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Abstract

One of the recent advances in Functional Analysis has been the introduction of
the notion of an (abstract) operator space. Proponents of this theory have, since its
inception, maintained that it provides a much more solid “foundations” for Operator
Algebra than the more traditional theory of Banach spaces.

In this paper, we show that there exists a (non-trivial) involutive monoidal structure
on the category of operator spaces and linear complete contractions. Every C∗-algebra
gives rise to an involutive monoid in this involutive monoidal category, but (unfortu-
nately) not vice versa.

1 Preliminaries

It is well known that there exists a symmetric monoidal closed category of Banach spaces
and linear contractions, here denoted (Ban, ×∩,C,−◦)—i.e., we use the symbol ×∩ to denote
the projective tensor product of Banach spaces, which is more commonly denoted ⊗γ, and the
symbol −◦ to denote the internal hom functor, which is more commonly denoted B(−,−).

Linear contractions of the form x ×∩ y −→ z are in bijective correspondence with what
we shall call näıvely contractive bilinear transformations; these are bilinear transformations
which restrict to the unit balls of x, y, and z,

U(x)× U(y) //

��

��

U(z)
��

��

x× y ϑ // z

—or, equivalently, those which satisfy ‖ϑ(α, β)‖z ≤ ‖α‖x · ‖β‖y. We follow the common
convention of writing x∗ for x −◦ C despite the fact that C is not a dualising object for
(Ban, ×∩,C,−◦).

An important class of Banach spaces are the Hilbert spaces; these are self-dual in the
sense that there are (unnatural!) isomorphisms h ∼−→ h ∼−→ h∗. [The first of these two
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isomorphisms is extremely unnatural, in that its construction depends upon a choice of
basis, whereas the second is simply the transpose of the inner product on h, which—thanks
to the Cauchy-Schwartz inequality—can be regarded as an arrow of the form h ×∩ h −→ C

in Ban.] From this, it can be derived that Hilbert spaces are among the reflexive Banach
spaces—those such that the canonical map x −→ x∗∗ is invertible.

A monoid in (Ban, ×∩,C) is called a Banach algebra. [Throughout this paper, all algebras
are assumed unital; further, the unit of a Banach algebra is assumed to lie in its unit ball
(equivalently, sphere).] A very important class of Banach algebras are those of the form
(h −◦ h; ◦, idh), where h is a Hilbert space; closed subalgebras of these are called concrete
operator algebras.

But since h is self-dual, (the inverse of) the “contrapositive map”

h −◦ h
( )∗

// h∗ −◦ h∗

can be viewed as an extra piece of structure on h −◦ h. [More precisely, one can avoid basis-
dependent constructions by noting the existence of a natural isomorphism x −◦ y ∼−→ x −◦ y.
Thus, the map we are really interested in is the composite

h −◦ h // h −◦ h // h∗ −◦ h∗ // h −◦ h

which, by abuse of language, is also denoted ( )∗.] This observation motivates the definition
of Banach ∗-algebra.

The algebraic theory of involutive monoids, that is, of monoids equipped with a unary
operation, denoted either ( )∗ or ( ), satisfying the identities

(α · β)∗ = β∗ · α∗

α∗∗ = α

can clearly be modelled in any symmetric monoidal category; and it is clear that the con-
traposition operation on h −◦ h defined above must satisfy these identities.

Were we working over the reals instead of C, and thus able to identify x with x, we would
be able to define a Banach ∗-algebra as an involutive monoid in the symmetric monoidal
closed category of real Banach spaces. To arrive at the correct notion of (complex) Banach
∗-algebra, however, we must tweak the definition of involutive monoid, by using (yet again)

the existence of a natural isomorphism x ×∩ y ∼ // x ×∩ y.

Definitions 1.1

1. A Banach ∗-algebra is a Banach algebra (a;µ, η) together with a map a
ν−→ a such

that the diagrams

a ×∩ a
ν ×∩ ν

��

χa,a
// a ×∩ a ∼ // a ×∩ a

µ
��

a ×∩ a µ
// a aν

oo
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(where χ denotes the symmetry of ×∩) and

a
ν

//@A BC
=

OO
a

ν
// a

commute.

2. A C∗-algebra is a Banach ∗-algebra which can be regularly (=isometrically) embedded
into one of the form (h −◦ h; ◦, idh, ( )∗).

Unlike concrete operator algebras (which are notoriously difficult to classify (up to isomor-
phism) among Banach algebras—see, for instance, [1]), there exists a simple characterisation
of C∗-algebras.

Theorem 1.2 (Gelfand-Naimark-Segal,1943)
A Banach ∗-algebra is a C∗-algebra if and only if it satisfies the so-called C∗-identity:

‖α‖ =
√
‖α∗α‖.

But the C∗-identity, unlike anything else we have encountered so far, can clearly not be
expressed in terms of a commutative diagram in Ban.

2 Operator spaces

In this section we quickly sketch as much of the basic theory of operator spaces as the reader
shall need to understand and appreciate the statement and proof our main results.

Definitions 2.1

1. An (abstract) operator space x consists of a vector space x together with a suite of
(Cauchy-)complete norms

xn×n
‖−‖(x,n)

// [0,∞)

satisfying the following axioms:

(a) for every ζ ∈ Cn×m, α ∈ xn×n and ω ∈ Cm×n,

‖ζ · α · ω‖(x,m) ≤ ‖ζ‖∞ · ‖α‖(x,n) · ‖ω‖∞

(where ‖−‖∞ denotes the usual “operator norm” on Cp×q for all p, q ∈ N); and

(b) for every α ∈ xn×n and every β ∈ xm×m,∥∥∥∥( α 0
0 β

)∥∥∥∥
(x,n+m)

≤ max
{
‖α‖(x,n) , ‖β‖(x,m)

}
.

[≥ follows from axiom (a) so it would be equivalent to write = in place of ≤.]

3



Note that we shall usually denote operator spaces by bold letters, and that in this case
their underlying vector spaces will always be denoted by the same letter in italic font.

2. A linear complete contraction x −→ y is a linear transformation x
ϑ−→ y such that, for

every n ∈ N, the linear transformation xn×n
ϑn×n−→ yn×n defined by

ϑn×n

 α11 · · · α1n
...

. . .
...

αn1 · · · αnn

 :=

 ϑ(α11) · · · ϑ(α1n)
...

. . .
...

ϑ(αn1) · · · ϑ(αnn)


is norm-non-increasing (with respect to ‖−‖(x,n) and ‖−‖(y,n)).

3. The category of operator spaces and linear complete contractions is denoted Oper.

4. The forgetful functor Oper −→ Vec, defined by x 7→ x, will be denoted V (when
needs be).

Standard references for operator spaces include [2, 7] while a more categorical approach
will be appearing in [4]; there is also an “on-line dictionary” of operator spaces [9]. All of
the standard references give detailed proofs of all the facts listed in this section.

Examples 2.2

1. Let A = (a;µ, η, ν) be a C∗-algebra. Then the matrix algebra An×n equipped with the
(Hermitianesque) involution α11 · · · α1n

...
. . .

...
αn1 · · · αnn


∗

=

 α∗11 · · · α∗n1
...

. . .
...

α∗1n · · · α∗nn


is again a C∗-algebra —and so an×n carries a canonical norm, its so-called C∗-norm.

These C∗-norms satisfy axioms (a) and (b), and so there exists an underlying operator
space of A, denoted a, consisting of a together with the C∗-norms.

Moreover, every C∗-homomorphism A −→ B defines a linear complete contraction
a −→ b, and so we obtain a forgetful functor C∗Alg −→ Oper.

2. In particular, if A is a C∗-algebra of the form (h −◦ h; ◦, idh, ( )∗) where h is a Hilbert
space, then the C∗-norm on an×n is that of h�n −◦ h�n, where � denotes the sum of
Hilbert spaces (i.e., the `2-direct sum). [Note that An×n is canonically isomorphic to
the underlying algebra of h�n −◦ h�n, so the former statement does make sense.]

The underlying operator space of (h −◦ h; ◦, idh, ( )∗) will be denoted h −• h.

3. In particular, the vector space Cn×n carries a canonical operator space structure, that
of Cn −• Cn. Unless otherwise specified, if we refer to Cn×n as an operator space, then
we mean the latter operator space. [We shall later provide an example of a different
operator space structure overlying Cn×n, for n > 1.]
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4. A celebrated example of a linear contraction which fails to be a linear complete con-

traction is Cn×n
( )T−→ C

n×n for n > 1.

Theorem 2.3 (Ruan,[8])
Every operator space can be regularly (=completely isometrically) embedded into the

underlying operator space of some C∗-algebra.
Equivalently, every operator space can be regularly embedded into some h −• h.

Definition 2.4
Let x, y and z be operator spaces, and let � denote the obvious notion of “matrix

multiplication”
xn×n × yn×n −→ (x⊗ y)n×n

with the symbol ⊗ replacing · (ordinary multiplication).

Then a bilinear transformation x × y ϑ−→ z is called completely contractive if, for every
n ∈ N, the map

xn×n × yn×n �
// (x⊗ y)n×n

ϑ̂n×n // zn×n

is näıvely contractive (with respect to the norms ‖−‖(x,n), ‖−‖(y,n) and ‖−‖(z,n)).

[ϑ̂ denotes the “linearisation” of ϑ.]

Theorem 2.5
For every pair of operator spaces x and y, there exists a universal completely contractive

bilinear transformation, which we shall denote

x× y −→ V (x ×u y) .

[A more common symbol for ×u, which is called the Haagerup tensor product, is ⊗h.]

Remarks 2.6

1. Given operator spaces x, y and z, one can also consider bilinear transformations x ×
y −→ z such that, for all p, q ∈ N, the map

xp×p × yq×q ⊗
// (x⊗ y)pq×pq

ϑpq×pq // zpq×pq

(here, by abuse of language, ⊗ also denotes the internalisation of the action

(xp
α−→ xp, yq

β−→ yq) 7→
[
(x⊗ y)pq ∼−→ xp ⊗ yq α⊗β−→ xp ⊗ yq ∼−→ (x⊗ y)pq

]
as a map xp×p×yq×q −→ (x⊗y)pq×pq) is näıvely contractive (with respect to the norms
‖−‖(x,p), ‖−‖(y,q) and ‖−‖(z,pq)).

This property is strictly weaker than that contained in Definition 2.4; it is therefore
potentially misleading that bilinear transformations which satisfy it are called jointly
completely contractive.
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2. There also exists, for every pair of operator spaces x and y, a universal jointly com-
pletely contractive bilinear transformation, here denoted

x× y −→ V (x ×∩ y) .

This is also called the projective tensor product of operator spaces, and is correctly
viewed as the direct analogue of the projective tensor product of Banach spaces. But,
be warned, the forgetful functor

(Oper, ×∩,C) −→ (Ban, ×∩,C)

is only (lax) monoidal.

3. By contrast, there is no direct analogue of ×u among Banach spaces; it appears to be
related to two of Grothendieck’s fourteen tensor products on Ban [5]: the so-called
Hilbertian tensor product (often denoted ⊗H or ⊗γ2) and its “dual” (⊗H′ or ⊗λ2).

4. The presence of matrix multiplication in the definition of completely contractive bilin-
ear transformation renders ×u highly non-symmetric.

For instance, given Hilbert spaces h and k, we can construct operator spaces h and
k (overlying h and k respectively), such that h ×u k overlies the Banach space of
all compact operators k −→ h, and such that k ×u h overlies that of all trace-class
operators k −→ h. [Even in the finite-dimensional case, these spaces carry different
norms, and are therefore not isomorphic as Banach spaces.]

By contrast, ×∩ is indeed symmetric.

5. Both ×∩ and ×u are known to be (left- and right-) closed; but we shall not be needing
this extra structure in the current paper.

6. The fact that joint complete contractivity is weaker than complete contractivity induces
a natural transformation ×∩−→×u.

This natural transformation is the “multiplication” part of a (lax) monoidal functor

(Oper, ×u,C) −→ (Oper, ×∩,C)

overlying the identity functor on Oper.

Theorem 2.7
A Banach algebra is isomorphic to a concrete operator algebra if and only if it lies in the

range of the functor

Mon(Oper, ×u,C) // Mon(Oper, ×∩,C) // Mon(Ban, ×∩,C)

—i.e., if and only if its underlying Banach space can be endowed with an operator space
structure, in such a way that its multiplication becomes a completely contractive bilinear
map.
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At this point, one should like to state and prove an analogous theorem for Banach ∗-
algebras and C∗-algebras. But there are, at first glance, two monstrous obstacles to such a
theorem:

1. the non-commutativity of ×u means that we cannot model the concept of involutive
monoid in (Oper, ×u,C), unless we are (both willing and) able to “tweak” it further
than we already have;

2. the failure of Cn×n
( )T−→ C

n×n to be a linear complete contraction means that we cannot
even model the involution of this C∗-algebra—i.e.,

Cn×n
( )H = ( )

T
= ( )T

// C
n×n

—as an arrow in Oper, unless we are (both willing and) able to find a different operator
space structure on Cn×n than the obvious one (—that of Cn×n).

Remark 2.8
Pisier [7] claims, in effect, that Mon(Oper, ×u,C) itself and not the range of the functor

Mon(Oper, ×u,C) // Mon(Oper, ×∩,C) // Mon(Ban, ×∩,C)

should be regarded as the correct category of abstract operator algebras.
In particular, he writes that two concrete operator algebras should be considered equiv-

alent only if they have the same induced operator space structure, in addition to being
isomorphic as algebras.

3 Involutive monoidal categories

As noted above, the algebraic theory of involutive monoids can be modelled in any symmetric
monoidal category; in particular, it can be modelled in (Cat,×, ). In this manner one
obtains the small and strict version of what we call an involutive monoidal category.

Definition 3.1
An involutive monoidal category is a monoidal category (K;⊗, i) together with a (covari-

ant!) functor K ( )−→ K and natural isomorphisms

x⊗ y
ψx,y

// y ⊗ x

x
εx // x
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satisfying the following coherence conditions:

(x⊗ y)⊗ z
αx,y,z

//

ψx,y ⊗ idz
��

x⊗ (y ⊗ z)

idx ⊗ ψy,z
��

x⊗ y

εx ⊗ εy

��

ψx,y
// y ⊗ x

ψy,x

��

y ⊗ x⊗ z

ψy⊗x,z
��

x⊗ z ⊗ y

ψx,z⊗y
��

x⊗ (y ⊗ z) (z ⊗ y)⊗ x
αz,y,x

oo x⊗ y x⊗ yεx⊗y
oo

and x
εx=εx // x .

A fuller discussion of involutive monoidal categories will be provided in a subsequent
paper, [3].

Let us briefly sketch a few non-trivial examples.

Examples 3.2

1. (Cat,×, , ( )op) is an involutive monoidal category.

2. (Pos,+lex, , ( )op) forms a (not at all symmetric) involutive monoidal category, where
+lex denotes the “lexicographic sum” of two posets. [Every element of x is less than
every element of y in x +lex y.]

3. Let Flo denote the full subcategory of Pos determined by the finite linearly ordered
sets. Clearly Flo is closed under +lex, , and ( )op, so (Flo,+lex, , ( )op) again forms
an involutive monoidal category.

This example is noteworthy for the fact that, although xop ∼= x for every object x,
there is no natural isomorphism ( )op ∼= Id.

[This is just another way of looking at the celebrated fact that (Flo,+lex, ) is not a
symmetric monoidal category despite the fact that x +lex y ∼= y +lex x for every pair
of objects x and y.]

4. If R is an involutive ring (i.e., an involutive monoid in the symmetric monoidal category
(Ab,⊗,Z)), then the category RModR of (two-sided) R-modules form an involutive
monoidal category with respect to the usual tensor product, and the involution defined
below.

Given an R-module A (with left and right R-actions denoted by . and / respectively),
A has the same underlying abelian group as A, but with left and right actions defined
by

ρ . α = α / ρ

α / ρ = ρ . α

[Of course, this is only part of a more general structure on the bicategory of rings,
bimodules and bimodule homomorphisms, but we won’t go into that here.]
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5. In particular, C equipped with conjugation is an involutive ring, and so (Vec,⊗,C, ( ))
forms an involutive monoidal category.

Moreover, any norm on a complex vector space x is also a norm on x. Thus the
involutive structure of Vec extends to Ban; and, in particular, (Ban, ×∩,C, ( )) is an
involutive monoidal category.

Here the isomorphism x ×∩ y ψx,y
// y ×∩ x is the same as the composite

x ×∩ y
χx,y

// y ×∩ x ∼ // y ×∩ x

used (implicitly) in Definition 1.1 above.

One can, of course, also define involutive monoidal functors and involutive monoidal
natural transformations; but in the present paper we shall consider only a special case of
these. Definitions of the more general concepts will appear in a subsequent paper, [3].

Definitions 3.3
Let (K,⊗, i, ( )) be an involutive monoidal category.

1. An involutive monoid in (K,⊗, i, ( )) is a monoid (m,µ, η) in (K,⊗, i) together with
an arrow m

ν−→ m such that the diagrams

m⊗m
ψ

//

ν ⊗ ν
��

m⊗m

µ
��

m⊗m µ
// m mν

oo

m
ν

//@A BC
ε

OO
m

ν
// m

commute.

2. An involutive monoid homomorphism (m,µ, η, ν)
ϑ−→ (n, µ, η, ν) is a monoid homomor-

phism (m,µ, η)
ϑ−→ (n, µ, η) which respects involution, in the sense that the diagram

m
ν

//

ϑ
��

m

ϑ
��

n ν
// n

commutes.

Examples 3.4

1. Involutive monoids in (Cat,×, , ( )op) are [the strict (and small) version of] what are
sometimes called ∗-monoidal categories—see, for instance, [AbrBluPan].

2. Involutive monoids in (Ban, ×∩,C, ( )) are precisely Banach ∗-algebras.
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4 Quantum conjugation

Theorem 4.1

Let x be an operator space, and let the functions xn×n
‖−‖(xop,n)

// [0,∞) be defined by

‖α‖(xop,n) :=
∥∥αT∥∥

(x,n)
.

Then x together with the ‖−‖(xop,n)s do indeed form an operator space, denoted xop.

Moreover, if x
ϑ−→ y is a linear complete contraction, then it is also a linear complete

contraction xop ϑ−→ yop.
Thus there is a covariant involution of Oper defined by the mappings x 7→ x̃ and ϑ 7→ ϑ.

[For convenience sake, we shall define ϑop := ϑ, so that we can refer to this functor as ( )op.]

Proof

It is self-evident that the functions xn×n
‖−‖(xop,n)

// [0,∞) are Cauchy-complete norms,
so it remains to check that the two compatibility axioms hold.

Suppose that ζ ∈ Cn×m, α ∈ xn×n and ω ∈ Cm×n; then

‖ζ · α · ω‖(xop,m) =
∥∥(ζ · α · ω)T

∥∥
(x,m)

=
∥∥ωT · αT · ζT∥∥

(x,m)

≤
∥∥ωT∥∥∞ · ∥∥αT∥∥(x,n)

·
∥∥ζT∥∥∞

= ‖ω‖∞ · ‖α‖(xop,n) · ‖ζ‖∞
= ‖ζ‖∞ · ‖α‖(xop,n) · ‖ω‖∞ .

Now, suppose that α ∈ xn×n and β ∈ xm×m; then∥∥∥∥( α 0
0 β

)∥∥∥∥
(xop,n+m)

=

∥∥∥∥∥
(
α 0
0 β

)T∥∥∥∥∥
(x,n+m)

=

∥∥∥∥( αT 0
0 βT

)∥∥∥∥
(x,n+m)

≤ max
{∥∥αT∥∥

(x,n)
,
∥∥βT∥∥

(x,m)

}
= max

{
‖α‖(xop,n) , ‖β‖(xop,m)

}
.

Further, if x
ϑ−→ y is an arbitrary linear transformation, then xn×n

ϑn×n−→ yn×n clearly
satisfies

ϑn×n
(
αT
)

= ϑn×n(α)
T
.

Therefore, if x
ϑ−→ y is a linear complete contraction, then∥∥ϑn×n(α)

∥∥
(xop,n)

=
∥∥∥ϑn×n(α)

T
∥∥∥

(x,n)
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=
∥∥ϑn×n (αT )∥∥

(x,n)

≤
∥∥αT∥∥

(y,n)

= ‖α‖(yop,n) .

q.e.d.

Definition 4.2

We write (̃ ) for the composite Oper
( )

// Oper
( )op

// Oper.

Example 4.3
If A = (a;µ, η, ν) is a C∗-algebra, then ã

ν−→ a is a linear complete isometry—i.e., an
invertible map in Oper.

To see this, let α = (αjk) ∈ an×n; then

νn×n(α) =

 α∗11 · · · α∗1n
...

. . .
...

α∗n1 · · · α∗nn

 =

 α11 · · · αn1
...

. . .
...

α1n · · · αnn


∗

=
(
αT
)∗

and therefore ‖νn×n(α)‖(a,n) =
∥∥(αT )∗

∥∥
(a,n)

=
∥∥αT∥∥

(a,n)
= ‖α‖(ã,n) .

In particular, C̃n×n
( )H−→ C

n×n is a linear complete contraction; hence the identity function

C̃n×n −→ Cn×n is not a map in Oper, for n > 1.

Theorem 4.4
There exists a natural isomorphism

xop ×u yop
ψx,y

// (y ×u x)op

which, together with the identity map (xop)op −→ x, satisfies all the coherence conditions
listed in Definition 3.1.

Thus (Oper, ×u,C, ( )op) is an involutive monoidal category. Similarly, (Oper, ×u,C, (̃ ))
is also an involutive monoidal category.

Proof
The crucial observation is that, given α ∈ xn×n and β ∈ yn×n, (α � β)T is almost, but

not quite, the same as βT � αT .
More precisely, we have

(α� β)Tjk = (α� β)kj =
n∑
l=1

αkl ⊗ βlj

and

(βT � αT )jk =
n∑
l=1

βTjl ⊗ αTlk =
n∑
l=1

βlj ⊗ αkl
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—thus
χx,y

(
(α� β)Tjk

)
= (βT � αT )jk

for all j, k ≤ n—or, more simply put,(
χn×nx,y (α� β)

)T
= χn×nx,y

(
(α� β)T

)
= βT � αT .

Now it follows that∥∥χn×nx,y (α� β)
∥∥

(y×
d

xop,n)
=

∥∥∥(χn×nx,y (α� β)
)T∥∥∥

(y×
d

x,n)

=
∥∥βT � αT∥∥

(y×
d

x,n)

≤
∥∥βT∥∥

(y,n)
·
∥∥αT∥∥

(x,n)

= ‖α‖(xop,n) · ‖β‖(yop,n) .

Hence the composite

x× y ⊗ // x⊗ y
χx,y

// y ⊗ x // // V (y ×u x) = V ((y ×u x)op)

is a completely contractive bilinear map; by the universal property of ×u, this establishes the
existence of a linear complete contraction

xop ×u yop
ψx,y

// (y ×u x)op

as desired.
Naturality and the coherence conditions are absolutely trivial, and the second of them

implies that ψx,y is invertible, with inverse ψop
xop,yop .

The composite

xop ×u yop // (y ×u x)op // y ×u xop

defines a natural isomorphism x̃ ×u ỹ −→ ỹ ×u x which, by abuse of language, we also denote
ψx,y. q.e.d.

Theorem 4.5
Every C∗-algebra can be regarded as an involutive monoid in (Oper, ×u,C, (̃ )).

Proof
Let A be a C∗-algebra. Then a×a

·−→ a is a completely contractive bilinear transforma-
tion; hence we obtain a monoid structure on a in (Oper, ×u,C). Moreover, we have already

shown that ã
( )∗−→ a is a completely contractive map.

So it remains to show that the appropriate diagrams commute: but this is an elementary
diagram chase. q.e.d.
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It is not true, however, that every involutive monoid in (Oper, ×u,C) is a C∗-algebra.

Example 4.6
Let A denote the concrete operator algebra consisting of those (2 × 2)-matrices of the

form (
α β
0 α

)
and let a denote its underlying operator space.

It is plain that A is commutative, but not of the form C(X) for any compact Hausdorff
space X; hence, it can not underlie any C∗-algebra.

But, although the identity function C̃2×2 −→ C2×2 is not a linear complete contraction
(see above), its restriction to a is.

[By Smith’s Lemma [2], it suffices to show that ã2×2 id−→ a2×2 is a linear contraction—i.e.,
that ∥∥∥∥∥∥∥∥


α β γ δ
0 α 0 γ
ζ ϑ ψ ω
0 ζ 0 ψ


∥∥∥∥∥∥∥∥

(a,2)

≤

∥∥∥∥∥∥∥∥


α β γ δ
0 α 0 γ
ζ ϑ ψ ω
0 ζ 0 ψ


∥∥∥∥∥∥∥∥

(ã,2)

=

∥∥∥∥∥∥∥∥


α 0 γ 0
β α δ γ
ζ 0 ψ 0
ϑ ζ ω ψ


∥∥∥∥∥∥∥∥

(a,2)

.

But since
α β γ δ
0 α 0 γ
ζ ϑ ψ ω
0 ζ 0 ψ

 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ·


α 0 γ 0
β α δ γ
ζ 0 ψ 0
ϑ ζ ω ψ

 ·


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



and

∥∥∥∥∥∥∥∥


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


∥∥∥∥∥∥∥∥
∞

= 1, it follows from axiom (a) of Definition 2.1.1 that

∥∥∥∥∥∥∥∥


α β γ δ
0 α 0 γ
ζ ϑ ψ ω
0 ζ 0 ψ


∥∥∥∥∥∥∥∥

(a,2)

≤ 1 ·

∥∥∥∥∥∥∥∥


α 0 γ 0
β α δ γ
ζ 0 ψ 0
ϑ ζ ω ψ


∥∥∥∥∥∥∥∥

(a,2)

· 1

as desired.]
This entails that the map (

α β
0 α

)
7→
(
α β
0 α

)
.

—which is plainly an involution on A—defines a linear complete contraction ã
ν−→ a, which

in turn makes a into an involutive monoid in (Oper, ×u,C, (̃ )).
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5 Conclusions and Future Work

Obviously, the original problem of finding a diagrammatic definition of C∗-algebras remains
open.

But we feel that even the partial result contained in this paper has profound implications
for the project of C.J. Mulvey et al. to capture the essence of non-commutative topology in
terms of involutive quantales.

An involutive quantale is, of course, an involutive monoid in the trivially-involutive
monoidal category (Sup, ×∩, , Id). But, as indicated in the preamble to Definitions 3.3,
involutive monoids are (in the usual way) merely a special case of involutive monoidal func-
tors.

Therefore, an involutive monoidal functor

(Ban, ×∩, e, ( ))
(M,µ, η, ν)

// (Sup, ×∩, , Id)

determines a functor

B∗Alg := IM(Ban, ×∩,C, ( )) // IM(Sup, ×∩, , Id) =: IQ

by composition:

1 //

))

(Ban, ×∩,C, ( ))

(M,µ, η, ν)
��

(Sup, ×∩, , Id)

—and it appears that the functor C∗Alg
Max−→ IQ arises as the composite of such a functor

with the forgetful functor C∗Alg −→ B∗Alg.
But as pointed out in [6], for instance, the functor Max is far from ideal.
As a result of Theorem 4.5, we are presented with potential alternatives: if we were to

find an involutive monoidal functor

(Oper, ×u, C, (̃ ))
(M,µ, η, ν)

// (Sup, ×∩, , Id)

which did not factor through the forgetful involutive monoidal functor (Oper, ×u,C, (̃ )) −→
(Ban, ×∩,C, ( )) then the corresponding functor

IOA := IM(Oper, ×u,C, (̃ )) // IM(Sup, ×∩, , Id) =: IQ

would not necessarily factor through B∗Alg; therefore its composite with the “less forgetful”
functor C∗Alg −→ IOA could retain more information about a C∗-algebra, and therefore
(potentially) have better properties than Max .
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