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ON FLOWCHART THEORIES II (nondeterministic case)

By Gh,., Stefaneacu
7
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Abstragt This part of the paper givesan algebraic specification
of the semantic of simple nondeterministic program, i.e. with

sequential compociticn, parallel composition{random choice) and
feedback(random iteration). |

Introduction

Many years, as a man, the computer was able to do only one linear string

of operations in its consciousness. In the last ten years, due to some theo=-

retical and practical progresses, there was possible to construct a computer
which work as a lot of people, i.e. more than one devil pass through a

program and vork together on the same problem. In order to do correctly

their job, they must to synchronize, to communicate one with the other,

Dijkstra [4], Hoare [8] and Milner [9]. Of course, we want efficient

prograns, Since the programmer can not expect the exéct order in which
different devils finish their jobs, we have to allow the computer to have
a nondeterministic behaviour, namely a devil may wait signals from many
others and choice one, from the existent'ones, in a random way. At the actual
stage of our(my) knowledge it seems to be quite difficult to have an exact,
mathematical semantic (one way in which we can simplify the problem is to
give an operational semantic by interliving, i.e. to put one devil to do
the entire job: it chofce in a random way a devil x, skip there and do
an atomic step for x).

Here we give an algebraic semantic for the clasical nondeterninistic

programs (those which hus,as possible behaviour,a linear, but nondeterministic



e.
string of operations).

In the previous paper [10] we definedaﬁcommén\genﬁralizationrof iterative
alpebran.c theorics [5] and w-continwiwalgebraic theories (1] (stronger than
iteration theories feh, nnmely the so-oalled theorles with strong iterate,
The main result was to show that (a quotient of) thé abgtract £-flowcharts
overrsﬁdh‘a theory T is the theory with strong iterate freelyugenerated
by adding 3 to T. llere we lock for an analogous result,;in‘fhg nondeter-
minigtic case. In this more general case the things seem tdrﬁefﬁore natural.
The corresponding structurc is, roughly speaking, a bit mbru stﬁéﬁg than a
theory with strong iterate for which the dual category is‘&l#b“a,théory

with strong iterate. But there is a more direct way to gi?e this structure:

We call a repetitive reticulum T the set of matriees:o#er a semiring
with 1+1=1 , which has,beside + and -~ g 8 % - operation that fulfils

four natural axioms (an axiomatization of A% =1 + A + A2 F ves Jo

If X denote 2 set of atomic flowcharts, we define the theory Flp p of
ébstract S -flowcharts over T (the flowcharts with vertices from Y connected
by‘morphisms from T)’with natural +,-,x operations (union, sequential
composition and repetition). BEvery 5-flowchart over T may be réprésented
as a.matrix f = e[g 'g] , where e is a string of its atomie e1ements
(1abels of its vertices) and the morphisms 4,B,C,D from T .'teSpectiﬁely
give the out-of-the-box behaviour of £ , the inputs from exterioxr inio the
box, the outputs from the box to exterior and the into-the-box beﬁavidur

of f . As in the paper of Goguen and MNess&zwer [F] we have access only

to the visible behaviour of the flowchart (there to some sorts of a multi—
sorted algebra), namely to its inputs and outputs. Hence we allow the
vflowchart to be changed (for example, to minimize the number of its vertices)

by deletion or adding inaccessible or coinaccessible parts or by folding
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or unfolding so.e vertices, if its input—output>rclation éo not change.
iathenatically, we define an equivalence = on Flz;T (stronger than

the bisimulation of Tark [3] and which preserves the computing paths) and

ghow that the guotient RPlz,T = FlZ‘,T/E is the repetitive reticulum

frecly renerated by adding 5 to T (as X-polinomials over a ring R , with

equivalence = reduction of similar terame, is the ring freely generated by

adding X to R ; in a more categorial language this is the coproduct of

a given structure with the free one generated by a set), eachtime when

RF]‘E,T is a repetitive reticulum. The main technical result show that

RFlE,T is a repetitive reticulum if the simulation relation (the basic

rolation for defining =) has the confluent (Church-Rosser) property. ¥or

erbitrary X , in that case we are if T 1is M{o,ﬁ' s the repetitive |

reticulun of matrices over }0,1}. Hence the usual nondeterministic flowcharts

RFJ'Z,M is the repetitive reticulum freely generated by 3.

10,11
I+ remoins an open problem to see if P.Flz T is always a repetitive
y

reticulum, eachtime when T is.

We point here some limits in the application of our results. Particu-
larly, our equivalence = says that every ¢ €3 is isomorphic with the
matrix of its components (its behaviour is known if we know for evefy 1,
the behaviour of « wheﬁ we restrict (rr to its i-input and j-output).
This is not always true. For axampie, the interliving operator -11522,1
(which make onc devil from two) has the matrix of its components equal to

[:] {as wlf1 = w , the first component is (1+O)N =1).
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Part I: Algebraic foundations -

O TR S S R 2 A A S RS S S SR T st e,

1, ‘Repetitive reticula

The aim of this part is to give an algebraic structure, called
repetitive reticula, which in our view models the connections between
vertices in a flowchart. To make the things more readable we restrict

ourselves to the onesorted case.

A gemireticulunm HR igs a category in which the objects are the
natural»numﬁers and the set of morphisma, with usual matrix multiplication

as'comﬁosition; are
’MR(m,n) = the set of mxn matrices over R,

(R,+,0,*,1) being a semiring (i.e. + 4s an associative and coumutative
addition with O neutral element, + is an associative multiplication

with 1 neutral element and « is left and right distributive with

respect to +),

‘¥e shall denote the component-vice addition of matrices also by + ,
by 0 and 1 the zero matrices and the identity matrices of adequaﬁs
dimensiqns, by x? € HR(1,n) the zero row vector with é 1 on.plgce>.;
and by yge T-IR(n,H the transposition of x;_l. {0,13 '_w;i._ll t.itenp‘be‘ the |
boolean semifing, i.e., + and '+ are the usual boolean operaiions‘ ég;
. | o »

A semireticulum vip is a ggjggg;gg if in R hol&s 1 +1 =1,

. A repetitive reticulum is a reticulum T endowed with an operation,

called repetition,

% ;3 T(n,n) > T(n,n)



(which intuitively means to nondeterninigticaly repeat the application of

a morphism zero or more times), which fulfils the following axioms:

(R1)  A¥ = ;m*nn = A*AHn , if AeT(n,n):

(R2)  (A+B) = (A*3)"a"® , ir A,BeT(n,n);

]

(R3)  A(BA)® = (aB)*A  , if A€ T(m,n) and BE T(n,n};

I

Y s . » K g » vx* - ' . F_—
(Ra) 47 “3 =3 then u*g‘ = {3 s for every ael(m,mn), se€7(n,n)

and g€ M*O’ﬁ(m,n).

The following propositrion shows how one can compute the % of a

morphism when he know the =« of its components.

Proposition 1.1, In a repetitive reticulum

#*

A B A% 4 A*Byos® A%By

1l
-

C D wea® W

: *
where W = (CA®B + D),

Proof, Tirstly we shall prove that

A BYX A% g o oy* 1 0
[ = and = . .
0 0 o 1 ) p¥¢ ¥

Indeed,

LT e a0 e ) 1)+

Hence

NI AL

Using (R1) one can see that



A% X A% x) fa B 1 'o] R A% 41 A*B] [ AN
; = . + = =
D ¢ o Y} {o o o 1 0 1} o

In a similar way oné can prove the second equality.
“With these identities we may return 4o the starting equnality and

compute:

A BYX E [A B] )* B]* [o 0 [A 31* %
| [c D] “\lo o (R2) LO © c D]' 0 0 )
JL(RS)

[ Sl A% A*B] 1 0
0 1 CA%  CA®B4D 1, WCA® W

[AM Afsyca®  A* Bw] ‘

]

0

wca¥* W

Bagic ex~mple, Let S be a set (of states). Then

Relationss(m,n) = the mxn matrices with elcments relatidnsfon S

with usual operations (+ = union, « = composition and A% = 1‘~UAUA’_2U ees)
is a repetitive reticulwm, Particularly, if O has only one elemeat then

Relationss = Mi°v1}'



Tart II: Flowchart theories

=TT

2. Definitions

Hotations: [nj = {1,...,n} and w = {Cn1,... } .
1f (7,V,0,°,1,%) is a repetitive reticulum and 3 a double ranked

alphabet for the set of atomic flowcharts (r 3 —>w give the in-

in'Fout’
and out-ranks; their monoid extensions to T* will be denoted by Tin?

Tout * too), then a = -flowehart over T with m inputs and n outputs

is a double f = (1,e), where ee¥™® and le¢ T(m+r0ut(e), n+rin(e)).

In a matrix representation this means (typical, every string e exX is

e = e .80 where (el is the length of e and eiei‘. for ief{le1] )

n Ne_“/j T ees /43-‘@1’-\

rin(e1) rin(e[e\)‘
m A B
44T utley)
: c D
ele\ rout(e{e|)
L

where the left-up corner A gives the visible behaviqur of the flowchart
(out of the box), the right-down corner‘ D' gives the nonvisible(internal)
" behaviour of the flowchart (into the box), the uv-part gives the inpuis fron
exterior into the box and the C-part gives the outputs from the box to

exterior. For example the {0‘,1} -flowehart over H{O 1j' from figure 1
]
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may be represented as it is shown there,

. T T <

, J ~— e
000 ] 10 1 00O
2 o1 {00 o0 10

Figure 1.

A}

We denote by ¥l s T(m,n) the set of 3, -flowcharts over T with m
? -
inputs and n outputs., Lvery fe€ T(m,n) may be represented as the visible

flowchart (f, A) and every a<€Z as the flowchart

rout(c) T
rin(tr) [ 0 1
T 1 0 -

The fundamental operations on flowchart, in the matrix represéhtation‘,
look as follows (the sharing of rows and columns with respect to ranks of

atomic flowchart from § is prescrved and we omit its writing):

union
n e e!
n e n e m r AVA'l B B ’
m Al B mf[A] B : , ;
: U = e c » o ;
e C ] D el c( Dl v ’



gorposition

pv' e e!
n e P e'
m | AAY B AB!
m{ A} B n{ At} Bt ‘ f I “]
e = e | CA! D o }
e ci{ D e'lt G D!

mo o m e
m [ A" { ARY ]

o LCA*I cA¥B U DJ

. From now on we shall not write the sharing of columns with respect to X
as it is a direct congequence of the sharing of rows.
Ve shall define a derived operation which shows how can be construct

an mxn matrix of flovcharts [fij] 1,5

£.1. . = \J R U Sl
17 1.3 iem] jg’nx 174

In the matrix representation this is

. , h
A11 “e e A1n B11011B1n 0 0.09
¢0 e L T eee LN}
Am1 "‘. Alun O .'.O . B_mT...an
€41 C11 eee O D11...0 0 ...0
If. .] = e1n O > e 0 C1n O D1n ‘ 0 00-0
1]
. 14
e Cm1 I ¢ o ...0 ij...o |
: b ted LU e
emn O e e Cnm O "lo . 0 --.Dmn



3. Bquivalent floweharts

-

Denote by - Relz(e,e*), for e,e'e ™ the set of relations ¢ from

flel] to [le"t] which prescrves labels, i.e.

Every

)3
v

gé-RcEx(c,u') hus @ ratural exionsion to inputs

81n € Myo,13 (Finle)s 7ypletd)

: Zery,
obtained by recplacing every @4 in the matrix € by the rddidentity matrix of
éppropriate dimensions (if this 0,4 is on i-row and J - celumn, _ then

these dimensions are r, (e,) , rin(ej)). Similar Wl‘tl? 'gout?W'Qn"

The basic relation, Let f£=(1,0), '=(1',e') & Flg T(ﬁ..gg‘f?ma;‘
14 Lo .

geRelx(e,e'). We say that f is gimulnted via @ by £' , and write
o>t i | o
B?in

Dgin

(x| 7
Lgoutc'l goutD'l

Perhaps the following figure gives some points for its intuitive understanding.

m
B B!
R E T
| ¢ i
/ A
D Sl ]
- .
f S
1 n



!
t may casily be seen that this is a transitive, reflexive relation,
but not a transitive one. Our equivalence on flowcharts is that generated
by simulation. This neans that £ is egujivalent with ', write this

f = ', if there exist fi'gi such that

. A
f-§—1—->f1<§—2-—f2-—§——3-&f3 e fzk-1<?§c_f .
Roiari, I the sinulation relation has the confluent(or Church-Rosser)

property (namely, for every f*j;? f1, f-—Z> f2 there exist ¥, 31, 31

such that f1~§—*'§h<;f—-f2), then this equivalence may be written as
1 1

—

£ = f' iff there exist f,¢,Z such that £ ??"{' £ .10

The following lemma shows the compatibility of simulation with flowchart

operations.

Lemna %4, If f1-§ﬁ>fq ' f2-725-fé then the following relations

hold, whenever the operations make sense,

a) £, UL —> £ Of ;
i 2 [9 07 1 2
0T

: ; 1 v
b) f1Ci‘2—;—o'>-f1Cf2 H

0 1]

o) =%,
¢
Proof, Obvious., [

Proposition 3,2, The equivalence = 1is compatible with union,

compogition and repetition.

Proof, By using trivial simulations given by g=1é We can suppose
that different chains of simulations have the same length, The conclusion

directly follows from lemma 3.1. [
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If RFlS o = Flg T/E , ‘then the above proposition shows that U,
. ] ’ . ) '

and # are well-defined in HIML. ..
2,T
Exanmples of equivalent flowcharts:
Als o B
l’ 1 2 | -A B1 -I
e C,{D D > , ;
| 1 11 12 1
& €1 Cy | Dyy
e, 10 0 D, 0, . -
“ LJ..J b2, 1
fa | B D : o
A% % ; I’A[B1UB2 TR
e Jc tbp,, D - if D, UD.. =D, ,UD, ;
11 712 1, o IC lD”u D, J Coer ez m o 127
e {c|D. D 1 - 2
21 22 e
Ta B, 0 ]
e, e { G| Dyy ©
62'02 D21 D22j
and v
"A | B B
R . N .
el C, | D D if D, ,UD_., =D, .UD,_ .
e LC1UC2!D“UD21J [e o] Ty e LU B AL
e‘,c2 D,, D22~_
4., The main result
53
of

We want to have a formula for the scmantie

1- } in a“pepetitive

reticulum Q , when we know the meaning of T in Q by, ?E*Tﬁ&dand

of 2 in Q by x‘fz:Z——-—)Q . The extension o

£ gg to BN, samm



dencted by tf: , is its monoid extension, when Q is a monoid with the

operuavion

n n'
p
0 ot m A o] B 0]
n n' | A' B! m' 0 At 0 B!
e

e' | ¢c'| D¢ et lc ol p o} °

The desired formula is

';#' A B %X
g ) [ﬂc“ b = LFT('A)U G (B) Le.z(e) (({"T(D) Cfi(e)) ¢ c) .

The right cxpression shov what can be heard from outside afier zero

(or directly, CfT(A)), oue ((QT(B)qz(e)Qb(C)), or more inward racks.

GAIN THEORBN 4.1, RFIE/C is the repetitive reticulum frely generated

by adding X% to the repetitive reticulum T (in a morevcategorial language
RFlz 0 is the coproduct, in the category of repetitive reticula, of T

]
and the free repetitive rcticulum generated by 3. ), eachtime when RF1

3,T

is a repetitive reticulum.

Proof.
We have to show the property of universality, namely that there are a
repetitive rciiculum morphism  Ig: T ——b'RFlg,T_‘and a rank-preserving
function 12:21——> RFlz,T such that for every repetitive reticulum
- (Q,1,0,+,1%) and cvery repetitive reticulum morphism @.: T —>Q
and rank-preserving function qxz Z—>»Q there exigts exactly one repe-

titive reticulun morpfisn ¢ : RFlg,—>Q such that I, ¢ =<, and



Vi

Iy
T - -~ RFl. .,
(&l
\/ '
- ' \
z/“T \s‘ :
~y v
PN > Q
| Y.
IT and I.}:‘ are the avove ciabeding of T “and L in RF}"Z,T y numely
- 10 1
I.(A) =04 and I_{q) = ' .
T (Al B L P
We define @ff ¥l as was sho
¢ defin (? on F 5,7 8 s shown |
# Al B | x . -
¢ e = Qp(0) UQp(a)ile) (fa(D)fgle))” $ylC) o
The first problem is to show that this is a well-defined'functidn
on RFISLTA, namecly

12 £ = then F(f) =qen) .
In fact it is enough to prove this implication only for thevsimulaticn '
if‘ f‘~§%>f' then (é*(f)==(é$(f')‘. .
Remark that for gérRelZ(e,e‘) we have tfz‘(e)gout = ?inﬂaééf?j;
Hence we can apply to

PuDPg(@)Yug = PolDIV (o) = Yougfal D Igglet)
the axiom (R4), which gives
‘ * . (T NG
(@D ¥ Ly = Youp p(D )ggler )T .
Now since A= A', C = youtC' and Byiﬁb= B' , one Can éasy ges thatl
GF(2) = @u(8) U Py(Ifg(e): (p(D)fgle))* pylc)
= @ (A1) U C{?T(B')‘fa(e‘)'(‘fT(D‘)(ﬁ:(a‘ X pulen) = .?*tf..»;_ .



The second problem is to show that ‘f#: prescrves the‘operatians. for
the sake of simplicity ve shall dropp the writing of ‘fT”cPﬁ and usge
typical notations: a for th(A), b for ch(B)qﬁ(e)' ¢ for CPT(C)

*

ana 4 for q%(h)%&(e). The main technical result to be use is that from

Proposition 1.1 .,

Unicen:
" a  07%fec
qﬁf()fﬂ =avatu[b b]
0 dy [c!
= 8 Ua' (V) bd*C U b'd'*c‘ = 'f(f) 8 (eﬁ(f') .
Composition:
ra cb'1* Tea!
qﬁf.fﬁ =aa'y [b ab'] _
0o a' c!
Ca®  g¥cb'a! ca’
=aa' U[b ab']
Lo ark ¢!
= (aubd¥e)-(a'up'arte') = ¢N2) g¥er) |
Repetition:
wa(f) = a%yua®b(ca¥bUd)®ea® =  aX(1 U va¥(caXbva¥)Xca¥)
(R2)
= a*(1 U bd%ca®{bd%caX)®) = aX(vd¥ca*)® = (a vbd%e)¥ = af?f)*.
(R3) (rR1) (r2) '

The third problem is %o show that the extension &?* is the unique
repetitive reticulum morphism such that ITéf#= ‘f’l‘ and Izt(’w= ifﬁ . % 1is

enourh to seéthat every flowchart f has an equivalent representation as

1= T(A) U I(3)Tg(e) (I(0)Ie))* 1n(C)

5

dince

I.(e) [i-{ 1] In(B)Ia{e) TO : ( * r1 ° |
el = | Me) = s (IL(D)I(e)) = !
% el1] o TR e[1 { 0 pP)Tgle)) e l_1 b |

we are done



Ag a direct consequonce of this fundamental result, the main technical
q

result 5.3 and the appendix A we have the following

Corollary 4.2, RFlZLM ig the free repetitive retieculum generated
{o,13 o : ' ‘
byx-m



5. The n2in technieal result

Propesition 8.1, RFl2 T(1,1) with addition = union, multiplication =
4

comnosition and 0,1 the visible flowcharts (0,2 ), (1,A) h2s a structure

of seniring with 1V 1 =1,

I'e

Proof. In Fly ,(1,1) the union is associative, with O neutral
?

elenment and with 1 U1 {1 and the composition is associative, with 1

neutral clement, hence in RFlz T(1,1) too., HMorcover,
]

frua] 3 3] rarual s B'[
m“'—) =
fUuf = e c D 0 '[o 1] e! c! Dt 0 =f'U f
e
e! ct 0 D! 1e' 0 e C 0 D
and
TAa(auar)| B AB AB'
- - = - = - >
f(fULf) = e |C(ava")] D CB CB F1- 0 1- o©
0 1. 0% o
e C 0O D 0 o o o 1,
(<]
e ¢ o o D}
rh- — — —-‘ - - i
AA U AA ! B Al} B AB?
& TA D T3 0 0
e c 0 D 0 O =Fruter, OO
Y TA! o o 1 cst
e'y ¢ o O 0 u'J

pogition 8.2, RFlqg .(m,n) is isomorphic with the set of mxn

[

matricey ovep the above semiring RF1£!P(1'1)‘ ence RF:!.).‘.T is a reticulum.
! . {2



Mof%ﬁer, the isomorphism is natural, namely

" flowchart union = matrix addition

and flowchart composition = matrix multiplication.

Proof, The components of féell (m,n) are x? £ y? and their

T

matrix is equivalent with f,

et I M w—
o

u. n nm, nl. _t, i .
X1ny1.-.X1Ayn x1d)n-ox1—j 0 .-‘.0
m'n _m,on| _m n
xmﬂy1...xmAyn 0 ...0 : xmB.'.xmB
e C3’111 ¢ e 0 D '0; O o LN 2 3 0
E . : * & O :
m.n n - ]
Dﬁﬁj]* e 0 "0%1 0O ... D 0 ... 0
e Cy? ees O 0 ... 0 D ... 0
e 0 ees C o ... 0 0 +io D
n ¥ R |
"~ x?B... 0 ]
A * e q
0 ...xmﬁ
.'{ m —] f .
1 0101 L 2N BN 0 0--0 e C D L3N 2 O
e .
0 ...0 ... 1 ... : .
e e
e N C 0O ...D i

Reciproec, if fijGIFlz.T(1.1) , then they are the éomponeﬁts of their
; ‘ nig

matrix,



m
i

e
~t
Lat]
!
2.
—t
<)
t
2 eve O

JT

0‘ .()

) O'QO 0-00

and

o1

The proof of

[£,) U[fi;)] = [

[f331 L £ixd

-1

U

jeynl

V) f;!x.j]

1
53 T 1k

A g | “« oid, oo 6-‘:
3] O +ei0 e BygeuiBy . R
911 (:) -D,'.‘.ouo oo 0 '500 X o---O'
. . v s . [
Srif 1y | ‘ ' ) :
e111 0] 0 ...D1n.-.0 ...O "0 e o0
N 311 0 O ~~.Di1'.'0‘ A (3 -‘--O
Lo [ » " . 4
-.-j . .
13] “1 . ’
. . v * » .
in 0 O L4 .0 * 'O L in\-.u “-O
em1 9 0 “‘O .- 0 -‘tO . m1-|'0
: . . . ’ Y .
oy Oy | T '
e o 0...0 ...0 ...0 ... e D
mn‘. Bin
ij B]_1 ...B]‘_n'
== >k .
i «o0 e 0.0 e, 0 D, -'-.0
i1 :11 : ..'1.1
e o1 4,.0..0 R .
®in = %13 Cagf
ein_O 0 "'Din_

is a8 easy as the above proofs and is left as an exercise to the reader. o
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Theorem 9.%. If T is a repetitive reticulum then RF1 is a

,T

repctitive reticulwa, eachtime when T,8 are such that the simulation

relation has the confluent property.

Proof, By Frroposition 4.2 only the axioms of repetition are to be

shown, o x
aut l B A B]
B ST
(k1) fru1 = e cA¥ | cifnpup  cat3 i, .3' =f N
e Lc(,x*unl CA BUDJ
e C
and T.u;* ut| B AXT B ] - ' .
A (10 A8")B
£1°U1 = e| cA* | D ca'p - > | 7 = £
_ X 1€ el_CA* I ca®B U _DJ
e]. ca®* 0 cA'BuD|l e

(R2) Denote by Y = (A¥A")*A%® and 2 = A*A'Y U A%, Remark that Y = 2 =

(A uan¥, :
x| = v » ]
(2 )Y £* = e |CA%A'Y | cAXA'YBU  CcAXA'YB'y CA*A??JS—.:"";*Y.-:'-Z’
CA*BUD cAXpr ';‘ ' §]
e'l C'Y C'YB C'YB'U'D! C'YB f
e L ¥ 0 0 cA*BUD J
TY | Y YB! 'I
e | cz | czBUD CZB" = (fus)”
erjc'y | c'ys C'YB'U D'

(R3) Suppose £ = A(A'A)%, ¥ = (aa)*A, 5 = (A'AWY ana 7 = (4K ¥¥,



simulationg for this equivalence can

2 —> 1y <531
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Since X =Y, A'Y 1 =S md Xa' 1 =T the flowcharts are equivalent,
(R4) Suppose fg= 4. Due to the confluent property the chain of

be replaced by two 51mu1ations ,

therefore
[A? ] -Ba,in-[ i [ 1 j . gA' IgB'b ] ) r AT l }31 ] )
Lpg l Daunl L ou l out 1J .I D‘ban [;;utcllbout311

m

From Ag =3gA' and (R4) in follows that A*g =R

We shall define a flowchart f such that

R A x
£ ‘g"’_a"'} £ ‘(—b'—- gf'

namely



a*e | £ B, J |

&lttk’! l
e C1n' §1A ? binlJ D1
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Indeed, using the equalities from (&) we prove

” [A*i I N
(&

¢ = ' 5 f as follows
ca®y l ca™ B UDJ

a) A% = ATe
* o
B) K Bgin = "B,

.
¥

C) Cﬁkg = CgA™ =a .C At

out 1 i

. . — N LR Y D)
CA%eB'D, W Da, = aout(ciA B o, U D,)

n

- o % o
by (cx B\JD)“in
and

féA't ‘ A'*B'4;] »;__-

{1 Y. £ as follows
s e'LC'A'* l C'A%is' QU D! o

i

—

A) gA'* = A*g
B) ga%B'b, = A%gB'v, = A¥B,

C) C'A'% =b_ CA'™; |

D) (CUA™BIUD by = b CABID, UDD, = b (CATBD, UD,). O
By the proof from Appendix A we have the foiiowing

Corollary §.4, RF1
|M
R

is a repetitive reticulum. IJ

Open rroblem. Is RFlZ T a repetitive reticulum eachtime-whén T
1]

is a repetitive reticulum?



Appendix A

T roroaiiion, For every X, the simulation relation jin RF1
M
{0,1%
has the confluaent property.

I'roof, The proof is based on the coustruction of fibered coproducts
in tho onte,ory: objcets = sevs, nmorphisss = relations.

Suppose L —> T f —> f_. We want to construct a flowchart f

and tvo relotions a,b such that £ “?fff"f ie call a 0O-1 column

1 b “2°

vector &€ Il{c 1,(]0{,1) a §-onesorted vector for e ez* if it has a 1
1’ J’

on a place i only if e, =¢. For e we take, for indices all pair

(m,F) such that
there is a @€ 3, such that &« is a U’-oﬁesorted vector for e1 ,
(‘, is a g-onegorted vector for e, and R = 1?, s

and put 'é'(d,(,) =¢. In additton, a and b are given by

(el _ ey _
B V(a,g) =X 2O DYy TP

Now Qa =1b holds, since for “every (O(,F) in e

131 151
§ & ¥(q,p) " SX TR =IO V()

"y ! (= 0T 3
cama, If )\Cxx{o’1}(rout(e1),1) and Y € M{o,ﬁ(rout(e’a”” are

ot X = K “h e % o ig . ’1 2
such tha S’out\ Ioutf then there exists 2 € M{o,@(rout(e) ) for

which =z 2 =X and b Z =1.
out out

Proof of lemin, X,Y may be not oncsorted vectors, but if }(0,, YQ,

arc their restrictions to the sort @ , then X = U Xd,, Y= {JY
gel, 3¢

and the relations g’outx = _LoutY also hold, as ¢.1 do not change the

gorts. Jo, for cvery d6% , (X‘,‘Yd.) is an index.



If for cvery del, . rou‘c(;) =1, pamely Q‘J‘it =9 and sﬁ Gn,' then

we toke

12

(dyf)

x 72 =1 iff for ome gef, (a,P) = (xq,Y‘) .

Clearly aZ = U X_=X and bZ =Y,
e T
de
In the general case we make the above construction for every output of

a ¢ and put the rosults torcther, [J

AS @t [c, D1ain] = Tyt LC_2 ‘Db, 1, .makipg uge of the above }exﬁma

for each column, one can find ],'C‘ ]-)] such that
e, pa,3 ==a [€ D] ana [c, p,b, ] = bouttc- D) . o

flow one can easy see that

3 . [ [B?inain.]
] 5]

is a common siiulation of f, and f, . it
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