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Abstract
In this paper, we prove a Cayley Theorem for compact closed categories, in which

infinite strings of adjoint endofunctors replace permutations.

1 Introduction

A compact closed category may be viewed as a generalised group. Therefore, it makes sense
to ask whether there exist a representation theory for compact closed categories.

Unfortunately, I’ve only got the bare bones of such a theory, without any good

combinatorical examples to show it’s worthwhile.

2 Background

Definition 2.1
A compact closed category is a monoidal category (K, i,⊗) together with an (adjoint)

equivalence

Kop
(−)]

// K
(−)[

oo

and di-natural transformations
�
ε,

�
η whose components have the form

i

�
ηx // x] ⊗ x x⊗ x]

�
εx // i

and which satisfy the so-called triangle identities—i.e., that the composites

x

�
υ
−1

x // x⊗ i
ιx⊗

�
ηx // x⊗ (x] ⊗ x)

αx,x],x
// (x⊗ x])⊗ x

�
εx ⊗ιx // i⊗ x

�
υx // x

x]

�
υ
−1

x]
// i⊗ x]

�
ηx ⊗ιx]

// (x] ⊗ x)⊗ x]
αx],x,x]

// x] ⊗ (x⊗ x])
ιx]⊗ �

εx
// x] ⊗ i

�
υx]

// x]
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should equal the identities on x and x] respectively.
A compact closed category is called strict if (K, i,⊗) is strict and if the equivalence

Kop
(−)]

// K
(−)[

oo

is an isomorphism.

Note that we do not require a symmetry, or even braiding, on ⊗; neither do we require
(−)[ to co-incide with (−)], even up to isomorphism.

Remark 2.2
There are also have dinatural transformations

�
ε,

�
η with components of the form

i

�
ηx // x⊗ x[ x[ ⊗ x

�
εx // i

defined by

i

�
η

x[
// x[] ⊗ x

∼ // x⊗ x[

x[ ⊗ x
∼ // x[ ⊗ x[]

�
εx[

// i

which also satisfy the triangle identities.

Definition 2.3
Of mateship.

Definition 2.4
Of embedding of compact closed categories.

3 Main Result

Definitions 3.1
Let K be an arbitrary category. We shall write End±∞(K) for the category of endofunc-

tors with infinitely many left and right adjoints; i.e., the objects of End∞(K) are infinite
strings of adjoint endofunctors

f = (· · · a f−2 a f−1 a f0 a f1 a f2 a · · ·)

(with specified units and counits, η(n,n+1), ε(n,n+1)) and an arrow f
λ−→ g is defined to be a

natural transformation f0
λ0−→ g0.
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Theorem 3.2
Let K be an arbitrary category. Then End±∞(K) is a strict compact closed monoidal

category.

Proof. The tensor product • is defined by:

(f • g)n =

{
fngn if n is even
gnfn if n is odd

(with the obvious unit and counit maps), and the tensor unit i by

in = IdK

for all n. It should be clear that these operations make End±∞(K) a strict monoidal category
To show that End±∞(K) is a (strict) compact closed category, we define (−)] and (−)[

by shifting on objects and mateship on arrows.
For an object

f = (· · · a f−1 a f0 a f1 a · · ·)
of End±∞(K), f ] and f [ are defined by

f ]
n = fn+1 and f [

n = fn−1

respectively.

For an arrow f
λ−→ g λ] and λ[ are defined to be the mates of f0

λ0−→ g0,

g1
λ1−→ f1 and g−1

λ−1−→ f−1

respectively.

Now the arrows i
�
η f−→ f ] • f and f • f ]

�
ε f−→ i defined by the chosen unit and counit maps

IdK
η(01)

−→ f1f0 and f0f1
ε(01)

−→ ιK satisfy the triangle identities tautologically, and so End±∞(K)
is a compact closed category. q.e.d.

Remark 3.3
Let End∞(K) denote the category of endofunctors with infinitely many right adjoints—

i.e., infinite strings of adjoint endofunctors

f = (f0 a f1 a f2 a · · ·).

Then both • and the left internal hom-functor

End±∞(K)op × End±∞(K)
−◦−→ End±∞(K)

(which, as in any compact closed category, is defined by the formula f −◦ h := f ] • h),
restrict along the forgetful functor End±∞(K) −→ End∞(K) so that End∞(K); is a left-
closed monoidal category—and which is not, in general, right-closed.

Dually, the category of endofunctors with infinitely many left adjoints—denoted End−∞(K)—
is a right-closed monoidal category which is not, in general, left-closed.

This is where the whole thing actually started, and perhaps explains the somewhat

awkward notation.
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Theorem 3.4
Let K be a compact closed category. Then there is an embedding of compact closed

categories K C−→ End±∞(K) defined by

C(x)n =


x]n ⊗ (−) if n > 0
x⊗ (−) if n = 0
x[n ⊗ (−) if n < 0

Proof. In any monoidal closed category we have x ⊗ (−) a x −◦ (−), but in a compact
closed category we also have x −◦ (−) ∼= x] ⊗ (−).

So we do get an infinite string of adjoint endofunctors

(· · · a x[ ⊗ (−) a x⊗ (−) a x] ⊗ (−) a · · ·)

—which is what C(x) is defined to be.
And it’s obviously an "embedding"... q.e.d.

4 The same again, but with additives

Theorem 4.1
If a category K has biproducts, then so does End±∞(K). Moreover, if K is a compact

closed category with biproducts, then the Cayley embedding K C−→ End±∞(K) preserves
them.

Proof. If f and g are objects of End±∞(K) then, for each n, we have composable adjuntions

K
∆ // K ×K

(fn+1, gn+1)
//

⊕
oo K ×K

⊕
//

(fn, gn)
oo K

∆
oo

and therefore an infinite string of adjunctions

f ⊕ g = (· · · a f−1 ⊕ g−1 a f0 ⊕ g0 a f1 ⊕ g1 a · · ·)

(where fn ⊕ gn denotes the composite ∆; (fn, gn);⊕).
It is then easy to verify the universal property that f ⊕ g is the biproduct of f and

g. q.e.d.

Remark 4.2
If K has products and coproducts which do not co-incide, then we get nothing. Given

Robin Houston’s theorem, this should not be surprising.

Extension to abelian categories?
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5 Future work

To find an interesting compact closed category V (with or without biproducts) which admits
an embedding into some End±∞(K), where K is demonstrably simpler than V . For example,
where K has smaller cardinality, or does not carry a monoidal structure related to that of V .

But note that if K is finite/posetal/single-iso-class, then End±∞(K) is so too.
So, for example Vecfd can only be represented on infinite categories—and ones which

admit uncountably many endo-natural transformations of the identity functor! I’m not sure
we can really do better than Vecfd itself.
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