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Team Question Solutions

1. Let D, N, and Q be the total value of the dimes, nickels, and quarters. Then D + N + Q = 7 and
D : N : Q = 2 : 4 : 1. Hence D = 2

2+4+1 · 7 = 2. Similarly, N = 4 and Q = 1. Hence Billy has 20
dimes, 80 nickels, and 4 quarters, for a total of 104 coins.

Alternative Solution: Let d, n, and q be the number of dimes, nickels, and quarters. Then we have
the system {10d + 5n + 25q = 700, 10d = 50q, 10d = 5

2 n}. Solve this system to get (d, n, q) =

(20, 80, 4).

2. Divide one half of the hexagon into 6 congruent right-angled triangles, as shown below. Half the
hexagon has area 6, and the shaded area includes 4 of the 6 small triangles. So the shaded area is
6 · 4

6 = 4.

3. The sum |PR|+ |QR| can be no smaller than the distance from P to Q, and |PR|+ |QR| = |PQ|
precisely when R lies on the line segment joining P and Q. So we take R to be the point of inter-
section of the parabola y = x2 and the line that passes through P = (0, 4) and Q = (7, 25). Thus
R = (x, y), where x and y satisfy the system {y = x2, y = 4 + 3x}. Setting x2 = 4 + 3x gives x = 4,
thus y = x2 = 16 and R = (4, 16).

4. Imagine that the envelopes that contain the red, blue, and green cards are labelled 1, 2, and 3,
respectively. Then we can denote our guesses by rearrangements of the letters RBG. For instance,
the arrangement BRG indicates that we guessed that envelopes 1, 2, and 3 contained the blue, red,
and green cards, respectively.

There are 3! = 6 possible guesses, corresponding to the 3! rearrangements of RGB. Of these, notice
that only BGR and GRB represent guesses that would result in a “win”. So the desired probability
is 2

6 = 1
3 .

Note: This is a very special case of a classic problem in probability theory. The Montmart Problem
is usually phrased as follows: If n men check their coats at a restaurant and, upon leaving, their
coats are given back randomly, what is the probability that no man will be given his own coat?
Surprisingly enough, as n gets larger and larger, this probability approaches 1/e, where e ≈ 2.718
is Euler’s constant (i.e. the base of the natural logarithm).

5. Let w be the number of widgets purchased, and let c be the original cost per widget. Then we
know that wc = 840, and (w + 4)(c − 7) = 840. Thus wc = (w + 4)(c − 7), from which we get



4c− 7w = 28. Now use wc = 840 to substitute c = 840
w . This gives:

4 · 840
w
− 7w = 28 =⇒ 480

w
− w = 4

=⇒ w2 + 4w− 480 = 0

=⇒ (w− 20)(w + 24) = 0.

Thus w = 20 or w = −24. Since w must be positive, we have w = 20.

6. There are 4 possible circles, as pictured below.

Note: This is a special case of the Apollonius Problem, which asks one to find all circles that are
tangent to three given circles. There are always precisely 8 such tangential circles: Each of the three
given circles can be chosen to be either inside or outside the tangential circle, leading to 2 · 2 · 2 = 8
possibilities. In our case, one of the given circles has degenerated to a point, so “inside” and
“outside” are synonymous, and we are left with only 2 · 2 = 4 tangential circles.
(See http:\\mathworld.wolfram.com\ApolloniusCircle.html for more information.)

7. For conciseness, let us refer to a side of the pentagon as an edge. Clearly every triangle contains
either 0, 1, or 2 edges (that is, either 0, 1, or 2 sides of the triangle are edges of the pentagon). We
now count these three classes of triangle:

• There are 10 triangles containing no edges.

• For any given edge, there are 4 triangles that contain that edge and no others. Since there are
5 edges, there are 5 · 4 = 20 triangles with exactly one edge.

• If a triangle contains two edges, then these edges must be adjacent; and any two adjacent
edges are contained in exactly one triangle. So there are 5 such triangles.

Altogether, we have a total of 10 + 20 + 5 = 35 triangles.

8. To say that the integer N ends with exactly k zeros is to say that 10k is the highest power of 10
dividing N. So we wish to find the highest power of 10 that divides into N = 25! · 24! · · · 2! · 1!. To
do so, we notice that 10k divides into N if and only if both 2k and 5k divide into N. So let us find



all factors of 5 inside the product that defines N:

N = 25! · 24! · 23! · · · · 3! · 2! · 1!

= 25 · 242 · 233 · · · 323 · 224 · 125

= 25 · · · 206 · · · 1511 · · · 1016 · · · 521 · · · 1
= 52+6+11+16+21 · (a number not divisible by 5).

Thus 556 is the highest power of 5 dividing N. Clearly applying the same trick will find at least
56 factors of 2 inside N (in fact, far more), so that 256 also divides N. We conclude that 1056 is the
highest power of 10 dividing N. Thus N terminates with 56 zeros.

9. By inspection we notice it is impossible to order 23 nuggets. However, it is possible to order 24,
25, 26, or 27 nuggets:

24 = 6 · 4 + 0 · 9
25 = 4 · 4 + 1 · 9
26 = 2 · 4 + 2 · 9
27 = 0 · 4 + 3 · 9.

But if you can order N nuggets, then surely you can order N + 4k nuggets, for any k ≥ 0. (Simply
add k boxes of 4 nuggets on to your order!). Thus we can order any number N of nuggets of the
form N = 24 + 4k, 25 + 4k, 26 + 4k, or 27 + 4k. Since every integer greater than 23 is of this form,
23 must be the largest number of nuggets that we cannot order.

Note: This is a special case of a more general result, which states that if nuggets come in boxes of
sizes a and b, and if the greatest common divisor of a and b is 1 (that is, they share no common
factor), then the largest number of nuggets that cannot be ordered is ab− a− b. In our case, a = 4
and b = 9, so ab− a− b = 23.

10. First consider the horizontal matchsticks in a large pyramid of n levels: From top to bottom, we
see rows containing 1, 3, 5, 7, . . . , 2n− 1, 2n− 1 horizontal sticks. Now consider the vertical match-
sticks. From top to bottom, we see rows containing 2, 4, 6, 8, . . . , 2n vertical sticks. So the total
number of matchsticks in a pyramid of n levels is In total, there are

(1 + 3 + 5 + · · ·+ (2n− 1) + (2n− 1)) + (2 + 4 + 6 + · · ·+ 2n)

= (1 + 2 + 3 + · · ·+ 2n) + (2n− 1)

=
2n(2n + 1)

2
+ (2n− 1)

= 2n2 + 3n− 1.

Setting n = 100 gives 20299 matchsticks in total.



Pairs Relay Solutions

A. We quickly compute a0 = 1, a1 = 1
2 , a2 = 2

3 , a3 = 3
5 , and so on, until we get a8 = 34

55 . (This comes
very quickly if you notice that the numerators and denominators of the ai are successive Fibonacci
numbers.) Thus A = 55

B. Since there are A girls in total, and 33 are brunette, there are A − 33 blondes. Of these, 12 are
blue-eyed, leaving A− 45 brown-eyed blondes. But there are 35 brown-eyed girls in total, so there
must be 35− (A− 45) = 80− A brown-eyed brunettes. Thus B = 80− A, and with A = 55 we get
B = 25.

C. Since |ST| = B, and P divides ST in the ratio 2 : 3, we have |AP| = 2
5B. Since Q divides ST in the

ratio 3 : 4 we have |AQ| = 3
7B. Thus C = |PQ| = |AQ| − |AP| = 3

7B−
2
5B = 1

35B. Set B = 25 to get
C = 25

35 = 5
7 .

D. Let x, h, and r be as indicated in the diagram below. Then |PQ| = 2r, |RS| = 2x, and x2 + h2 = r2.
We are given |PQ| = 14, so r = 7. We also know |RS| = C|PQ| = 7C The area of trapezoid PQRS
is 1

2 (|PQ|+ |RS|)h, where h is as indicated in the figure below.

P Q

RS

h

x

r



Individual Relay Solutions

A. Let the legs of the triangle be of lengths x and y. Then we are given x2 + y2 + A2 = 128, and
Pythagorean Theorem gives x2 + y2 = A2. Hence 2A2 = 128, which yields A = 8.

B. The greatest number of coins you could withdraw without getting at least 11 pennies or A dimes
would be 10 + (A− 1) = A+ 9. (That is, 10 pennies and A− 1 dimes.) Thus B = A+ 10 = 18.

C. Note that the radii of the semicircles are in the ratio 1 : 2 : 3, so their areas are in the ratio 1 : 4 : 9.
Since the large semicircle has area B, the small and medium semicircles have areas 1

9B and 4
9B,

respectively. Thus the shaded area is C = 4
9B−

1
9B = 1

3B. With B = 18, this gives C = 6.

D. The equation |x + C| = 2|x − C| holds if and only if x + C = 2(x − C), or x + CC = −2(x − C).
Solving these two equations in turn gives x = 3C and x = 1

3C. Thus D = 3C+ 1
3C = 10

3 C. With
C = 6 we have D = 20.


