

2017-2018

Game Three

Problems and Solutions

Team Questions

1. Find the percentage increase in the quantity x^{2} / y^{2} when x is increased by 8% and y is decreased by 10%.

Solution: Since $\left(\frac{108}{90}\right)^{2}=\left(\frac{6}{5}\right)^{2}=\frac{36}{25}=\frac{144}{100}$, it increases by 44%.
2. The smaller gear below begins to turn at $\frac{1}{4}$ revolution per minute. How many minutes elapse before both gears return to their starting positions?

Solution: The gears have 12 and 15 teeth, respectively. So they reach their starting positions after $1 \mathrm{~cm}(12,15)=60$ teeth have engaged. This takes $4 \cdot \frac{60}{12}=20$ minutes.
3. Each of the circles in the figure below has circumference 1. Find the perimeter of the figure (highlighted in the diagram).

Solution: The perimeter consists of two semicircles per side of the triangle, plus $\frac{5}{6}$ of a circle at each corner, so $3\left(2 \cdot \frac{1}{2}\right)+3\left(\frac{5}{6}\right)=\frac{11}{2}$.
4. It takes 5 minutes to fill my bathtub and 7 minutes for it to drain empty. How many minutes will it take to fill the bathtub if I leave the drain open while filling it?
Solution: The fill and drain rates are $1 / 5$ and $1 / 7$ tubs per minute, respectively. With the drain open, the tub fills at a rate of $\frac{1}{5}-\frac{1}{7}=\frac{2}{35}$ tubs per minute, whose reciprocal gives $\frac{35}{2}=17.5$ minutes per tub.
5. Triangle $\triangle A B C$ is isosceles, with $|A C|=|B C|$. The bisector of $\angle C A B$ meets $B C$ at D, and $\angle A D B=3 \angle A C B$. Find the degree measure of $\angle A C B$.

Solution: Let x and y be the degree measures of $\angle B A D$ and $\angle A C B$, respectively, giving the configuration shown below. Summing the angles in triangles $\triangle A B D$ and $\triangle A B C$ yields $3 x+3 y=180$ and $x+4 y=180$, respectively. Solve to obtain $x=20$.

[^0]6. A $3 \times 3 \times 4$ block is created by gluing together several unit cubes. Three 1×1 square tunnels are then bored completely through the cube as shown below. (The tunnels are perpendicular to the faces.) Find the surface area of this solid.

Solution: The original surface area is $2\left(3^{2}\right)+4(4 \cdot 3)=66$. There are three tunnels, of lengths 3,3 , and 4 . If these didn't intersect, their net effect on surface area would be $(3+3+4)(4)-3(2)=34$. But the tunnels intersect pairwise, with each intersection decreasing the surface area by 4 , for a net effect of $-3(4)$. Thus the surface area is $66+34-12=88$.

Note: There are many ways to organize one's counting. One clever method entails looking "through" the solid along each of the 3 axes, as with x-ray vision, and noting how many faces are encountered.
7. Eight friends want to split into 4 pairs to play a game. In how many ways can this be done?

Solution: There are $7 \cdot 5 \cdot 3 \cdot 1=105$ possibilities: Pair the oldest boy with any of the 7 remaining, then pair the oldest of the remaining boys with any of the other 5 , etc. (The point of choosing the "oldest" at each stage is to assert that we have a definitive choice in mind at each stage, which ensures that we aren't over-counting.)

Alternative solution: Label the boys 1 through 8 . Permute them in any of 8 ! ways, and create pairs by taking the first two, the second two, etc. Now divide by $(2!)^{4}$ to eliminate the ordering within each pair, and again by $4!$ to eliminate ordering of the pairs. The result is $\frac{8!}{(2!)^{4} 4!}=105$.
8. For how many integers n between 1 and 100 (inclusive) is $2018^{n}-2017^{n}$ divisible by 5 ?

Solution: The units digits of 2018^{n} and 2017^{n}, for $n=1,2,3, \ldots$ form periodic sequences $8,4,2,6,8,4 \ldots$ and $7,9,3,1,7,9, \ldots$, respectively. Thus the units digit of $2018^{n}-2017^{n}$ follows the period sequence $1,5,9,5,1,5, \ldots$. This difference is divisible by 5 if and only if n is even. There are $\frac{100}{2}=50$ such values of n between 1 and 100 .

Alternative solution: Performing arithmetic modulo 5, we have $2018^{n}-2017^{n} \equiv(-2)^{n}-2^{n} \equiv 2^{n}\left((-1)^{n}-1\right)$. This is clearly 0 for even n and nonzero for odd n (since 5 is prime). So again there are 50 values of n.
9. Squares are extended from the sides of a right triangle with legs of lengths 3 and 5 . The vertices of the square are then adjoined to form an irregular hexagon, as shown. Find the area of the hexagon.

Solution: Say the legs of the triangle are a and b. Divide the hexagon as shown below into 8 triangles, each of area $\frac{1}{2} a b$, and three squares (shaded)s with areas a^{2}, b^{2}, and $(a-b)^{2}$. Thus the total area is $4 a b+a^{2}+b^{2}+(a-b)^{2}=2\left(a^{2}+a b+b^{2}\right)$. s With $a=3$ and $b=5$ get area $2(9+15+25)=98$.

10. Let O be the centre of equilateral triangle $\triangle A B C$ (i.e. the unique point equidistant from each vertex). Another point P is selected at random in the interior of $\triangle A B C$. Find the probability that P is closer to O than it is to any of A, B or C.

Solution: Draw perpendicular bisectors of $A O, O B$ and $O C$. Then P is closest to O provided it is in the intersection of these half-planes, which is a hexagon inside $A B C$. Subdivide $A B C$ into 9 equilateral triangles to see that the area of the hexagon is $2 / 3$ that of the whole.

Pairs Relay

P-A. A simplified schematic of a mailbox is shown below, with all measurements in metres.

Let A be the volume of the mailbox, in cubic metres.
Solution: The facing trapezoid has area $\frac{1}{2}(1.1+1.4)(0.4)=\frac{5}{4} \cdot \frac{2}{5}=\frac{1}{2}$. So the volume is $\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$.
P-B. You will receive A. Let $n=40 \mathrm{~A}$. (This should be an integer.)
Let B be the units digit of 123^{n}.
Pass on B
Solution: The units digits of 3^{n}, for $n=0,1,2,3, \ldots$, form a periodic sequence $1,3,9,7,1,3,9,7, \ldots$. Since $n=40\left(\frac{1}{4}\right)=10$ leaves remainder 2 upon division by 4 , the units digit of 3^{n} is $\mathrm{B}=9$.

P-C. You will receive B.
Suppose $x+y=B, x+z=2 B$ and $y+z=3 B$.
Let $C=x+y+z$.
Pass on C
Solution: Sum to get $x+y+z=\frac{1}{2}(B+2 B+3 B)=3 B$. With $B=9$ get $C=27$.
P-D. You will receive C.
Jessica plans to give each of her friends a bag of 30 candy hearts for Valentine's Day. She labels some bags (one for each friend) and begins filling them one at a time. Unfortunately, she finds that she only has C hearts remaining for the last bag. So she instead decides to give each friend only 29 hearts and she keeps the 10 leftovers for herself.
Let D be the number of hearts Jessica began with.
Done!
Solution: Suppose Jessica has x friends. Then $D=30(x-1)+C=29 x+10$. Solve to get $x=40-C$, so $D=(30)(39-C)+C$. With $C=27$ get $D=387$.

Individual Relay

I-A. Colin, John, and Marc went camping. Over the course of the trip, Marc paid $\$ 93$ for food, Colin paid $\$ 58$ for gas, and John paid $\$ 53$ for the campsite. Both John and Colin gave Marc some money so as to split the costs of the trip equally.

Let A be the amount (in dollars) John gave Marc.
Pass on A
Solution: The total cost was $93+58+53=204$, so the per-person cost is $\frac{204}{3}=68$. John paid $\$ 53$ already so he owes Marc $A=68-53=15$.

I-B. You will receive A.
A 250 metre long train travels at a constant speed of $90 \mathrm{~km} / \mathrm{h}$. The train enters a tunnel and fully emerges A seconds later.

Let B be the length of the tunnel, in metres.
Pass on B
Solution: We have $(B+250) / A=90 \cdot \frac{1000}{3600}=25$. Thus $B=25 A-250$. With $A=15$ get $B=125$.
I-C. You will receive B.
A main diagonal of a cube connects two opposing vertices, as shown:

Suppose the volume of a cube is Bcm^{3}. Let C be the length (in cm) of its main diagonal, rounded to the nearest integer.

Pass on C
Solution: Let $x=\sqrt[3]{\mathrm{B}}$. Then the diagonal has length $\sqrt{x^{2}+x^{2}+x^{2}}=x \sqrt{3}$. If $\mathrm{B}=125$ then $x=5$ and thus $x \sqrt{3} \approx 5 \cdot \frac{7}{4}=\frac{35}{4}=$ 8.75. Thus $C=9$.

I-D. You will receive C.
Suppose $x: y=2: 1$ and $y: z=C: 2$.
Let $\mathrm{D}=\frac{y}{x+z}$.
Done!
Solution: Get $\mathrm{D}=1 /\left(\frac{x}{y}+\frac{z}{y}\right)=1 /\left(2+\frac{2}{C}\right)=\frac{C}{2 C+2}$. With $\mathrm{C}=9$ get $\mathrm{D}=\frac{9}{20}$.

[^0]: Alternatively: Let x be the degree measure of $\angle A C B$, so that $\angle A D B=3 x$. The exterior angle theorem implies $\angle D A C+\angle A C B=$ $\angle A D B$, whence $\angle D A C=3 x-x=2 x$. Then $\angle D A B=2 x$ since $A D$ bisects $\angle C A B$, and $\angle A B C=\angle B A C=2 x+2 x=4 x$ since $\triangle A B C$ is isosceles. Summing the angles in $\triangle A B C$ gives $9 x=180$, so $x=20^{\circ}$

