

Team Question Solutions

1. Since $108=2^{2} \cdot 3^{3}$, its divisors are all numbers of the form $2^{i} 3^{j}$, where $0 \leq i \leq 2$ and $0 \leq j \leq 3$. The sum of all such numbers is $\left(2^{0}+2^{1}+2^{2}\right)\left(3^{0}+3^{1}+3^{2}+3^{3}\right)=7 \cdot 40=280$.
2. Since the terms are in geometric progression we must have

$$
\frac{2 x+4}{x}=\frac{3 x+6}{2 x+4}=\frac{3(x+2)}{2(x+2)}=\frac{3}{2} .
$$

Thus the common ratio is $\frac{3}{2}$, and solving $\frac{2 x+4}{x}=\frac{3}{2}$ yields $x=-8$. The next term is therefore $(-8)\left(\frac{3}{2}\right)^{3}=-27$.
3. The given angles are irrelevant. Let points P and Q be as indicated in the diagram below, and let a, b, c, d, e be the measures of the acute angles at A, B, C, D, E, respectively. Then $\angle E P Q$ is exterior to $\triangle P B D$, so that $\angle E P Q=b+d$. Similarly, $\angle E Q P=a+c$. Hence $a+b+c+d+e=\angle E P Q+$ $\angle E Q P+e$, and this sum is 180° because it is the sum of the angles of $\triangle E P Q$.

4. Since a and b are real, the fact that $1-2 i$ is a root forces the other root to be its conjugate, namely $1+2 i$. Moreover, we know $-\frac{a}{3}$ is the sum of the roots, and $\frac{b}{3}$ is their product. That is,

$$
\begin{aligned}
-\frac{a}{3} & =(1-2 i)+(1+2 i)=2 \\
\frac{b}{3} & =(1-2 i)(1+2 i)=5 .
\end{aligned}
$$

This gives $a=-6$ and $b=15$.
Alternative Solution: Substitute $x=1-2 i$ into $3 x^{2}+a x+b=0$ to obtain

$$
(a+b-9)-(12+2 a) i=0
$$

Hence $a+b-9=0$ and $12+2 a=0$, from which we get $a=-6$ and $b=15$.
5. Let n be the total number of votes cast. Then the problem suggests that

$$
\frac{25+\frac{1}{5}(n-50)}{n}=\frac{1}{4},
$$

which is readily solved to obtain $n=300$.
6. Consider the general situation below, with x, y and points A through E as indicated. Since $\angle B C E=$ 90°, we know $\angle A C B$ and $\angle D C E$ are complementary, and from this it follows that right triangles $\triangle A B C$ and $\triangle D C E$ are similar, with $\triangle D C E$ smaller by a factor of $\frac{y-x}{y}$. Thus the area of $\triangle D C E$ is $\left(\frac{y-x}{y}\right)^{2}$ times that of $\triangle A B C$.

The area of the shaded region is then

$$
\operatorname{Area}(\square A B C D)-\operatorname{Area}(\triangle A B C)-\operatorname{Area}(\triangle D C E)=y^{2}-\frac{x y}{2}-\left(\frac{y-x}{y}\right)^{2} \cdot \frac{x y}{2} .
$$

In our particular instance, the small and large squares have areas 25 and 29. Thus $y=5$ and $|B C|=\sqrt{29}$. The Pythagorean theorem on $\triangle A B C$ gives $x^{2}+y^{2}=|B C|^{2}$, or $x^{2}+5^{2}=29$, which yields $x=2$. Finally then, we set $x=2$ and $y=5$ in the expression above to find that the shaded area is $\frac{91}{5}$.
7. Let $d(n)$ be the number of ways of obtaining a total of at most n when rolling two dice. Then the desired probability is $\frac{1}{216}(d(1)+d(2)+\cdots+d(6))$, since there are $6^{3}=216$ possible rolls of the three dice, and for each value n of the red die there are $d(n)$ valid configurations of the blue dice.

Recall that for $i=1,2, \ldots, 6$ there are $i-1$ ways ways of obtaining a total of i when rolling a pair of 6 -sided dice. Thus for $n=1,2,3, \ldots, 6$, we have $d(n)=\sum_{i=1}^{n}(i-1)$. Thus $d(1)=0, d(2)=1$, $d(3)=1+2=3, d(4)=1+2+3=6, d(5)=1+\cdots+4=10$, and $d(6)=15$. The desired probability is then $\frac{1}{216}(1+3+6+10+15)=\frac{35}{216}$.

Note: Consider the same problem in the more general setting of throwing three m-sided dice. (That is, the problem above is the special case $m=6$.) Since the answer with 6 -sided dice is $\left(6^{2}-1\right) / 6^{3}$, it is tempting to guess that the probability in the case of m-sided dice is $\left(m^{2}-1\right) / m^{3}$. But it turns out this isn't true!

As before, let $d(n)$ be the number of ways of obtaining a total of at most n when rolling two m sided dice. Then we again get $d(n)=\sum_{i=1}^{n}(i-1)$, and this sum can be computed to give the closed-form expression $d(n)=\frac{1}{2} n(n-1)$, valid for $1 \leq n \leq m$. From here we can deduce that $\sum_{n=1}^{m} d(n)=\frac{1}{6} m\left(m^{2}-1\right)$. This counts the number of rolls of three m-sided dice - two blue and one red - such that the red die comes up at least as great as the sum of the blues. Since there are m^{3} rolls in total, the probability of such a roll is $\frac{1}{m^{3}} \cdot \frac{1}{6 m^{2}}=\frac{m^{2}-1}{6 m^{2}}$. This is the correct general
formula! Note that the ' 6 ' appears in the denominator regardless of m. It is just a fluke that the denominator is m^{3} when $m=6$.
8. Upon expanding $(x-2 y+3 z)^{4}$, we obtain the sum of the coefficients simply by setting $x=y=$ $z=1$. Of course, this substitution can equally well be done before expanding. The coefficients therefore sum to $(1-2+3)^{4}=2^{4}=16$.
Alternative Solution: Compute $(x-2 y+3 z)^{4}$ by first squaring $x-2 y+3 z$, and then squaring the result. It's a fair bit of work!
9. Let the square have sides of length x, and let the rectangle have width y and length $3 y$ (all lengths in metres). Since the total perimeter of the two shapes must be 4 , we have $4 x+2(y+3 y)=4$, or simply $x+2 y=1$. Note that $0 \leq x \leq 1$ and $0 \leq y \leq \frac{1}{2}$.

Now the sum of the areas of the shapes is given by

$$
A=x^{2}+3 y^{2}=(1-2 y)^{2}+3 y^{2}=1-4 y+7 y^{2} .
$$

We wish to minimize A subject to the condition that $0 \leq y \leq \frac{1}{2}$. Since A is quadratic in y, its minimum will occur at the average of its roots, namely when $y=\frac{4}{2.7}=\frac{2}{7}$. At this value of y we have $A=\frac{3}{7}$.
10. Every valid arrangement can be obtained as follows: First enter 1 in any of the cells. This can be done in nine ways. There are now precisely four cells in which the 9 can be placed. After doing so, there are seven cells remaining. Simply enter $8,7,6,5,4,3,2$ amongst these cells without restriction. This can be done in $7 \cdot 6 \cdot 5 \cdots \cdot 2 \cdot 1$ ways. There are therefore $9 \cdot 4 \cdot 7$! $=36 \cdot 7$! possible arrangements.

Pairs Relay Solutions

A. Suppose the polygon has n sides. Then the sum of all internal angles is $144 n$ degrees. But the sum of the interior angles of a n-gon is always $180(n-2)$ degrees, so $144 n=180(n-2)$. Solve to get $n=10$. So $\mathrm{A}=10$.
B. If net effect of the stated year-over-year changes is a factor of

$$
\frac{125}{100} \cdot \frac{140}{100} \cdot \frac{80}{100} \cdot \frac{100-\mathrm{A}}{100}=\frac{7(100-\mathrm{A})}{500} .
$$

Since $A=10$, this evaluates to $\frac{63}{50}=\frac{126}{100}$. So the net percent increase is 26%. Thus $B=26$.
C. Observe that $1!=1,2!=2,3!=6,4!=24,5!=120$. After this point, all factorials must end with a 0 . So, unless $B<5$, the desired digit will be the same as the units digit of $1+2+6+24=33$, namely 3 . Indeed, $B=26$, so we get $C=3$.
D. Since $P Q R S$ is a parallelogram, the midpoint of diagonal $P R$ must coincide with the midpoint of diagonal QS. Thus we have $\left(\frac{1}{2}(1+5), \frac{1}{2}(\mathrm{C}+1)\right)=\left(\frac{1}{2}(-1+x), \frac{1}{2}(-2+y)\right)$. Thus $x=7$ and $y=c+3$.

Since C $=3$, we have $\mathrm{D}=x+y=7+\mathrm{C}+3=13$.

Individual Relay Solutions

A. We have $54 \mathrm{~A}=2 \cdot 3^{3} \cdot \mathrm{~A}$. The smallest A for which this is a perfect square is therefore $\mathrm{A}=2 \cdot 3=6$. (Note: An integer is a perfect square if and only if contains only even powers of primes.)
B. Let S be the sum of the original set of numbers and let B be the missing number. Then we have $S / \mathrm{A}=17$ and $(S-\mathrm{B}) /(\mathrm{A}-1)=18$. The first equation gives $S=17 \mathrm{~A}$, and the second can then be solved to yield $B=18-A$.

With $\mathrm{A}=6$ we get $\mathrm{B}=12$.
C. A moment's exploration shows that 1 lies opposite 26 , 2 lies opposite 27 , 3 lies opposite 28 , etc. In general, B and $25+B$ are diametrically opposite for all $1 \leq B \leq 25$.

Since $B=12$, we get $C=25+12=37$.
D. For a given positive integer y, the equation $2 x+3 y=C$ is satisfied for some positive x provided that $\mathrm{C}-3 y$ is an even positive integer. But $\mathrm{C}-3 y$ is positive provided $y<\mathrm{C} / 3$, and $\mathrm{C}-3 y$ is even if and only if C and y are of the same parity. Therefore D is simply the number of integers y with $1 \leq y<\frac{1}{3} \mathrm{C}$ such that y and C are of the same parity.

Since $C=37$, we require odd integers y between 1 and 12 (inclusive). There are only 6 of these ($y=1,3,5,7,9,11$), so $\mathrm{D}=6$.

