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Team Question Solutions

1. As Angela passes the finish line, Bev has run 8km and Clara has run 6km. So Clara
runs 6

8 = 3
4 as fast as Clara. In the time it takes Clara has run her last 2km, Clara gets

2 · 3
4 = 3

2km closer to the finish, leaving her 4− 3
2 = 5

2km behind Clara.

2. Suppose there are initially F trees in the forest, and suppose Woody removes T trees.
After Woody is done, there are 0.99F− T oak trees in the forest, and F− T trees in total.
We are told that

0.99F− T
F− T

= 0.98.

Rearranging gives 0.01F = 0.02T, so T
F = 1

2 . That is, Woody removed precisely 50% of
the trees in the forest.

Note: The actual number of trees in the forest is immaterial, so there is no loss by
simply assuming the forest starts with 100 trees, 99 of these being oak. Then solve
99−T

100−T = 0.98 to find that Woody cut T = 50 of the 100 trees, or 50%..

3. For ease in terminology, let us refer to any valid configuration of numbers inside the
grid simply as a square. Note that each row and column of a square must contain the
numbers 1,2 and 3 in some order. The key to quick counting is to notice that rearrang-
ing the rows and/or columns of a square yields another square. In this manner, every
square can be transformed into a square in which 1,2,3 appear in order along the first
row and first column. But there is only one such square, namely

1 2 3
2 3 1
3 1 2

.

So to count squares we simply have to find the number of different rearrangements of
this particular square! There are 3! = 6 ways to arrange the rows. Each such arrange-
ment yields a distinct first column, and for any of these arrangements we may further
swap the 2nd and 3rd columns. This gives a total of 3! · 2 = 12 possible squares.

Note: Configurations of this type of known as Latin squares, and have been studied
for centuries. Counting Latin squares of arbitrary size is very difficult, but the 3× 3
case is small enough that any “organized” method of counting will quickly lead to the
correct answer. As with all counting questions, the key is to be organized, so as to
avoid misses and double counts.

4. There are (7
4) =

7!
4!·3! = 35 possible arrangements of the balls altogether. To count those

in which both end balls are green, simply place two green balls apart on the table, then



arrange 4 red balls and 1 green ball between them. There are clearly 5 ways of doing
the latter. Hence the desired probability is 5

35 = 1
7 .

5. For a point to be equidistant from two intersecting lines, it must lie on one of bisectors
of the angles formed between those lines. So to be equidistant from y = 0, x = 0 and
x + y = 2013, a point must line on one of the bisectors between y = 0 and x = 0, and
also lie on one of the bisectors between x = 0 and x + y = 2013.1 The diagram below
illustrates the situation, with bisectors shown as dotted lines.

x+ y = 2013

x = 0

y = 0

That is, we wish to count the number of intersection points between these two sets
of bisectors. Since no pair of bisectors are parallel, each of the two bisectors between
y = 0 and x = 0 will intersect with each of the two bisectors between x = 0 and
x + y = 2013, yielding 4 equidistant points in total. These are marked in the diagram
above.

Note: These points are simply the centres of the incircle and excircles of the triangle
formed by the 3 given lines.

6. Since k is odd, we have f (k) = 3k + 1, and since 3k + 1 is even we get f ( f (k)) = 3k+1
2 .

Since f ( f ( f (k))) = 31, this yields

f (
3k + 1

2
) = 31.

But also note that, by definition, f (n) can only be odd when n is even. Thus the above
equality implies 3k+1

2 is even, so that f (3k+1
2 ) = 3k+1

4 . Finally, solving 31 = 3k+1
4 yields

k = 41.
1Necessarily such a point will also lie on one of the bisectors between x + y = 2013 and y = 0.



7. This is a repeated difference of squares factorization, in reverse:
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=22 · 15− 62

=24.

8. This problem can be solved using Pythagorean theorem and a little bit of algebra, but
it’s particularly straightforward with the law of cosines. Let d be the length of the
unknown diagonal, and let α and β be the interior angles of the parallelogram, as
shown in the diagram below.

11 11

13

18d

β α

Then, by the law of cosines, we have

182 = 112 + 132 − 2 · 11 · 13 · cos α

and
d2 = 112 + 132 − 2 · 11 · 13 · cos β.

But β = 180◦ − α, so cos β = − cos α. Therefore, summing the above two equations
yields

d2 + 182 = 2(112 + 132).

Evaluating now gives d2 = 256, hence d = 16.

Note: The cosine law isn’t magical. To prove it you simply drop a perpendicular, apply
the Pythagorean theorem, and do a little algebra — exactly as you could do to solve
this question without the cosine law!

9. By construction, each of the small shaded triangles is similar to the large triangle. Since
the areas of the three small triangles are in the ratios 9 : 16 : 25, their corresponding



sides must be in the ratios 3 : 4 : 5. Let their bases have lengths 3x, 4x, and 5x, for
some value of x, and “slide” these lengths down as indicated in the diagram below to
see that the base of the big triangle has length 3x + 4x + 5x = 12x.

9 16

25

A

B C

3x

5x

4x

4x3x

It follows that the area of the big triangle is 122 = 144.

Note: Notice that the fact that B = 90◦ and |AB| : |BC| = 3 : 4 is irrelevant in this
problem. The key here is simply that for similar figures, area grows quadratically with
perimeter. That is, if F1 and F2 are two similar figures, and if the linear dimension (base
/ height / perimeter) of F1 is α times that of F2, then the area of F1 is α2 times that of F2.

10. Let the intersection points of the line with the ellipse be (x1, y1) and (x2, y2). Then the
point we want is ( x1+x2

2 , y1+y2
2 ).

Substitute y = x + 1 into the equation of the ellipse to get

x2

2012
+

(x + 1)2

2012
= 1,

and note that the roots of this quadratic are precisely x1 and x2, so the sum of its roots
is x1 + x2. Expanding gives(

(
1

2012
+

1
2013

)
x2 +

2
2013

x +

(
1

2002
− 1

)
= 0,

and therefore (using the fact that the sum of the roots of the quadratic ax2 + bx + c = 0
is simply − b

a ) we obtain

x1 + x2

2
=

−2
2013

2
(

1
2012 +

1
2013

) = −2012
4025

.

This is the x-coordinate of the desired midpoint. Since the midpoint lies on the line
y = x + 1, its y-coordinate is simply −2012

4024 + 1 = 2013
4025 .



Pairs Relay Solutions

P-A. Suppose M has tens digit a and ones digit b, so that M = 10a + b. Then M = S(M) +

P(M) is equivalent to 10a + b = a + b + ab, which leads to 9a = ab, or simply b = 9
(since a cannot be zero). Thus A = 9.

P-B. Alice and Bob can each make any of A choices, so there are A2 possible outcomes. Of
these, there are exactly A in which both Bob and Alice make the same choice (i.e. they
could each choose 1, or each choose 2, etc.). Thus the desired probability is B = 1− A

A2 =

1− 1
A . With A = 9 we have B = 8

9 .

P-C. We have

C =
x
y
+

y
x
=

x2 + y2

xy
=

(x + y)2 − 2xy
xy

=
22 − 2B

B
=

4
B
− 2.

With B = 8
9 this gives C = 5

2 .

P-D. The answer will be n plus the number of distinct squares and cubes less than or equal
to n, provided there are no squares or cubes between n and this number!

In our case, n = 50 · 5
2 = 125, so there are 11 squares (1, 4, . . . , 100, 121) and 5 cubes

(1, 8, 27, 64, 125) less than or equal to n. However, the cubes 1 and 64 also appear in the
squares list, so there are only 11+ 3 = 14 distinct squares and cubes in the appropriate
range. Since there are no further squares or cubes between n = 125 and , n + 14 = 139,
we conclude that = 139.



Individual Relay Solutions

I-A. There are A = 12 such arrangements, which can be counted by hand or by various
different arguments. Here’s one: Imagine four blank spaces in a row. Pick two of them
that are not side-by-side in any of three ways. Place your vowel in these spaces in either
or two orders (A-O or O-A). Place the consonants in the remaining spaces in either of
two orders (B-T or T-B). This gives a total of 3 · 2 · 2 = 12 arrangements.

I-B. Multiply the given equation by AB and rearrange to get

2B2 + AB− A2 = 0.

Solve using the quadratic formula to get

B =
−A±

√
9A2

4
=
−AA± 3A

4
.

Thus B = A
2 or B = −A, whichever one is positive. Since A = 12, we get B = 12

2 = 6.

I-C. The lines y = −3x and y = 6x intersect y = B at x = −B
3 and x = B

6 , respectively. Thus
the triangle in question has base |B6 − (−B

3 )| =
|B|
2 and height |B|, so it has area

C =
1
2
· |B|

2
· |B| = B2

4
.

With B = 6 we get C = 9.

I-D. Notice that

xyz + xy + xz + yz = (x + 1)(y + 1)(z + 1)− (x + y + z)− 1

= (x + 1)(y + 1)(x + 1)− C− 1,

since we are given x + y + z = C. So to maximize this product we wish to maximize
(x + 1)(y + 1)(z + 1) subject to x + y + z = C. This will be accomplished when x +

1, y + 1 and z + 1 are as close to each other as possible. Since C = 9, we find that we can
in fact let all three quantities be equal by taking x = y = z = 3. This gives a maximum
value of 43 − 9− 1 = 54.

Note: There is really no need to factor here. The symmetry of the given expression
suggests that it should reach its optimum when x = y = z. The only catch would be if
C were not divisible by 3. What then?


