 , $\phi \in \mathcal{N}_3$ s.t.
 - (i) $\phi_n \in \mathcal{T}_2 \ \forall \ n \geq 0$.
 - (ii) $T^2\phi:\Delta^{op}\to \mathrm{Set}$ nerve of groupoid.
- Fact: external equivalences in T_2 and T_3 \equiv weak homotopy equivalences
- The subcategory $S \subset T_3$ $\phi \in S$ if $\phi \in T_3$ and $\phi_0(-,-) = \{\cdot\}$.
- Theorem [Tamsamani]

$$\mathcal{T}_3/\sim^{ext} \simeq \mathcal{H}o(3\text{-types})$$

 $\mathcal{S}/\sim^{ext} \simeq \mathcal{H}o(\text{connected }3\text{-types})$

Summary: cat²-gp versus \mathcal{T}_3 .

 T_3

- $\mathcal{G} \in [\Delta^{2^{op}}, \mathsf{Gp}]$ \mathcal{G}_n nerve of Cat(Gp) Segal maps iso.
- $\phi \in [\Delta^{3^{op}}, \operatorname{Set}]$ $\phi_n \in \mathcal{T}_2$ ϕ_0 constant, $T\phi$ iso. Segal maps equivalences
- multisimplicial inductive definition based on Gp strict structure "cubical"
- multisimplicial inductive definition based on Set weak structure "globular"
- Main issues in the comparison:

cubical
$$\xrightarrow{discretization}$$
 globular

$$\mathsf{Gp} \xrightarrow{nerve} [\Delta^{op}, \mathsf{Set}]$$

• <u>dealt with</u> functors:

$$\operatorname{Cat^2(Gp)/} \sim \stackrel{disc}{\longrightarrow} \mathcal{D}/\sim$$

$$\mathcal{D}/\sim \longrightarrow \mathcal{H}/\sim^{ext} \qquad \mathcal{H}\subset \mathcal{S}.$$

The discretization functor

• Key Lemma: $\mathcal{G} \in \operatorname{Cat}^2(\operatorname{Gp})$. There is $\phi \in \operatorname{Cat}^2(\operatorname{Gp})$

$$\phi_1 \times_{\phi_0} \phi_1 \xrightarrow{c} \phi_1 \xrightarrow[\sigma_0]{\partial_1} \phi_0$$

with ϕ_0 projective in Cat(Gp) and $B\phi \simeq B\mathcal{G}$.

Projective objects in Cat (Gp)

 $d: \phi_0 \longrightarrow \phi_0^d$ weak equivalence.

 ϕ_0^d discrete internal category.

section $t: \phi_0^d \longrightarrow \phi_0, \quad dt = id.$

• The discrete multinerve $ds \mathcal{N} \phi \in [\Delta^{2^{op}}, Gp]$

$$\cdots \phi_1 \times_{\phi_0} \phi_1 = \phi_1 \xrightarrow{d\partial_0} \phi_0^d$$

$$\phi_0^d$$

- i) $B ds \mathcal{N} \phi = B \phi \simeq B \mathcal{G}$.
- ii) Segal maps weak equivalences in $[\Delta^{op}, Gp]$.
- Functor disc: Cat $^2(Gp)/\sim \longrightarrow \mathcal{D}/\sim$ disc $[\mathcal{G}]=[ds\,\mathcal{N}\phi]$

 $\mathcal{D} \subset [\Delta^{2^{op}}, \mathsf{Gp}]$ "internal 2-nerves".

First semistrictification result.

- The subcategory $\mathcal{H} \subset \mathcal{S}$. $\phi \in \mathcal{S}$ and Segal maps $\phi_n \to \phi_1 \times \cdots^n \times \phi_1$ iso. Objects of \mathcal{H} are "semistrict".
- Theorem [P.] Commutative diagram

where $F: \operatorname{Cat}^2(\operatorname{Gp})/\sim \stackrel{disc}{\longrightarrow} \mathcal{D}/\sim \stackrel{R}{\longrightarrow} \mathcal{H}/\sim^{ext}$. Let $\mathcal{H}o_{\mathcal{S}}(\mathcal{H})\subset \mathcal{S}/\sim^{ext}$ full subcategory with objects in \mathcal{H} . Then

$$\frac{\mathsf{Cat}^2(\mathsf{Gp})}{\sim} \simeq \mathcal{H}o_{\mathcal{S}}(\mathcal{H}).$$

- Corollary: Every object of $\mathcal S$ is equivalent to an object of $\mathcal H$ through a zig-zag of external equivalences.
- Remark: $\mathcal{H} \subset \mathsf{Mon}(\mathcal{T}_2, \times)$.

Second semistrictification result.

- The subcategory $\mathcal{K} \subset \mathcal{S}$. $\phi \in \mathcal{S}$ and ϕ_n strict 2-groupoid $\forall n \geq 0$. Objects of \mathcal{K} are semistrict but $\mathcal{K} \neq \mathcal{H}$.
- Theorem[P.] Commutative diagram

Let $\mathcal{H}o_{\mathcal{S}}(\mathcal{K})\subset \mathcal{S}/{\sim^{ext}}$ full subcategory with objects in \mathcal{K} . Then

$$\mathcal{S}/\sim^{ext} \simeq \mathcal{H}o_{\mathcal{S}}(\mathcal{K})$$

$$\begin{array}{l} \underline{\mathsf{idea}} \ \mathsf{of} \ \mathsf{proof} \\ \overline{St} : \mathcal{T}_2 \overset{G}{\longrightarrow} Bigpd \overset{st}{\longrightarrow} 2\text{-}gpd \overset{\nu}{\longrightarrow} \mathcal{T}_2^{st} \\ \psi \in \mathcal{S}, \qquad (\overline{St} \, \psi)_n = St \, \psi_n. \\ (\overline{St} \, \psi)_n = St \, \psi_n \simeq St \, (\psi_1 \times \overset{n}{\cdots} \times \psi_1) \simeq \\ \simeq St \, \psi_1 \times \cdots \times St \, \psi_1 = (\overline{St} \, \psi)_1 \times \cdots \times (\overline{St} \, \psi)_1 \\ \mathsf{hence} \ \overline{St} \, \psi \in \mathcal{K}. \end{array}$$

The comparison with Gray groupoids.

• Gray groupoids. Gray = $(2\text{-cat}, \otimes_{gray})$. Gray-enriched category with invertible cells.

- Theorem [Joyal Tierney, Leroy] $\mathcal{H}o(3 \text{types}) \simeq Gray-gpd/\sim \mathcal{H}o(\text{conn. 3-types}) \simeq (Gray-gpd)_0/\sim.$
- Theorem [P.] Commutative diagram

$$\mathcal{H}o_{\mathcal{S}}(\mathcal{H}) \xrightarrow{S} (Gray\text{-}gpd)_{0}/\sim \xrightarrow{T} \mathcal{H}o_{\mathcal{S}}(\mathcal{K})$$
 B
 $\mathcal{H}o\left(\begin{array}{c} \text{connected} \\ \text{3-types} \end{array}\right)$

idea of proof:

- Monoidal functor

$$(\mathcal{T}_2, \times) \xrightarrow{G} (Bigpd, \times) \xrightarrow{st} (2\text{-}gpd, \otimes_{gray})$$

 $\phi \in \mathcal{H} \subset \text{Mon}(\mathcal{T}_2, \times) \Rightarrow st G \phi \in (Gray\text{-}gpd)_0$
Let $S(\phi) = st Bic \phi$.

- Every object of \mathcal{K} is equivalent to one of $\overline{St} \mathcal{H}$. $T[\psi] = T[\overline{St} \phi] = [st G \phi].$

Conclusion: modelling connected 3-types using Tamsamani's model.

ullet Tamsamani's weak 3-groupoids, ${\cal S}$

- Semistrict cases.
 - a) $\mathcal{H} \subset \mathcal{S}$

$$\mathcal{H}o_{\mathcal{S}}(\mathcal{H})\simeq \mathcal{H}o\Big(egin{matrix} \text{connected} \\ \text{3-types} \end{smallmatrix} \Big) \ \mathcal{H}\subset \mathsf{Mon}\,(\mathcal{T}_2, imes).$$

b)
$$\mathcal{K} \subset \mathcal{S}$$

$$\mathcal{H}\mathit{o}_{\mathcal{S}}(\mathcal{K}) \simeq \mathcal{H}\mathit{o}\!\left(\!\!\!\begin{array}{c} \mathsf{connected} \\ \mathsf{3-types} \end{array}\!\!\!\right)$$

