Mackey functors and Green functors

Elango Panchadcharam

Joint work with Professor Ross Street

Centre of Australian Category Theory
Macquarie University
Sydney
Australia



Main References

1. J. A. Green, Axiomatic representation theory for
finite groups, J. Pure and Appl. Algebra 1 (1971),
41-77.

2. A. W. M. Dress, Contributions to the theory of
induced representations, Lecture Notes in Math.
(Springer-Verlag, New York) 342
(Algebraic K-Theory II) (1973), 183 —240.

3. H. Lindner, A remark on Mackey functors,
Manuscripta Math. 18 (1976), 273—278.

4. S. Bouc, Green functors and G-sets, Lecture Notes
in Math. (Springer-Verlag, Berlin) 1671 (1997).



The Compact closed category Spn(&)

e Let & be a finitely complete category.

e Objects of Spn(&) are the objects of &.

e Morphisms U—V are the isomorphisms class of
spans from U to V.

e A span from U to V is a diagram,

S1 S $2
(s1,S,82): N\
U vV

e An isomorphism of two spans (s3,S,s2):U—V and
(si,S’,sé):UHV is an invertible arrow h:S—S' such
that following diagram commutes.

e
U =hn V

NP

51 g/ )



e The composite of two spans (s1,S,s2): U—V and
(1, T,82) : V—W IS (s10p1,Sxy T, 120 p2)

Sxy T

PV \192

S T
51/ 52\« /tl YZ
U V w

e The identity span (1,U,1):U—U is
20\
U U
e This defines the category Spn(é&).

e We write Spn(&)(U,V)=[&/(U x V)].



e The category Spn(&) is monoidal. Tensor product

Spn(&) x Spn(&)-~-Spn (&)
is defined by

(U,V)—UxV

[U->-u, V-Lv— U x vy « v,
e It is also compact closed.

In fact, we have the following isomorphisms:

* Spn(&)(U, V) =Spn(&)(V,U)

* Spn(&)(U x V,W) =Spn(&)(U,V x W)
The second isomorphism can be shown by the
following diagram



Direct sums in Spn(&)
e Let & be a lextensive category.

e A category & is called lextensive when it has finite
limits and finite coproducts such that the functor

X Y X+Y
EIAxEIB—&IA+B; |f , |§8+—~ |f+g
A B A+B

IS an equivalance of categories for all objects A
and B.

e In a lextensive category, coproducts are disjoint
and universal and 0 is strictly initial. Also we have
that the canonical morphism

(AxB)+(AxC)—Ax (B+ ()

IS invertible.



e In Spn(&) the object U+ V is the direct sum of U
and V. This can be shown as follows:

Spn( &)U+ V,W)=[E/(U+V) xW)]
=[E/((Ux W)+ (Vx W)
~[&/(U x W)] x [E](V x W)]
=Spn(&) (U, W) x Spn(&) (V, W);

and so Spn(&)(W, U + V) = Spn(&) (W, U) x Spn(&) (W, V).

e T he addition of two spans (s3,S,s2):U—V and
(t1,T,): U—V is given by

S+ T
[Slytl] Sl+tl 82+t2 [SZ)tZ]
S1 5 $2 3] T 5
Y\ + 7\ =  U+U V+V
U vV U |74 \V \V/

U V.

e Spn(&) is a monoidal commutative-monoid-enriched
category.



Mackey functors on &

e A Mackey functor

M : gHMOdk

consists of two functors M*:(&)°P-—-Mod,,
M, :&—Mod;. such that
* M,(U)=M*(U) (=MU)) for all U in &.
x For all pullbacks

| ]

U—r>W ’

in &, the square(Mackey square)

M(P) M(V)
M *(p)] |M*(s)

M(U) 375 M(W)

commutes.



*x For all coproduct diagrams

J

U—t—~U+V

|4
in &, the diagram
M*i M*j
M(U) MU+YV) M(V)
M, i M. |

IS a direct sum situation in Mody.
(This implies M(U+V)=MU) e M(V).)

e A morphism 6 : M—N of Mackey functors is a
family 0y : M(U)—N(U) of morphisms for U in &.
This gives natural transformations 6. : M,.— N, and
0% : M*—~N*.

e Proposition: (Due to Lindner)

The category Mky(&,Mod;) of Mackey functors is
equivalent to [Spn(&),Mod;]+ of the category of
coproduct-preserving functors. That is:

Mky(&,Mod}) = [Spn(&),Mod ] +



e Proof
Let M:&—Mod; be a Mackey functor.
We Define a morphism M :Spn(&)—Mod;. by
MU)=M,U)=M*U) and

M*(s1) M (s2)

S
M( LNE = (MU)=—LM(S) =2 M(V)).
u Vv

Conversely, let M:Spn(&)—Mod; be a functor.

Then we can define two functors M, and M~*,
g’(_—)*>Spn(é") M Mod;. ,

s
&°P

by putting My =Mo(-)x and M*=Mo(-)*.

« Denote Mky =Mky(&,Mod;) = [Spn(&),Mod ] +
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Tensor products in Mky

e Let I be general compact closed, commutative-
monoid-enriched category. (The main example is
Spn(8)).

e The tensor product of Mackey functors can be
defined by convolution in [9,Mod.];+ since J is a
monoidal category.

e T he tensor product is:

X,Y
(M*N)(Z):f T (XY, Z)eM(X)®; N(Y)
X,Y
Ef 9‘(Y,X*®Z)®M(X)®kN(Y)
X
zf MX)® N(X*® Z)

Y
zf M(ZeY*) &, N(Y).
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Hom functor and Burnside functor

e Let 9 =Spn(&) where & the category of finite
G-sets for the finite group G.

e The Hom Mackey functor is

Hom(M, N)(V) = Mky(M(V x —), N),

functorially in V.

(L* M)(U)—N(U)
L(V)®;, M(V xU)—N(U)
L(V)—Hom;(M(V x U), N(U))

L(V)Hf Hom ;. (M(V x U), N(U))
U
L(V)—Mky(M(V x =), N)

e The Burnside functor J:&—Mod; has value at U
equal to the free k-module on Spn(&)(1,U) = [&/U].
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Green functors on &

e A Green functor A:8—Mody is

* A Mackey functor (that is, a coproduct
preserving functor A:Spn(§)—Mod;) with

* A monoidal structure made up of a natural
transformation

1 AU) & A(V)— AU x V),

for which we use the notation u(a®b) =a.b for
ae A(U), be A(V), and
* @ morphism n:k— A(1) such that n(1)=1.

e Green functors are the monoids in Mky.

e The Burnside functor J and Hom(A, A) are monoids
in Mky and therefore are Green functors.
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Finite dimensional Mackey functors

o Let Mkys;, be the category of finite-dimensional-
valued Mackey functors. Define Mkys;, = [9, Vectsjn] +.

e Let € be the full sub-category of 9 consisting of
the connected G-sets. The functor F: 6 — 9 is a
fully faithful functor. The category € has finitely
many objects. Each XeJ can be written as

n
X=EFWUy.
=1

e We can show that

C
M(X)Ef T (C,X)eM(C).

e Lemma If S is a commutative monoid generated
by a finite set of elements sy,...,sm and V is a vec-
tor space with basis vy,..., v, then S®V s a finite
dimensional vector space.
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e The tensor product M,N € Mkys;, Is finite dimen-
sional.

X,Y
(M*N)(Z):f T (XxY,Z)e M(X)®; N(Y)
X,Y,C,D
Ef T XxY,2) T (C,X)8T (D,Y)® M(C)®;. N(D)

C,D
;f T (CxD,7)® M(C) @, N(D).

Here 9 (Cx D, Z) is finitely generated as a commu-
tative monoid and M(C) and N(D) are finite dimen-
sional.

e The promonoidal structure on Mkys;, for the Mackey
functors M,N, and L is

P(M,N;L)=Naty y z(T (X xY,Z)® M(X) ®; N(Y), L(Z))
=Naty,y(M(X) @ N(Y),L(X xY))
= Naty,z(M(X) ® N(X™ x W), L(Z))
=Naty z(M(ZxY™) e N(Y),L(2)).

Therefore the category Mkys;, is monoidal for the
promonoidal structure; that is,

P(M, N; L) = MKkys;, (M * N, L).
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e A monoidal category ¥ is s-autonomous when it
is equipped with an equivalence S:7°P—7 of
categories and

V(A®B,SC)Z¥ (B®C,S L A).

In the category Mkysi, we can write (SA)X = A(X™)*.

« Theorem The category Mkyyi, IS *-autonomous.

e Proof The promonoidal structure P(M,N;SL) for
the category Mkys, Can be written as:

P(M,N;SL) = Naty, y(M(X) ®; N(Y),L(X* x Y*)¥)
=Naty,y (N(Y)® L(X* x Y*),(MX)")
= Naty,y(N(Y)® L(X x Y™), M* (X))
=P(N,L;M™).

e There is a possibility that for a class of finite G
(including the cyclic ones) that Mkys;,, could be
compact (autonomous).
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Modules over a Green functor

A module M over A, or A-module means A acts
on M via the convolution.

The monoidal action aM: Ax* M— M is defined by
a family of morphisms

agfy AU & M(V)—M(U x V),

where we put a}; ,(a@m) = a.m for ae A(U), me M(V).

If M is an A-module, then M is of course a Mackey
functor.

Let Mod(A) denote the category of left A-modules.
Objects are A-modules and morphisms are A-module
morphisms.
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Morita equivalence of Green functors

e For any good monoidal category # we have the
monoidal bicategory Mod(#'). We spell this out in
the case #= Mky:

*

*

*

Objects are monoids A in # (i.e. A:&—Mod,
are Green functors)

morphisms are modules M: A—+B with a two-
sided action a™:AxMx*B—M, that is

aM A @ M(V) @ BIW)—M(U x V x W)

Composition of morphisms M: A—+-B and
N:B——C is Mg N and it is defined via the
coequalizer

CZM*IN

M« Bx N M« N MxgN=NoM
1M*aN

that is,

(M*gN)(U) = ¥ Spn(&)(XxY,U)®M(X)®;N(Y)/ ~5.
XY

The identity morphism is given by A: A—A.
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*x T he 2-cells are natural transformations 6 : M— M’
which respect the actions
C_KJI\J/IVW
AU) e M(V) ®; B(W) L MU xV x W)
1®kev®k1 QUXVXW
AU) ;. M'(V)®; B(W) MUxVxW) .

-M'
Yy vw

*x T he tensor product on Mod(#') is the convolution

*. 1 he tensor product of the modules M: A—+B
and N:C—D is MxN: AxC—B=xD.

o Definition: Green functors A and B are said to
be Morita equivalent when they are equivalent in
Mod(#).

e Proposition: If A and B are equivalent in Mod(#)
then Mod(A) ~Mod(B) as categories.

e Proof Mod(#)(—,J):Mod(#)°P—CAT is a pseudo func-
tor and so takes equivalences to equivalences.
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e Now we enriched Mod(A) to a #'-category ZA.

e The wW-category ZA has underlying category
Mod(#)(J,A). The objects are modules M: J—+—A
and homs are defined by the following equalizer.

Hom(aM,l)

Mod(A)(M, N)—Hom(M, N) Hom(A * M, N)

(,& /411(1,&]\])

Hom(A * M, A * N)

e The Cauchy completion £2A of A is the full
sub-#'-category of Z2A consisting of the modules
M: J—+A with right adjoints N: A—]J.

e Recall the classical result from enriched category
theory:

e Theorem: Green functors A and B are Morita
equivalent if and only if 2A=2B as W -categories.
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e In our case this theorem can be applied via our
characterization of the Cauchy completion.

e Theorem: The Cauchy completion £2A of the

monoid A in Mky consists of all the retracts of
modules of the form

k
@A(Yl X —)
i=1

for some Y; € Spn(é&).
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Some applications of Mackey
functors

e Let Rep(G) be the category of k-linear representa-
tions of the finite group G.
The category Mky(G) provides an extension of
ordinary representation theory.
For example, Rep(G) can be regarded as a full
reflective monoidal sub-category of Mky(G).

« Mackey functors provide relations between A- and
p-invariants in Iwasawa theory and between Mordell-
Weil groups, Shafarevich-Tate groups, Selmer group
and zeta functions of elliptic curves
(W. Bley and R. Boltje, Cohomological Mackey
functors in number theory, J. Number Theory 105
(2004), 1-37).
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