Solving problems in topological groups (and number theory) using category theory

Gábor Lukács

dr.gabor.lukacs@gmail.com

suspended without pay from

University of Manitoba Winnipeg, Manitoba, Canada

Motivation

● (Bíró & Deshouillers & Sós, 2001) If *H* is a countable subgroup of $T := \mathbb{R}/\mathbb{Z}$, then $H = \{x \in T \mid \lim n_k x = 0\}$ for some $\{n_k\} \subseteq \mathbb{Z}$.

Let $A \in Ab(Haus)$.

 $\hat{A} := \mathscr{H}(A, \mathbb{T})$ (cts homomorphisms)

Dikranjan & Milan & Tonolo, 2005:

• $s_{\underline{u}}(A) := \{x \in A \mid \lim u_k(x) = 0 \text{ in } \mathbb{T}\} \text{ for } \underline{u} = \{u_n\} \subseteq \hat{A}.$

• $\mathfrak{g}_A(H) := \bigcap \{ s_{\underline{u}}(A) \mid \underline{u} \in \hat{A}^{\mathbb{N}}, H \leq s_{\underline{u}}(A) \}, \text{ where } H \leq A.$

If *K* is a compact Hausdorff abelian group, and $H \le K$ is a countable subgroup, is $\mathfrak{g}_K(H) = H$?

Closure operators on Grp(Top)

 ${\cal G}$ is a full subcategory of ${\sf Grp}({\sf Top}),$ closed under subgroups.

- We use the (Onto, Embed) factorization system.
- $\operatorname{sub} G$ is the set of subgroups of $G \in \mathcal{G}$.

A closure operator c on \mathcal{G} is a family of maps $(c_G: \operatorname{sub} G \to \operatorname{sub} G)_{G \in \mathcal{G}}$ such that:

- $S \subseteq c_G(S)$ for every $S \in \operatorname{sub} G$;
- $c_G(S_1) \subseteq c_G(S_2)$ whenever $S_1 \subseteq S_2$ and $S_i \in \operatorname{sub} G$;
- $f(c_{G_1}(S)) \subseteq c_{G_2}(f(S))$ whenever $f: G_1 \to G_2$ is a morphism in \mathcal{G} and $S \in \operatorname{sub} G$.

Regular closure and groundedness

● c is grounded if $c_G(\{e\}) = \{e\}$ for every $G \in \mathcal{G}$.

Suppose that $\mathcal{G} \subseteq Ab(Top)$.

$$\operatorname{reg}_{G}^{\mathcal{G}}(S) := \bigcap \{ \ker f \mid S \subseteq \ker f, f \colon G \to G' \in \mathcal{G} \}.$$

• c is grounded ⇔ $c_G(S) \le \operatorname{reg}_G^G(S)$ for every $S \in \operatorname{sub} G$ and $G \in G$.

Examples:

•
$$\operatorname{reg}_{G}^{\operatorname{Ab}(\operatorname{Top})}(S) = S.$$

• $\operatorname{reg}_{G}^{\operatorname{Ab}(\operatorname{Haus})}(S) = \operatorname{cl}_{G} S.$

Precompact abelian groups

P is precompact if for every nbhd U of 0 there is a finite
F ⊆ P such that F + U = P. (Need not be Hausdorff!)

Comfort-Ross duality (1964): Let $A \in Ab$ and $K := hom(A, \mathbb{T})$.

Monotone one-to-one correspondence between subgroups of K and precompact group topologies on A.

● $(H \le K) \mapsto$ initial topology with respect to $\Delta : A \to \mathbb{T}^H$.

 $(A,\tau) \longmapsto H = (A,\tau).$

Precompact groups are pairs P = (A, H), where $A = P_d$. $f: (A_1, H_1) \rightarrow (A_2, H_2)$ is continuous $\iff \hat{f}(H_2) \subseteq H_1$, where $\hat{f}: \hat{A}_2 \rightarrow \hat{A}_1$ is the dual of f.

Examples of precompact groups as pairs

- $\ \, \, \, \mathbb{T}=(\mathbb{T}_d,\mathbb{Z});$
- ▶ $(\mathbb{Z}(p^{\infty}),\mathbb{Z})$, where $\mathbb{Z}(p^{\infty})$ is a Prüfer group;
- $(\mathbb{Z}, \mathbb{Z}(p^{\infty}))$ is the integers with the *p*-adic topology;
- $(\mathbb{Z}, \mathbb{T}_d)$ is the Bohr-topology on \mathbb{Z} , that is, the finest precompact group topology on \mathbb{Z} .

CLOPs on AbHPr and functors on AbPr

- AbPr = precompact abelian groups (with cts homo.).
- AbHPr = precompact Hausdorff abelian groups.
- If $(A, H) \in AbPr$, then
 - $\hat{A} \in \mathsf{AbHPr}$,
 - $H \in \operatorname{sub} \hat{A}$.
- Every closure operator c on AbHPr induces a functor
 - $C_c \colon \mathsf{AbPr} \longrightarrow \mathsf{AbPr}$
 - $C_c(A, H) = (A, c_{\hat{A}}(H))$ is a functor.
- C_c is a bicoreflection if and only if c is idempotent, that is, $c_G(H) = c_G(c_G(H))$.

The g closure

- $f: X \to Y$ is sequentially cts if $x_n \longrightarrow x_0$ implies $f(x_n) \longrightarrow f(x_0)$.

K a compact Hausdorff abelian group, $A = \hat{K}$ (discrete).

- $s_{\underline{u}}(K) := \{x \in K \mid \lim u_k(x) = 0 \text{ in } \mathbb{T}\} \text{ for } \underline{u} = \{u_n\} \subseteq A.$
- $\mathfrak{g}_{K}(H) := \bigcap \{ s_{\underline{u}}(K) \mid \underline{u} \in A^{\mathbb{N}}, H \leq s_{\underline{u}}(K) \}, \text{ where } H \leq K.$
- **●** $\mathfrak{g}_K(H) = \{ \chi : A \to \mathbb{T} \mid \chi \text{ sequentially cts on } (A, H) \}.$
- Solution The bicoreflection $C_{\mathfrak{g}}$ maps (A, H) to the coarsest sk-group topology on A finer than H.

The g closure

K a compact Hausdorff abelian group, $A = \hat{K}$ (discrete).

• $s_{\underline{u}}(K) := \{x \in K \mid \lim u_k(x) = 0 \text{ in } \mathbb{T}\} \text{ for } \underline{u} = \{u_n\} \subseteq A.$

- $\mathfrak{g}_K(H) := \bigcap \{ s_{\underline{u}}(K) \mid \underline{u} \in A^{\mathbb{N}}, H \leq s_{\underline{u}}(K) \}, \text{ where } H \leq K.$
- **●** $\mathfrak{g}_K(H) = \{ \chi : A \to \mathbb{T} \mid \chi \text{ sequentially cts on } (A, H) \}.$
- Solution The bicoreflection $C_{\mathfrak{g}}$ maps (A, H) to the coarsest sk-group topology on A finer than H.

Solution to the "motivational" problem:

- $\mathfrak{g}_K(H) = H \iff (A, H)$ is an *sk*-group.
- If H is countable, then \mathbb{T}^H is metrizable, and (A, H) is a sequential space.

kk-groups

- $f: X \to Y$ is k-cts if $f_{|C}$ is cts for every compact C.
- $P \in AbPr$ is a kk-group if every k-cts homomorphism $f: P \to K$ into a compact group is cts.

K a compact Hausdorff abelian group, $A = \hat{K}$ (discrete).

•
$$\mathfrak{k}_K(H) := \{ \chi \colon A \to \mathbb{T} \mid \chi \text{ k-cts on } (A, H) \}.$$

 $P \in AbHPr$, K := completion of P, and $H \leq P$.

- $\mathfrak{k}_P(H) := \mathfrak{k}_K(H) \cap P$.
- The bicoreflection $C_{\mathfrak{k}}$ maps (A, H) to the coarsest kk-group topology on A finer than H.
- ✓ Internal characterization of 𝔅 = ??

The G_{δ} -closure

- $f: X \to Y$ is countably cts if $f_{|C}$ is cts for every $|C| \le ω$.
- G_{δ} -set = a countable intersection of open sets.
- G_{δ} -topology = topology whose base is the G_{δ} -sets.

For $P \in AbHPr$ and $S \leq P$

- $\mathfrak{l}_P(S)$ = the closure of S in the G_{δ} -topology of P.
- *K* a compact Hausdorff abelian group, $A = \hat{K}$ (discrete).
- $I_K(H) = \{ \chi \colon A \to \mathbb{T} \mid \chi \text{ countably cts on } (A, H) \}.$

The G_{δ} -closure

For $P \in \mathsf{AbHPr} \text{ and } S \leq P$

• $\mathfrak{l}_P(S) =$ the closure of S in the G_{δ} -topology of P.

K a compact Hausdorff abelian group, $A = \hat{K}$ (discrete).

- 𝔅 $𝔅_K(H) = {χ: A → 𝔅 | χ countably cts on (A, H)}.$
- The following are equivalent:
 - $\mathfrak{l}_K(H) = H;$
 - *H* is realcompact;
 - every countably cts homomorphism from (A, H) into a compact group is continuous.

The G_{δ} -closure

K a compact Hausdorff abelian group, $A = \hat{K}$ (discrete).

- $\mathfrak{l}_{K}(H) = \{ \chi \colon A \to \mathbb{T} \mid \chi \text{ countably cts on } (A, H) \}.$
- The following are equivalent:
 - $\mathfrak{l}_K(H) = H;$
 - *H* is realcompact;
 - every countably cts homomorphism from (A, H) into a compact group is continuous.
- \checkmark If *H* is dense in *K*, the following are equivalent:
 - $\mathfrak{l}_K(H) = K;$
 - *H* is pseudocompact (cf. Comfort & Ross, 1966);
 - every homomorphism from A into a compact group is countably cts on (A, H).

Preservation of quotients (coequalizers)

Let c be a closure operator on AbHPr. $P = (A, H) \in AbPr$, $K := \hat{A}$, and $B \leq A$.

- $B^{\perp} := \{\chi \in K \mid \chi(B) = 0\}$, closed subgroup of K.
- $P/B = (A/B, H \cap B^{\perp})$ and $\widehat{A/B} \cong B^{\perp}$.

•
$$C_c(P/B) = C_c(P)/B \iff c_{B^{\perp}}(H \cap B^{\perp}) = c_K(H) \cap B^{\perp}$$
.

 $\mathfrak{g}, \mathfrak{k}, and \mathfrak{l}$ satisfy this condition.