Paths in Double Categories

Dorette Pronk

Dalhousie University

with

Robert Dawson

Saint Mary's University

&

Robert Paré Dalhousie University

Motivation: understanding the Π_2 construction

• a more informative two dimensional version of Π_1 , where 2-cells are equivalence classes of diagrams, called fences, of the form:

- What is the equivalence relation for 2-cells in Π_2 of a 2-category?
- Π₂ can be viewed as a composition of two constructions which we will call **Path** and **Span**

Overview

- Review: Path and Path* for Categories
- Path for Double Categories
 - The Construction
 - The Morphism Ξ : A → Path A
- Universal Properties and Oplax Double Categories
- Path* for Double Categories
 - The Construction(With Equivalence Relation)
 - The Morphism $\Xi_*: \mathbb{A} \to \mathbb{P}ath_* \mathbb{A}$
- Universal Properties and Oplax Normal Double Categories
- The Equivalence Relation on $\Pi_2 A$

Path for Categories

Cat: category of small categories

Gph: category of directed multi-graphs

$$\operatorname{Cat} \xrightarrow{F} \operatorname{Gph}$$

- ullet U is monadic, E-M algebras are small categories
- ullet F is comonadic, graphs are categories with a costructure

Comonad: $(FU, \varepsilon, F\eta U) = (Path, E, D)$

Coalgebras: categories with a comultiplication (coaction) $\Phi: \mathbf{A} \to \mathsf{Path}(\mathbf{A})$, factorizing each arrow into 'primes'.

These primes form the edges of a graph.

Gph
$$\simeq$$
 Cat_{Path}

Note:

- Path: Cat → Cat is not a 2-functor.
- Any category has at most one coalgebra structure on it.
- Kleisli category: category of small categories with 'functors' which don't preserve identities nor composition.

Path_{*} for Categories

Cat: category of small categories

RGph: category of reflexive directed multi-

graphs

$$Cat \xrightarrow{F} RGph$$

 ${\cal U}$ is monadic, E-M algebras are small categories

F is comonadic, a reflexive graph is a category with a costructure

Path_{*} differs from Path in treatment of identities.

Comonad: $(FU, \varepsilon, F\eta U) = (Path_*, E_*, D_*)$

Coalgebras: categories with a comultiplication (coaction) $\Phi: A \to \mathsf{Path}(A)$, factorizing each arrow into non-identity 'primes'.

$$\mathbf{Rgph} \simeq \mathbf{Cat}_{\mathsf{Path}_*}. \tag{1}$$

Note:

- Path_{*}: Cat → Cat is not a 2-functor.
- Any category has at most one coalgebra structure on it.
- Kleisli category: small categories with 'functors' which don't preserve composition.

Path for Double Categories

Let $\mathbb A$ be a double category. Then $\mathbb P$ ath $\mathbb A$ is defined as:

- same objects and vertical arrows as in A
- A horizontal arrow in Path A is a path

$$A_0 \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \longrightarrow \cdots \longrightarrow A_{m-1} \xrightarrow{f_m} A_m$$

- Double cells are triples $(\varphi, \langle v_i \rangle, \langle \alpha_i \rangle)$:
- * an order preserving indexing function

$$\varphi$$
: $\{0, 1, \dots, m\} \rightarrow \{0, 1, \dots, n\}$
with $\varphi(0) = 0$ and $\varphi(m) = n$;

- * vertical arrows v_i : $A_i \longrightarrow B_{\varphi(i)}$;
- * double cells

A typical cell:

$$A_{0} \xrightarrow{f_{1}} A_{1} \xrightarrow{f_{2}} A_{2} \xrightarrow{f_{3}} A_{3}$$

$$v_{0} \leftarrow \alpha_{1} \quad v_{1} \leftarrow \alpha_{2} \leftarrow v_{2}$$

$$B_{0} \xrightarrow{g_{1}} B_{1} \xrightarrow{g_{2}} B_{2} \xrightarrow{g_{3}} B_{3} \xrightarrow{g_{4}} B_{4}.$$

where

are cells in \mathbb{A} .

Notation $g_4^2 = g_4 g_3 g_2$.

Composition

- Horizontal composition of boths arrows and cells is by concatenation.
- Vertical composition of arrows is as in A.

Vertical composition of

and

is

where γ_3 is the pasting of

Example: Path 1, where 1 is the terminal double category, with one object * and one vertical arrow, 1_* .

- Horizontal arrows correspond to non-empty ordinals $[m] = \{0, 1, ..., m\}$ (a path of m indentity arrows).
- Cells

$$\begin{array}{c|c}
* & \hline{m} \\
 & \varphi \\
 & * \\
\hline{[n]}
\end{array}$$

such as

correspond to order preserving functions

$$\varphi$$
: $[m] \rightarrow [n]$

such that $\varphi(0) = 0$ and $\varphi(m) = n$.

Horizontal composition:

$$[m'] \otimes [m] = [m' + m],$$

$$(\varphi' \otimes \varphi)(i) = \begin{cases} \varphi'(i) & \text{if } i \leq m' \\ m' + \varphi(i) & \text{otherwise.} \end{cases}$$

For example,

Note: Path $1 \simeq \triangle^{op}$

Oplax Morphisms of Double Categories

Definition [Grandis-Paré] $F: \mathbb{A} \to \mathbb{B}$, mapping

is an oplax morphism if

- it preserves the vertical structure;
- ullet for every object A of \mathbb{A} , there is a cell

and for every $A \xrightarrow{f} A' \xrightarrow{f'} A''$, a cell

satisfying coherence conditions.

The Morphism $\Xi: \mathbb{A} \to \mathbb{P}ath\mathbb{A}$

The morphism $\Xi: \mathbb{A} \to \mathbb{P}$ ath \mathbb{A} is defined as follows:

- it is the identity on objects and vertical arrows;
- it takes a cell, or a horizontal arrow, to itself, considered as a path of such of length 1;
- for an object A in A, let ξ_A be the cell

$$A \xrightarrow{\mathsf{id}_{1_A}} A$$

$$A$$

 \bullet for a path $A \stackrel{f}{\longrightarrow} A' \stackrel{f'}{\longrightarrow} A'',$ let $\xi_{f',f}$ be the cell

Vertical Transformations

Let $F, G: \mathbb{A} \rightrightarrows \mathbb{B}$ be oplax morphisms. A *vertical* transformation $t: F \to G$ assigns

ullet to each object A in $\mathbb A$ a vertical arrow

$$tA: FA \longrightarrow GA;$$

• to each horizontal arrow $f: A \longrightarrow A'$ a cell

satisfying functoriality conditions in the horizontal direction and naturality conditions in the vertical direction.

Double Categories, 2-Categories, and Bicategories

Doub_{Opl} is the *2-category* of double categories, oplax morphisms and vertical transformations.

There is no 2-category consisting of bicategories, oplax morphisms and any of the obvious choices of 2-cells (lax, oplax, or pseudo).

The correct 2-cells for a 2-category **Bicat** are the specializations of the vertical transoformations in $\mathbf{Doub}_{\mathrm{Opl}}$, *i.e.*, cells for which the one-dimensional components are all identities.

The Universal Oplax Morphism

Let $\mathbf{Doub}(\mathbb{A}, \mathbb{B})$ denote the category of double functors from \mathbb{A} to \mathbb{B} with vertical transformations, and $\mathbf{Oplax}(\mathbb{A}, \mathbb{B})$ the category of oplax morphisms from \mathbb{A} to \mathbb{B} with vertical transformations.

Theorem For any double category \mathbb{A} ,

$$\Xi: \mathbb{A} \to \mathbb{P}ath \mathbb{A}$$

is the *universal oplax morphism* in the sense that composition with Ξ ,

$$\Xi^*$$
: **Doub**(Path \mathbb{A}, \mathbb{B}) \to **Oplax**(\mathbb{A}, \mathbb{B})

is an isomorphism of categories.

The Comonad Path on **Doub**

Proposition The inclusion

$$\mathsf{Doub} \hookrightarrow \mathsf{Doub}_{\mathsf{Opl}}$$

of the 2-category of double categories, double functors, and vertical transformations into the 2-category of double categories, oplax morphisms, and vertical transformations, has a 2-left adjoint

$$\mathbb{P}ath: \mathbf{Doub}_{Opl} \to \mathbf{Doub}$$

with unit Ξ.

Doub_{Opl} is the Kleisli 2-category for the 2-comonad Path induced on **Doub**.

Note: The fact that \mathbb{P} ath is a 2-functor is a double category phenomenon.

We must consider 2-categories as double categories to get the two dimensional structure of **Doub** and Path, because we need the vertical transformations to make things work.

Theorem The 2-comonad Path on **Doub** is an oplax idempotent comonad.

Consequence: There is at most one coalgebra structure $\Phi: \mathbb{A} \to \mathbb{P}ath \mathbb{A}$, namely a (vertical) left adjoint to $E: \mathbb{P}ath \mathbb{A} \to \mathbb{A}$.

Note: This also explains why the coalgebra structure for categories is unique.

Relaxed Double Categories

An oplax double category has objects, horizontal and vertical arrows, and multicells. The vertical arrows form a category whereas the horizontal arrows don't. A multicell has domains and codomains as illustrated

Such an α can be composed with n cells

to give a cell

$$A \xrightarrow{f} A' \downarrow \qquad \qquad A' \downarrow \downarrow \\ C_{10} \xrightarrow{h_{11}} C_{11} \xrightarrow{h_{12}} C_{12} \xrightarrow{h_{nm_n}} C_{nm_n}$$

There are identity multicells

$$A \xrightarrow{f} A'$$

$$\parallel \operatorname{id}_f \parallel$$

$$A \xrightarrow{f} A'$$

and the composition is associative.

Remarks

- A lax double category is a \mathbb{T} -multicategory in $\mathbf{Set}^{\bullet \rightrightarrows \bullet}$, where \mathbb{T} is the free category monad.
- A lax double category in which all vertical arrows are identities is what Hermida calls a multicategory with several objects.
- A lax double category with a single object is the same as a multicategory as defined by Leinster.

- A. Burroni (1971): T-catégories
- C. Hermida (2000) multicategories
- C. Hermida, M. Makkai, J. Power (2000) multitopic categories
- ullet J. Koslowski (2005) S-T-Spans
- J. Lambek, multicategories
- T. Leinster (2002) fc-multicategories

Definition A morphism of (op) lax double categories $F: \mathbb{A} \to \mathbb{B}$ takes arrows to arrows of the same type and cells to cells respecting domains and codomains, and preserving vertical composition of arrows and cells, and identities.

For any double category \mathbb{A} , there is an oplax double category \mathbb{O} plax \mathbb{A} , defined as follows:

- its objects and vertical arrows are as in A;
- its multicells

correspond to double cells

in \mathbb{A} .

Theorem [Hermida] Let \mathbb{A} and \mathbb{B} be double categories. A morphism of oplax double categories \mathbb{O} plax $\mathbb{A} \to \mathbb{O}$ plax \mathbb{B} is the same as an oplax morphism of double categories $\mathbb{A} \to \mathbb{B}$.

Proposition [Hermida] An oplax double category is of the form \mathbb{O} plax \mathbb{A} if and only if all composites are strongly representable.

Definition Oplax is the 2-category, whose objects are oplax double categories, arrows are morphisms of such, and 2-cells are vertical transformations.

Proposition \bigcirc plax is a locally full and faithful 2-functor **Doub** \rightarrow **Oplax**.

Theorem \mathbb{P} ath is the object part of a 2-functor **Oplax** \to **Doub** which is a 2-left adjoint to the inclusion \mathbb{O} plax: **Doub** \to **Oplax**.

Theorem \mathbb{P} ath : **Oplax** \rightarrow **Doub** is 2-comonadic.

Remarks:

- Oplax is both complete and cocomplete, but
 Double_{Opl} is neither.
- Oplax double categories are the right structure on which to define oplax morphisms.
- Oplax is the 2-dimensional analog of Gph.
- ullet It is a property of a double category to be ${\mathbb P}$ ath of an oplax one, not extra structure.

ℙath_{*} for Double Categories

Definition An oplax morphism of double categories $F: \mathbb{A} \to \mathbb{B}$ is called *normal* if for every A the given cell

$$FA \xrightarrow{F1_A} FA$$

$$\parallel \varphi_A \parallel$$

$$FA \xrightarrow{1_{FA}} FA$$

is vertically invertible.

Construct the universal oplax normal morphism

$$\mathbb{A} \xrightarrow{\Xi_*} \mathbb{P}ath_* \mathbb{A}$$

for any double category \mathbb{A} .

Universality of Ξ gives us a unique Φ such that

So we must add vertical inverses for

So the new double cells are generated by

Cells of the form

• Cells of the form

A Flavour of the Equivalence Relation

Pasting this diagram

shows that

is equivalent to

Theorem For any double category \mathbb{A} ,

$$\Xi_*: \mathbb{A} \to \mathbb{P}ath_* \mathbb{A}$$

is the universal oplax normal morphism, *i.e.*, for any (strict) double category \mathbb{B} composing with Ξ_* induces an *isomorphism* of categories

$$\operatorname{Doub}(\operatorname{\mathbb{P}ath}_*\mathbb{A},\mathbb{B})\stackrel{\cong}{\longrightarrow}\operatorname{Doub}_{OLN}(\mathbb{A},\mathbb{B}).$$

Proposition DoubOLN is the Kleisli 2-category for the comonad $\mathbb{P}ath_*$ on **Doub**.

Theorem The comonad $\mathbb{P}ath_*$ on **Doub** is oplax idempotent.

Theorem Let \mathbb{A} be an oplax normal double category. Then

$$\Xi_* : \mathbb{A} \to \mathbb{O}plax_* \mathbb{P}ath_* \mathbb{A}$$

is the universal oplax normal morphism, *i.e.*, for any strict double category \mathbb{B} , composition with Ξ_* induces an *isomorphism* of categories

$$\mathbf{Doub}(\mathbb{P}ath_*\mathbb{A},\mathbb{B}) \stackrel{\cong}{\longrightarrow} \mathbf{OplaxN}(\mathbb{A},\mathbb{O}plax_*\mathbb{B}).$$

Theorem $\mathbb{P}ath_*$: **OplaxN** \to **Doub** is comonadic.

The morphism $\mathbb{A} \xrightarrow{\Xi_*} \mathbb{P}ath_* \mathbb{A}$ is the universal oplax normal morphism (for both double and oplax normal double categories), which induces

$$\mathsf{Doub}(\mathbb{P}\mathsf{ath}_*\mathbb{A},\mathbb{B}) \stackrel{\cong}{\longrightarrow} \mathsf{Doub}_{OLN}(\mathbb{A},\mathbb{B}),$$

but also

$$\mathbf{Doub}(\mathbb{P}ath_*\mathbb{A},\mathbb{B}) \stackrel{\cong}{\to} \mathbf{OplaxN}(\mathbb{A},\mathbb{O}plax_*\mathbb{B}).$$

 \mathbf{Doub}_{OLN} is the Kleisli 2-category for the comonad $\mathbb{P}ath_*$ on \mathbf{Doub} .

 $\mathbb{P}ath_*$ an oplax idempotent comonad on **Doub**.

 $\mathbb{P}ath_*: \mathbf{OplaxN} \to \mathbf{Doub}$ is comonadic.

Π_2 of a 2-category

Let \mathcal{A} be a 2-category. Then $\Pi_2 \mathcal{A}$ is defined as follows:

- its objects are those of A;
- ullet its arrows are paths of spans in \mathcal{A} ;
- its 2-cells are equivalence classes of fences

