Unwirings and exponentiability for multicategories Nathan Bowler

October 24, 2010

The intuition for multicategories

There are many different species of multicategory. A multicategory of a given species is like a category, but with the following tweaks (the exact details of which will depend on the species):

- The sources of the arrows are not just objects, they are combinations of objects (the manner of combination depends on the species of multicategory). The targets are still just objects.
- The classes of objects and arrows may have extra structure, which will also depend on the species.

The definition of multicategories

A species of multicategory is determined by a weak double category \mathcal{E} and a monad T on that weak double category. An (\mathcal{E}, T) -multicategory is given by

- ▶ a 0-cell a_0 of \mathcal{E} .
- ▶ a horizontal 1-cell $a_0 \xrightarrow{a_1} Ta_0$ of \mathcal{E} .
- ► 2-cells

satisfying certain conditions, called the associativity and identity laws.

The associativity and identity laws

Identity law:

Associativity law:

A few species of multicategory

${\cal E}$	Т	(\mathcal{E}, T) -multicategories
Span(Set)	identity	categories
Span(Set)	list	plain multicategories
Span(Gph)	path	virtual double categories
$Span(\mathcal{C}/\mathcal{C}_0)$	T/C	$(\mathbf{Span}(\mathcal{C}), \mathcal{T})$ -multicategories over \mathcal{C}
Rel	ultrafilter	topological spaces

Unwirings as distributive laws

For any object $C \xrightarrow{g} A$ of C/A, pulling back ν along $T\pi: T(B \times_A C) \to TB$ gives a diagram

$$\begin{array}{c|c} B \times_A TC \xrightarrow{l(\nu)_g} T(B \times_A C) \xrightarrow{T\pi'} TC \\ B \times_A Tg & & \downarrow T\pi & & \downarrow Tg \\ B \times_A TA \xrightarrow{\nu} TB \xrightarrow{Tf} TA \end{array}$$

Since the maps $l(\nu)_g$ are formed in this way by pullback, they collectively form a cartesian natural transformation $l(\nu): B \times_A T \longrightarrow T(B \times_A -).$

For any unwiring ν of B as above, $I(\nu)$ is a distributive law of the comonad $B \times_A -$ over T/A. This gives a correspondence between unwirings ν of B and cartesian distributive laws of $B \times_A -$ over T/A.

Unwirable maps of algebras and unwirings

Let T be a cartesian monad on a cartesian category C. A map $f: (A, \alpha) \to (B, \beta)$ of T-algebras is unwirable iff

Dropping the requirement that *B* have a *T*-algebra structure, an unwiring of (B, f) is a map $\nu : B \times_A TA \to TB$ making the following diagrams commute in *C*:

Unwirings which are isomorphisms correspond to unwirable maps of T-algebras.

Unwirings as exponentiability-lifters

For any unwiring ν of B, $l(\nu)$ gives $B \times_A -$ the structure of a cartesian colax map of monads from T/A to itself. Suppose that f is exponentiable as a map in C. Let $m(\nu)$ be the mate of $l(\nu)$ with respect to the adjuction $B \times_A - \dashv (-^B)_A$. Then $((-^B)_A, m(\nu))$ is a lax map of monads from (T/A) to itself. Thus the functor $(-^B)_A$ lifts to an endomorphism of the category T-Alg/ (A, α) of (T/A)-algebras. In particular, any unwirable map of T-algebras is exponentiable.

Unwirability for multicategories in the sense of Leinster

Now let T be a suitable monad (in the sense of Leinster) on a cartesian category C. So we have a 'free T-multicategory' monad T^+ on C-**Gph**. A map f of T-multicategories is unwirable iff the squares

$$\begin{array}{c|c} B_0 \xrightarrow{\text{ids}} B_1 & B_1 \circ B_1 \xrightarrow{\text{comp}} B_1 \\ f_0 & & & & \\ f_0 & & & \\ A_0 \xrightarrow{\text{res}} A_1 & & A_1 \circ A_1 \xrightarrow{\text{comp}} A_1 \end{array}$$

are both pullbacks. In fact, if the second of these squares is a pullback then the first must also be.

A *T*-multicategory is unwirable iff the unique map ! from it to the terminal *T*-multicategory is unwirable.

Cartesian cells in **Span(Set**)

For example, a 2-cell

in **Span**(**Set**) is cartesian iff r is the limit of the diagram

with p, h and q being legs of the limit cone

Cartesian 2-cells in double categories

Suppose that in some double category we have a 2-cell

We say θ is *cartesian* iff for any $f: A \to B$ and $f': A' \to B'$, any other 2-cell

Translating from Leinster's world to Cruttwell and Shulman's

The unit map of the terminal T-multicategory is the component of η at 1, and so in this case the first pullback square in the definition of an unwirable T-multicategory factors as

The right hand square is a pullback, so the whole thing is a pullback iff the left hand square is, that is iff

Normalised and unwirable multicategories

Definition

A multicategory is *normalised* iff the identity 2-cell is cartesian.

Definition

A normalised multicategory is *unwirable* iff the composition 2-cell is also cartesian.

A correspondence between kinds of $\mathcal{T}\mbox{-algebra}$ in the horizontal bicategory and these structures

lax multicategories weak unwirable multicategories colax unwirings

Normalised and unwirable topological spaces

A topological space is normalised iff it is T_1 .

A T_1 topological space X is unwirable iff for any point x in X and any open neighbourhood U of x there is another open neighbourhood V of x such that any open cover of U has a finite subset covering V. Such a topological space is called *quasi locally compact*. The *quasi locally compact* spaces are precisely the exponentiable objects of **Top**.

Conjecture

For sufficiently friendly species of multicategory, amongst the normalised multicategories it is precisely the unwirable ones which are exponentiable.

This is more useful than it appears because

Theorem

For every species of multicategory we can construct another species so that the multicategories of the first species are exactly the normalised multicategories of the second.

References

Nathan Bowler.

A unified approach to the construction of categories of games. PhD thesis, University of Cambridge, 2010.

G. S. H. Cruttwell and Michael A. Shulman. A unified framework for generalized multicategories, 2009.

Tom Leinster.

Higher Operads, Higher Categories.

Number 298 in London Mathematical Society Lecture Note Series. Cambridge University Press, 2004.