Problems For Tour 9

Suppose a and b are integers. We say that a is congruent to b modulo m if a and b both give the same remainder when divided by m. We write this as $a \equiv b \pmod{m}$. For our purposes, we will say that m must be a positive integer.

```
For example, 17 \equiv 1 \pmod{4}, 19 \equiv -5 \pmod{12}, and 26 \equiv 0 \pmod{13}.
```

If $a \equiv b \pmod{m}$, then a = km + b for some integer k.

Note that saying $a \equiv b \pmod{m}$ is equivalent to saying that a - b is a multiple of m.

Note that every integer a is congruent to exactly one of $\{0, 1, 2, \ldots, m-1\}$ (mod m).

Here are three important rules which are not too difficult to prove.

- i) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.
- ii) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.
- iii) If $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$, for all non-negative integers n.

Can you see how we can use rule ii) to prove rule iii)?

```
For example, because 17 \equiv 2 \pmod{5} and 4 \equiv 14 \pmod{5}, we have: 17 + 4 \equiv 2 + 14 \pmod{5}, and 17 \times 4 \equiv 2 \times 14 \pmod{5}.
```

Here are some problems.

- 1. Determine the last digit of 3^{1999} .
- 2. What is the rule for divisibility by 9? Prove it! Similarly, state and prove the rule for divisibility by 11.
- 3. Show that $4^{3n+1} + 2^{3n+1} + 1$ is divisible by 7 for all positive integers n.
- 4. Pick any 55 numbers from the set $\{1, 2, 3, ..., 100\}$. Prove that among those 55 numbers, you can find two of them that differ by 9.
- 5. Prove Fermat's Little Theorem: if p is prime and a is not divisible by p, show that $a^{p-1} \equiv 1 \pmod{p}$.

(Hint: look at the set $\{a, 2a, 3a, \ldots, (p-1)a\}$ and reduce each element modulo p. For example, if a=3 and p=7, the set becomes $\{3,6,9,12,15,18\}$, which reduces to $\{3,6,2,5,1,4\}$ in modulo 7. What do you notice?)