

2010-2011
Game Three

SOLUTIONS

Team Question Solutions

1. Let D, N, and Q be the total value of the dimes, nickels, and quarters. Then $D+N+Q=7$ and $D: N: Q=2: 4: 1$. Hence $D=\frac{2}{2+4+1} \cdot 7=2$. Similarly, $N=4$ and $Q=1$. Hence Billy has 20 dimes, 80 nickels, and 4 quarters, for a total of 104 coins.

Alternative Solution: Let d, n, and q be the number of dimes, nickels, and quarters. Then we have the system $\left\{10 d+5 n+25 q=700,10 d=50 q, 10 d=\frac{5}{2} n\right\}$. Solve this system to get $(d, n, q)=$ (20, 80, 4).
2. Divide one half of the hexagon into 6 congruent right-angled triangles, as shown below. Half the hexagon has area 6 , and the shaded area includes 4 of the 6 small triangles. So the shaded area is $6 \cdot \frac{4}{6}=4$.

3. The sum $|P R|+|Q R|$ can be no smaller than the distance from P to Q, and $|P R|+|Q R|=|P Q|$ precisely when R lies on the line segment joining P and Q. So we take R to be the point of intersection of the parabola $y=x^{2}$ and the line that passes through $P=(0,4)$ and $Q=(7,25)$. Thus $R=(x, y)$, where x and y satisfy the system $\left\{y=x^{2}, y=4+3 x\right\}$. Setting $x^{2}=4+3 x$ gives $x=4$, thus $y=x^{2}=16$ and $R=(4,16)$.
4. Imagine that the envelopes that contain the red, blue, and green cards are labelled 1,2 , and 3 , respectively. Then we can denote our guesses by rearrangements of the letters $R B G$. For instance, the arrangement $B R G$ indicates that we guessed that envelopes 1, 2, and 3 contained the blue, red, and green cards, respectively.

There are $3!=6$ possible guesses, corresponding to the $3!$ rearrangements of $R G B$. Of these, notice that only $B G R$ and $G R B$ represent guesses that would result in a "win". So the desired probability is $\frac{2}{6}=\frac{1}{3}$.
Note: This is a very special case of a classic problem in probability theory. The Montmart Problem is usually phrased as follows: If n men check their coats at a restaurant and, upon leaving, their coats are given back randomly, what is the probability that no man will be given his own coat? Surprisingly enough, as n gets larger and larger, this probability approaches $1 / e$, where $e \approx 2.718$ is Euler's constant (i.e. the base of the natural logarithm).
5. Let w be the number of widgets purchased, and let c be the original cost per widget. Then we know that $w c=840$, and $(w+4)(c-7)=840$. Thus $w c=(w+4)(c-7)$, from which we get
$4 c-7 w=28$. Now use $w c=840$ to substitute $c=\frac{840}{w}$. This gives:

$$
\begin{aligned}
4 \cdot \frac{840}{w}-7 w=28 & \Longrightarrow \frac{480}{w}-w=4 \\
& \Longrightarrow w^{2}+4 w-480=0 \\
& \Longrightarrow(w-20)(w+24)=0
\end{aligned}
$$

Thus $w=20$ or $w=-24$. Since w must be positive, we have $w=20$.
6. There are 4 possible circles, as pictured below.

Note: This is a special case of the Apollonius Problem, which asks one to find all circles that are tangent to three given circles. There are always precisely 8 such tangential circles: Each of the three given circles can be chosen to be either inside or outside the tangential circle, leading to $2 \cdot 2 \cdot 2=8$ possibilities. In our case, one of the given circles has degenerated to a point, so "inside" and "outside" are synonymous, and we are left with only $2 \cdot 2=4$ tangential circles.
(See http:
mathworld.wolfram.com\ApolloniusCircle.html for more information.)
7. For conciseness, let us refer to a side of the pentagon as an edge. Clearly every triangle contains either 0,1 , or 2 edges (that is, either 0,1 , or 2 sides of the triangle are edges of the pentagon). We now count these three classes of triangle:

- There are 10 triangles containing no edges.
- For any given edge, there are 4 triangles that contain that edge and no others. Since there are 5 edges, there are $5 \cdot 4=20$ triangles with exactly one edge.
- If a triangle contains two edges, then these edges must be adjacent; and any two adjacent edges are contained in exactly one triangle. So there are 5 such triangles.

Altogether, we have a total of $10+20+5=35$ triangles.
8. To say that the integer N ends with exactly k zeros is to say that 10^{k} is the highest power of 10 dividing N. So we wish to find the highest power of 10 that divides into $N=25!\cdot 24!\cdots 2!\cdot 1$!. To do so, we notice that 10^{k} divides into N if and only if both 2^{k} and 5^{k} divide into N. So let us find
all factors of 5 inside the product that defines N :

$$
\begin{aligned}
N & =25!\cdot 24!\cdot 23!\cdots \cdot 3!\cdot 2!\cdot 1! \\
& =25 \cdot 24^{2} \cdot 23^{3} \cdots 3^{23} \cdot 2^{24} \cdot 1^{25} \\
& =25 \cdots 20^{6} \cdots 15^{11} \cdots 10^{16} \cdots 5^{21} \cdots 1 \\
& =5^{2+6+11+16+21} \cdot(\text { a number not divisible by } 5) .
\end{aligned}
$$

Thus 5^{56} is the highest power of 5 dividing N. Clearly applying the same trick will find at least 56 factors of 2 inside N (in fact, far more), so that 2^{56} also divides N. We conclude that 10^{56} is the highest power of 10 dividing N. Thus N terminates with 56 zeros.
9. By inspection we notice it is impossible to order 23 nuggets. However, it is possible to order 24, 25,26 , or 27 nuggets:

$$
\begin{aligned}
& 24=6 \cdot 4+0 \cdot 9 \\
& 25=4 \cdot 4+1 \cdot 9 \\
& 26=2 \cdot 4+2 \cdot 9 \\
& 27=0 \cdot 4+3 \cdot 9 .
\end{aligned}
$$

But if you can order N nuggets, then surely you can order $N+4 k$ nuggets, for any $k \geq 0$. (Simply add k boxes of 4 nuggets on to your order!). Thus we can order any number N of nuggets of the form $N=24+4 k, 25+4 k, 26+4 k$, or $27+4 k$. Since every integer greater than 23 is of this form, 23 must be the largest number of nuggets that we cannot order.

Note: This is a special case of a more general result, which states that if nuggets come in boxes of sizes a and b, and if the greatest common divisor of a and b is (that is, they share no common factor), then the largest number of nuggets that cannot be ordered is $a b-a-b$. In our case, $a=4$ and $b=9$, so $a b-a-b=23$.
10. First consider the horizontal matchsticks in a large pyramid of n levels: From top to bottom, we see rows containing $1,3,5,7, \ldots, 2 n-1,2 n-1$ horizontal sticks. Now consider the vertical matchsticks. From top to bottom, we see rows containing $2,4,6,8, \ldots, 2 n$ vertical sticks. So the total number of matchsticks in a pyramid of n levels is In total, there are

$$
\begin{aligned}
& (1+3+5+\cdots+(2 n-1)+(2 n-1))+(2+4+6+\cdots+2 n) \\
& =(1+2+3+\cdots+2 n)+(2 n-1) \\
& =\frac{2 n(2 n+1)}{2}+(2 n-1) \\
& =2 n^{2}+3 n-1 .
\end{aligned}
$$

Setting $n=100$ gives 20299 matchsticks in total.

Pairs Relay Solutions

A. We quickly compute $a_{0}=1, a_{1}=\frac{1}{2}, a_{2}=\frac{2}{3}, a_{3}=\frac{3}{5}$, and so on, until we get $a_{8}=\frac{34}{55}$. (This comes very quickly if you notice that the numerators and denominators of the a_{i} are successive Fibonacci numbers.) Thus $\mathrm{A}=55$
B. Since there are A girls in total, and 33 are brunette, there are $A-33$ blondes. Of these, 12 are blue-eyed, leaving A - 45 brown-eyed blondes. But there are 35 brown-eyed girls in total, so there must be $35-(A-45)=80-$ A brown-eyed brunettes. Thus $B=80-A$, and with $A=55$ we get $B=25$.
C. Since $|S T|=\mathrm{B}$, and P divides $S T$ in the ratio 2:3, we have $|A P|=\frac{2}{5} \mathrm{~B}$. Since Q divides $S T$ in the ratio 3:4 we have $|A Q|=\frac{3}{7} \mathrm{~B}$. Thus $\mathrm{C}=|P Q|=|A Q|-|A P|=\frac{3}{7} \mathrm{~B}-\frac{2}{5} \mathrm{~B}=\frac{1}{35} \mathrm{~B}$. Set $\mathrm{B}=25$ to get C $=\frac{25}{35}=\frac{5}{7}$.
D. Let x, h, and r be as indicated in the diagram below. Then $|P Q|=2 r,|R S|=2 x$, and $x^{2}+h^{2}=r^{2}$. We are given $|P Q|=14$, so $r=7$. We also know $|R S|=\mathrm{C}|P Q|=7 \mathrm{C}$ The area of trapezoid $P Q R S$ is $\frac{1}{2}(|P Q|+|R S|) h$, where h is as indicated in the figure below.

Individual Relay Solutions

A. Let the legs of the triangle be of lengths x and y. Then we are given $x^{2}+y^{2}+\mathrm{A}^{2}=128$, and Pythagorean Theorem gives $x^{2}+y^{2}=\mathrm{A}^{2}$. Hence $2 \mathrm{~A}^{2}=128$, which yields $\mathrm{A}=8$.
B. The greatest number of coins you could withdraw without getting at least 11 pennies or A dimes would be $10+(A-1)=A+9$. (That is, 10 pennies and $A-1$ dimes.) Thus $B=A+10=18$.
C. Note that the radii of the semicircles are in the ratio $1: 2: 3$, so their areas are in the ratio $1: 4: 9$. Since the large semicircle has area B, the small and medium semicircles have areas $\frac{1}{9} B$ and $\frac{4}{9} B$, respectively. Thus the shaded area is $C=\frac{4}{9} B-\frac{1}{9} B=\frac{1}{3} B$. With $B=18$, this gives $C=6$.
D. The equation $|x+\mathrm{C}|=2|x-\mathrm{C}|$ holds if and only if $x+\mathrm{C}=2(x-\mathrm{C})$, or $x+\mathrm{CC}=-2(x-\mathrm{C})$. Solving these two equations in turn gives $x=3 \mathrm{C}$ and $x=\frac{1}{3} \mathrm{C}$. Thus $\mathrm{D}=3 \mathrm{C}+\frac{1}{3} \mathrm{C}=\frac{10}{3} \mathrm{C}$. With $C=6$ we have $D=20$.

