

2011-2012
Game Three

SOLUTIONS

Team Questions

1. Let x be the total number of people in line (including the observant man). Then $x=$ $1+\frac{5}{6} x+\frac{1}{7} x$. Solve for x to get $x=42$.
2. Let ℓ be the length of the ladder. Then the base of the ladder is originally $\ell-8$ feet from the foot of the wall, so Pythagorean theorem gives $(\ell-8)^{2}+12^{2}=\ell^{2}$. Solve for ℓ to get $\ell=13$.
3. There are 9 one-digit palindromes (namely $1,2, \ldots, 9$), and also 9 two-digit palindromes (namely $11,22, \ldots, 99$). There are $9 \cdot 10=90$ three digit palindromes, since the first digit may be 1 through 9 and the second can be 0 through 9 , while the third digit is the same as the first. Similarly, there are 90 four-digit palindromes, since the first two digits can be chosen in $9 \cdot 10=90$ ways, and the final two digits are then determined. Thus there are $9+9+90+90=198$ palindromes less than 100000 altogether.
4. Let the small circles each have radius 1 , so that their total area is 7π. Then the large circle has radius 3 and area 9π. The desired ratio is therefore $7 \pi / 9 \pi=7 / 9$.
5. Let points A through E and P through T be as indicated in the figure below. Then summing the interior angles of the five triangles $\triangle T B D, \triangle P C E, \triangle Q D A, \triangle R E B$ and $\triangle S A C$ yields twice the desired sum, plus the sum of the interior angles of pentagon $P Q R S T$. Letting x be the desired sum, we therefore have $5 \cdot 180=2 x+3 \cdot 180$. Therefore $x=180^{\circ}$.

6. Without loss of generality, assume Alice walks at $1 \mathrm{~km} / \mathrm{h}$ and suppose Alice and Bob have each walked for x hours when they meet at 11am. In those first x hours, Bob covers the 4 km of trail that Alice will walk between 11am and 3pm. His speed is therefore $\frac{4}{x}$ km / h. But in the 9 hours between 11am to 8 pm , Bob will cover the $x \mathrm{~km}$ of trail that Alice walked between sunrise and 11am, making his speed $\frac{x}{9}$. Setting $\frac{4}{x}=\frac{x}{9}$ yields $x=6$, so we conclude that sunrise was 6 hours before 11am.
7. Let $S_{\text {odd }}=a_{1}+a_{3}+a_{5}+\cdots+a_{2011}$ and $S_{\text {even }}=a_{2}+a_{4}+a_{6}+\cdots+a_{2012}$. Since $a_{i}=$
$a_{i+1}-2$, we have

$$
\begin{aligned}
S_{\text {odd }} & =a_{1}+a_{3}+a_{5}+\cdots+a_{2011} \\
& =\left(a_{2}-2\right)+\left(a_{4}-2\right)+\left(a_{6}-2\right)+\cdots+\left(a_{2011}-2\right) \\
& =a_{2}+a_{4}+a_{6}+\cdots a_{2012}-2 \cdot 1006 \\
& =S_{\text {even }}-2 \cdot 1006
\end{aligned}
$$

But we also know $S_{\text {even }}+S_{\text {odd }}=10000$, and it follows that $S_{\text {even }}=6006$.
8. A product of integers is odd if and only if each of its factors is odd. Since there are 5 odd numbers in $\{1,2,3, \ldots, 10\}$, the probability of an odd product is

$$
\frac{5 \cdot 4 \cdot 3}{10 \cdot 9 \cdot 8}=\frac{1}{12}
$$

The probability of an even product is therefore $1-\frac{1}{12}=\frac{11}{12}$.
9. Let α be the number chosen by your friend. Here is an mechanism to guess the correct value of α in 14 (or fewer) guesses:

- First guess is 14 .
- If $\alpha=14$, you win in one guess. Done!
- If $\alpha<14$, proceed to guess $1,2,3, \ldots, 13$, in order. You are guaranteed to find α by doing so, but this may require 13 additional guesses. Therefore you will find α in a total of at most $1+13=14$ guesses. Done!
- If $\alpha>14$, move to the next step.
- You've made 1 guess so far. Next guess is $27=14+13$.
- If $\alpha=27$, you win in a total of two guesses. Done!
- If $\alpha<27$, proceed to guess $15,16,17, \ldots, 26$, in order. You are guaranteed to find α in a total of at most $2+12=14$ guesses. Done!
- If $\alpha>27$, move to the next step.
- You've made 2 guesses so far. Next guess is $39=14+13+12$.
- If $\alpha=39$, you win in a total of three guesses. Done!
- If $\alpha<39$, proceed to guess $28,29,30, \ldots, 38$, in order. You are guaranteed to find α in a total of at most $3+11=14$ guesses. Done!
- If $\alpha>39$, move to the next step.

Continue on in this pattern, "forward guessing" and then "backfilling" if your guess was too high. (Your next forward guess is $50=14+13+12+11$, etc.) Since $14+13+12+$
$\cdots+3+2+1>100$, you are guaranteed to make a forward guess that is at least as big as α in 14 or fewer steps. And, by design, the backfilling stage will never push you over a total of 14 guesses.
Now that we have see that it is possible to guarantee a win in 14 or fewer guesses, we must prove that it is not possible to guarantee a win in fewer guesses. (That is, 14 is the best we can do.) This is an instrumental part of a complete solution, but the analysis is a very good logical exercise and it is left to you to work through the details on your own.

Note: Of course, there is nothing special about 100. If you were instead trying to guess a number between 1 and n (according to the same rules), then a similar analysis shows that you would need at most k guesses, where k is the smallest positive integer such that

$$
1+2+3+\cdots+k \geq n
$$

Using $1+2+\cdots+k=\frac{1}{2} k(k+1)$, this inequality can be rewritten as $k^{2}+k-2 n \geq 0$. The quadratic formula then yields

$$
k=\left\lceil\frac{-1+\sqrt{1+8 n}}{2}\right\rceil
$$

As usual, $\lceil x\rceil$ (the "ceiling" of x) denotes the least integer greater than or equal to x.

Pairs Relay

P-A. There are 6 possible arrangements: TEST, TSET, ETST, STET, TETS, and TSTE.
P-B. The equation $3 x+4 y=36$ has exactly 4 nonegative integer solutions, namely $(12,0)$, $(8,3),(4,6)$, and $(0,9)$.

P-C. Multiply the equations $x y=1, y z=9$, and $z x=4$ to get $(x y z)^{2}=36$. Since x, y, z are positive, obtain $x y z=6$.

P-D. Let $x=1 / D$ so that the equation becomes

$$
\frac{1}{x(1+x)}=\frac{1}{\mathrm{C}(\mathrm{C}-1)}
$$

Provided $C-1$ is positive, it follows that $x=C-1$. Thus $D=1 / x=1 /(C-1)=1 / 5$.

Individual Relay

I-A. Divide the region into triangles and calculate areas as usual, or calculate the unshaded area (which works out to 26) and subtract from the area of the rectangle (which is $6 \cdot 8=$ 48).

I-B. With $\mathrm{A}=22$, the average of $\{1,7,11,19, \mathrm{~A}\}$ is $x=\frac{1}{5}(1+7+11+19+22)=12$. Since the average of $x-1, x$ and $x+1$ is x, adding these numbers to a set with average x does not affect that average. So the average remains 12 .

I-C. Complete the square to write $x^{2}+6 x+B=(x+3)^{2}+(B-9)$. Clearly this is minimized when $x+3=0$, and the minimum value is $\mathrm{B}-9=12-9=3$.

I-D. The product simplifies to

$$
\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdots \frac{2 \mathrm{C}}{2 \mathrm{C}-1} \cdot \frac{2 \mathrm{C}+1}{2 \mathrm{C}}=\frac{2 \mathrm{C}+1}{2}
$$

Setting C $=3$ yields $7 / 2$.

