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Team Question Solutions

1. Clearly there’s nothing special about the number 2011 in this context. The question is
really asking about the relative sizes of nn+1 and (n + 1)n.

Before digging in to any deep analysis it’s helpful to have some empirical evidence at
hand. This will let us make a (very educated) guess. For n = 1, 2, 3, 4 the computations
involve only simple mental arithmetic:

n nn+1 (n + 1)n

1 1 2
2 8 9
3 81 64
4 1024 625

For n = 5 the numbers get uncomfortably large, but we can easily make an estimate:
We have 56 = 52 · 54 = 25 · 625, whereas 65 = 62 · 63 = 36 · 216 = 12 · 648. So

56

65 =
25 · 625
12 · 648

≈ 2.

That is, 56 is roughly twice as large as 65.

The evidence above strongly suggests that nn+1 is larger than (n + 1)n, for n > 2,
with the gap between these numbers getting ever larger as n increases. Therefore we
conjecture that 20102011 is bigger than 20112010.

Note: Our conjecture that n(n + 1) > (n + 1)n for n > 2 can be proved without much
difficulty. By the binomial theorem, we have

(n + 1)n = nn +

(
n
1

)
nn−1 +

(
n
2

)
nn−2 +

(
n
3

)
nn−3 + · · ·+

(
n

n− 1

)
n + 1

= 2nn +
n

∑
k=2

(
n
k

)
nn−k.

But (
n
k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)
k!

<
nk

2
for all k ≥ 2, so each of the n− 1 terms in the summation above is less than than nn/2.
So we have

(n + 1)n < 2nn + (n− 1)
nn

2
=

nn(n + 3)
2

. (∗)

For n ≥ 3 we have (n + 3)/2 ≥ n, and therefore the above inequality gives

(n + 1)n < nn+1,



as desired.

In fact, our estimate (∗) yields something much stronger: Since (n + 3)/2 ≈ n/2 for
large n, we find that (n + 1)n is at most roughly one half of nn+1. But we can be much
more precise! The ratio between the ratio between nn+1 and (n + 1)n is

nn+1

(n + 1)n =
n

(1 + 1
n )

n
.

Now recall that limn→∞(1 + 1
n )

n = e, where e ≈ 2.718 is Euler’s constant. Thus nn+1 is
approximately n/e times as large as (n + 1)n, for large n. The fact that e lies between 2
and 3 explains why 23 < 32 but 34 > 43.

2. The desired area is equal to the total area of the four semicircles, plus the area of the
rectangle, less the area of the circumscribing circle.

The two semicircles with diameter 3 together form a circle with area π(3
2)

2 = 9π/4,
while the semicircles with diameter 4 have total area π(2)2 = 4. The area of the rect-
angle is 3 · 4 = 12.

By Pythagorean theorem, the circumscribing circle has diameter
√

32 + 42 = 5, so its
area is π(5

2)
2 = 25π/4.

Thus the desired area is
9π

4
+ 4π + 12− 25π

4
= 12.

Note: The fact that the shaded area equals the area of the original rectangle is no coin-
cidence: it will always be so, independent of the dimensions of the rectangle. (Proof:
Run the calculation above with 3 and 4 replaced by a and b.) This simple but pleasing
result is a variation on the lune of Hippocrates.

3. For real numbers a and b, we can have ab = 1 only if a = ±1 or b = 0. Therefore
xx2+2011x+2012 = 1 requires either x = ±1 or x2 + 2011x + 2012 = 0. A quick check
shows that both x = ±1 satisfy the equation. Moreover, the quadratic x2 + 2011x +

2012 has a positive discriminant (namely 20112 − 4 · 2011 > 0), so it has two distinct
real roots. Either of these values of x must be solutions to the original equation, since
x0 = 1 for every x ∈ R. Therefore there are 4 solutions in total.

Note: Clearly a0 = 1 and 1b = 1 for all a, b ∈ R. However, while (−1)b = 1 is possible,
we know this isn’t true for all b. For instance, it holds for b = 2 and b = 2

3 , but fails
for b = 3 and b = 1

3 . This begs a question: For exactly what values of b do we have
(−1)b = 1?

The usual high school laws of exponents show that (−1)b = 1 whenever b is a fraction
of the form p/q, where p is even and q is odd. But what about (−1)

√
2? Is this equal to



1? Or −1? Or something else? More generally, what does it mean to have an irrational
exponent? We’re happy to write “3π”, and our calculator will assign a value to this
expression, but what does it mean? Food for thought!

(As a tease: It turns out that (−1)
√

2 has infinitely many equally valid meanings! How-
ever, without further instruction, a mathematician would assume that this notation
stands for the single complex number cos(π

√
2) + i sin(π

√
2), where i =

√
−1.)

4. Label the various points as in the diagram below.

B(3, 6)

Z(1, 2)

A(0, 0) Y (5, 0) C(7, 0)

XP

Line ZC has equation y = −1
3(x − 7) while BY has equation y = −3(x − 5). These

lines meet at P, so we solve

{y = −1
3(x− y), y = −3(x− 5)}

to find that P = (19
4 , 3

4). Thus AP has equation y = 3
19 x. But X lies on AP and also on

line BC, which has equation y = −3
2(x− 7). So we solve

{y = 3
19 x, y = −3

2(x− 7)}

to find the coordinates of X, namely (19
3 , 1).

Alternative solution: Label the diagram as above. Since AX, BY, and CZ are con-
current at P, Ceva’s Theorem gives |BZ|

|ZA|
|AY|
|YC|

|CX|
|XB| = 1. But |BZ|

|ZA| = 2 and |AY|
|YC| =

5
2 , so

|CX|
|XB| =

1
5 . Thus X = 1

6(3, 6) + 5
6(7, 0) = (19

3 , 1).

5. Since α, β, γ satisfy 2x3 + 2x2 − 3x− 1 = 0, their reciprocals 1
α , 1

β , 1
γ must satisfy

2
(1

x

)3
+ 2
(1

x

)2
− 3
(1

x

)
− 1 = 0.

Multiply by x3 to find that these same values of x are roots of the cubic polynomial

2 + 2x− 3x2 − x3 = 0.



(Any cubic polynomial with roots 1
α , 1

β , and 1
γ must be a constant multiple of this one.)

Alternative solution: Factor the given polynomial as (x − 1)(2x2 + 4x + 1). Clearly
x = 1 is a root, and the quadratic formula also provides roots x = 1

2(2±
√

2). The
reciprocals of these roots are 1 and 2±

√
2. So the desired cubic is

(x− 1)(x− 2 +
√

2)(x− 2−
√

2) = (x− 1)(x2 + 4x + 2) = x3 + 3x2 − 2x− 2.

6. Label the corners of the square as indicated below and let x = |QR| = |PS| be the side
length of the square.

A

B

C

P Q

RS
x

x

Then4QRC and4ASP are similar to4ABC, so we have

|QR|
|RC| =

|AS|
|SP| =

|AB|
|BC| .

That is,

x
|RC| =

|AS|
x

=
1
2

.

So we have |RC| = 2x and |AS| = x/2. But

|AS|+ |SR|+ |RC| = |AC| =
√

22 + 12 =
√

5

by Pythagorean theorem applied to4ABC. Thus

x
2
+ x + 2x =

√
5.

This gives x = 2
√

5/7, so that the area of the square is x2 = 20/49.

7. Let the common sum of the rows, columns, and diagonals be S and let the entry in the
central square be x. Note that the sum of all entries in the the square must be 3S, since
we can think of this as adding together the 3 rows, each of whose entries sum to S.
Thus

3S = 5 + 17 + 29 + 47 + 59 + 71 + 89 + 101 + 113 = 531 =⇒ S = 177.



Similarly, adding together the two diagonals and the central row gives 3S. But we must
obtain the same result by adding the first and third row together along with 3 copies
of the central square. Thus

3S = 2S + 3x

It follows that 3x = S = 177, so x = 59.

Note: This method shows that the central square in any 3× 3 magic square must be 1
9

of the sum all entries. That is, the central entry is the average of all 9 entries.

The particular magic square considered in this question was discovered by Rudolf
Ondrejka. What makes it particularly interesting is that all of its entries are prime
numbers! It can be completed as follows:

71 5 101
89 59 29
17 113 47

8. Each possible distribution of gifts corresponds with a sequence of four J’s and four M’s
in some order. For instance, J JMJJMMM corresponds with Santa giving two presents
to Jenny, then giving one to Mike, then two to Jenny, then three to Mike. The total
number of ways the presents could be distributed is the number of such sequences,
which is (8

4) = 70. (Of 8 positions in the sequence, choose 4 in which to put the J’s.)

We need to know how many of these sequences have the property that, as we read from
left to right, the number of M’s we encounter up to any point is no greater than the
number of J’s we have encountered to that point. This is a fairly restrictive condition,
so we should be able to count these “by hand” with a little bit of organized thinking.

Clearly any such sequence must start with a J and end with an M. There are 5 se-
quences that begin with JM (i.e. are of the form JM · · ·M), namely:

JMJJ JMMM JMJJMJMM JMJJMMJM JMJMJJMM JMJMJMJM

There are also 5 sequences that begin with J JM:

J JMJJMMM JJMJMJMM JJMJMMJM JJMMJJMM JJMMJMJM

There are only 3 sequences beginning with J J JM:

J J JMJMMM JJJMMJMM JJ JMMMJM

And finally there is 1 sequence beginning with J J J JM, namely J J J JMMMM. So, alto-
gether there are 14 valid sequences out of 70 possible sequences, resulting in a proba-
bility of 14

70 = 1
5 .



Alternative solution: A more elegant approach is to notice that every distribution of
gifts corresponds with a path in the integer grid, as follows: Starting at (0, 0), we move
right one unit whenever Jenny is given a gift, and up one unit whenever Mike is given
a gift. After all the gifts are given, we find ourselves at (4, 4). Moreover, Jenny stayed
ahead of Mike the whole time if and only our path never ventured above the line y = x.
For instance, the distribution JMJJMJMM corresponds with the path shown below:

y = x

0

1

3 42

2

3

4

1

Let N(a, b) be the number of paths from (0, 0) to (a, b) that do not go above the line
y = x. Then the problem comes down to determining N(4, 4).

This can be done quickly by recording the values N(a, b) on the lattice itself in the
following recursive manner: First, it is sensible to let N(0, 0) = 1, so we write a “1”
at the origin. Clearly N(a, b) = 0 if the point (a, b) is above y = x or below the x-
axis, so we write “0” at all such lattice points. Now we repeatedly use the fact that
N(a, b) = N(a − 1, b) + N(a, b − 1), which is clearly true since a path can only get
to (a, b) by stepping right from (a − 1, b) or up from (a, b − 1). Thus, on the grid,
we obtain the value at point by adding the numbers one unit left and one unit down
(provided both of these are available). Doing so yields the following array:

1 2

1 1 1 1 1

0 0 0 0 0

0

0

0

0

0

0

0

0

3 4

5 9

14

2

14

50

0

So we see that N(4, 4) = 14, as before. Notice that this method allows us to (almost
instantly) compute N(5, 5) = 42 by filling in a few more numbers on our grid.

Note: If, instead, Santa had n presents each for Jenny and Mike, then the probability
of Jenny staying ahead of Mike turns out to be 1

n+1 . To see this requires a some tools



for handling the recursive nature of this problem. But the necessary techniques are
completely elementary and worthy of investigation! Your starting point should be to
look into Catalan numbers. Briefly, the n-th Catalan number is given by the formula
Cn = 1

n+1(
2n
n ). This is the number of paths from (0, 0) to (n, n) that do not go above

y = x. (Using the notation above, we have, Cn = N(n, n).) The Catalan numbers are
remarkably ubiquitous in mathematics, in that they count a wide variety of interesting
objects. For instance, there are Cn ways of dissecting a regular n-gon into triangles by
drawing diagonals.

9. Clearly any pass-code can either involve either 0, 1, or 2 instances of buttons being
pressed two at a time. There are clearly 5! possible pass-codes with 0 simultane-
ous pressings. There are (5

2) · 4! codes that involve one pair of simultaneous buttons:
Choose the pair of buttons in (5

2) ways, and now treat this as a single button to leave 4
buttons that can be arranged in 4! ways. Finally, there are (5

4) · 3 · 3! codes that involve
two pairs of simultaneous buttons, seen as follows: First choose 4 buttons of 5 to con-
stitute the pairs. Then pair these up in any of 3 ways (e.g. {A, B, C, D} can be paired as
{AB, CD}, {AC, BD} or {AD, BC}). Now treat the pairs as single buttons, so we are
left with 3 buttons that can be arranged in 3! ways.

Altogether, there are

5! +
(

5
2

)
· 4! +

(
5
4

)
· 3 · 3! = 450

possible pass-codes.

10. The given rules for creating the (two) children of a given fraction are easily reverted
to yield a rule that produces the (unique) parent of a given fraction. In particular, the
parent of a/b is a/(b− a) if a < b, and (a− b)/b if b < a. (We can only have a = b
except when a = b = 1.)

Thus to determine the level of 1001
2011 , we simply count how many times we must apply

this rule before we obtain 1
1 , the root of the tree. It’s best to think of the parent rule

as “subtract small from big”. That is, if the numerator is bigger than the denominator,
then subtract the denominator from the numerator; otherwise, do the reverse.

Applying the rule successively yields the following chain of fractions:

1001
2011

→ 1001
1010

→

b1001/9c = 111 iterations︷ ︸︸ ︷
1001

9
→ 992

9
→ 983

9
→ · · · → 2

9
→ 2

7
→ 2

5
→ 2

3
→ 2

1
→ 1

1

We applied the “parent rule” a total of 2 + 111 + 5 = 118 times to get from 1001
2011 to 1

1 . It
follows that 1001

2011 is at level 119 in the tree.



Note: This “tree of fractions” is known as the Calkin-Wilf tree. It has an absolutely
fascinating property: Every positive fraction (in lowest terms) appears once, and only
once, in the tree! This is stunning, because it allows us to easily list all of the fractions,
as one might do in a phone directory. (For instance, start at the bottom of the tree
and work upwards, reading left to right.) Being able to list the fractions is somewhat
counter-intuitive, since on the number line there are an infinite number of fractions
“between” any two given fractions!

The Calkin-Wilf tree is a slight modification of the Stern-Brocot tree, which is itself (very)
closely related to the Farey sequence. These objects have many other fascinating prop-
erties aside from the one mentioned above.

Pairs Relay Answer Key

A. 4

B. −4

C. 10

D. 5

Individual Relay Answer Key

A. 5

B. 8

C. 5

D. 12


