Can you Differentiate a Polynomial?

J.R.B. Cockett
Department of Computer Science
University of Calgary
Alberta, Canada
robin@cpsc.ucalgary.ca

Halifax, June 2012

PART I: Differential Categories

PART II: Structural polynomials

One of the motivating example behind the development of Cartesian Differential Categories!
... and how examples can be very confusing.

x-DIFFERENTIAL CATEGORIES

Recall to formulate \times-differential categories need:
(a) Left additive categories
(b) Cartesian structure in the presence of left additive structure
(c) Cartesian differential structure

Example to have in mind: vector spaces with smooth functions

Left-additive categories

A category \mathbb{X} is a left-additive category in case:

- Each hom-set is a commutative monoid $(0,+)$
- $f(g+h)=(f g)+(f h)$ and $f 0=0$
each f is left additive ..

$$
A \xrightarrow{f} B \underset{h}{\stackrel{g}{\rightrightarrows}} C
$$

A map h is said to be additive if it also preserves the additive structure on the right $(f+g) h=(f h)+(g h)$ and $0 h=0$.

$$
A \underset{g}{\stackrel{f}{\longrightarrow}} B \xrightarrow{h} C
$$

Additive maps are the exception ...

Products in left additive categories

A Cartesian left-additive category is a left-additive category with products such that:

- the maps π_{0}, π_{1}, and Δ are additive;
- f and g additive implies $f \times g$ additive.

Lemma

The following are equivalent:
(i) A Cartesian left-additive category;
(ii) A Cartesian category \mathbb{X} in which each object is equipped with a chosen commutative monoid structure

$$
\begin{aligned}
& \qquad\left(+_{A}: A \times A \rightarrow A, 0_{A}: 1 \rightarrow A\right) \\
& \text { such that }+_{A \times B}=\left\langle\left(\pi_{0} \times \pi_{0}\right)+_{A},\left(\pi_{1} \times \pi_{1}\right)+{ }_{B}\right\rangle \text { and } \\
& 0_{A \times B}=\left\langle 0_{A}, 0_{B}\right\rangle .
\end{aligned}
$$

The axioms for a \times-differential
[CD.1] $D_{\times}[f+g]=D_{\times}[f]+D_{\times}[g]$ and $D_{\times}[0]=0$; (operator preserves additive structure)
[CD.2] $\langle(h+k), v\rangle D_{\times}[f]=\langle h, v\rangle D_{\times}[f]+\langle k, v\rangle D_{\times}[f]$ (always additive in first argument);
[CD.3] $D_{\times}[1]=\pi_{0}, D_{\times}\left[\pi_{0}\right]=\pi_{0} \pi_{0}$, and $D_{\times}\left[\pi_{1}\right]=\pi_{0} \pi_{1}$ (coherence maps are linear);
[CD.4] $D_{\times}[\langle f, g\rangle]=\left\langle D_{\times}[f], D_{\times}[g]\right\rangle\left(\right.$ and $\left.D_{\times}[\langle \rangle]=\langle \rangle\right)$ (operator preserves pairing);
[CD.5] $D_{\times}[f g]=\left\langle D_{\times}[f], \pi_{1} f\right\rangle D_{\times}[g]$ (chain rule);
[CD.6] $\langle\langle f, 0\rangle,\langle h, g\rangle\rangle D_{\times}\left[D_{\times}[f]\right]=\langle f, h\rangle D_{\times}[f]$ (differentials are linear in first argument);
[CD.7] $\langle\langle 0, f\rangle,\langle g, h\rangle\rangle D_{\times}\left[D_{\times}[f]\right]=\langle\langle 0, g\rangle,\langle f, h\rangle\rangle D_{\times}\left[D_{\times}[f]\right]$ (partial differentials commute);

An example Polynomials are an example:
The category $\operatorname{Poly}(\mathbb{N})$:
Objects: The natural numbers: $0,1,2,3, \ldots$
Maps: $\left(p_{1}, \ldots, p_{n}\right): m \rightarrow n$ where $p_{i} \in \mathbb{N}\left[x_{1}, . ., x_{m}\right]$
Composition: By substitution.
This is the Lawvere theory of commutative rigs ...
The differential is:

$$
\frac{m \rightarrow n ;\left(x_{1}, . ., x_{m}\right) \mapsto\left(p_{1}, . ., p_{n}\right)}{\left(\sum_{i} y_{i} \cdot \partial_{i} p_{1}, \ldots, \sum_{i} y_{i} \cdot \partial_{i} p_{n}\right): m+m \longrightarrow n}
$$

Not the polynomials of this talk!

POLYNOMIALS

A (structural) polynomial in any category with pullbacks is a diagram

in which u is exponentiable, that is the functor Δ_{u} (pulling back along u) has a right adjoint Π_{u}, so that $\Delta_{u} \vdash \Pi_{u}$.

Will eventually require a lextensive category ...

Ideas due to: Gambino, J. Kock, Weber, Hyland, Joyal, ... Here I follow Gambino and Kock's development closely.

Structural polynomials

In structural polynomial

think of
X as "input sort names";
P as "variable places";
S as "shapes";
Y as "output sort names".

Can encode all initial data types

Structural polynomial for binary trees

Represent binary trees in Set as a polynomial:
(a) There is only one input sort $X=\{A\}$;
(b) S is the set of shapes of binary trees;
(c) P is the set of places where variables can occur (on the leaves) of the binary tree shapes;
(d) There is only one output sort $Y=\{\operatorname{Tree}(A)\}$

Structural polynomial for binary trees

$$
\begin{aligned}
& S=\left\{\circ_{1},\right.
\end{aligned}
$$

The map u takes a place in a tree (a pair) to the shape of the tree.

Polynomials functors

Associated to each structural polynomial

is a polynomial functor:

$$
P_{v, u, w}=\mathbb{C} / X \xrightarrow{\Delta_{v}} \mathbb{C} / P \xrightarrow{\Pi_{u}} \mathbb{C} / S \xrightarrow{\Sigma_{w}} \mathbb{C} / Y
$$

- Δ_{V} is the "reindexing" or "substitution" functor (pulling back along v)
- Π_{u} is the "dependent product" functor (the right adjoint to $\Delta_{u}=u^{*}$)
- Σ_{w} is the "dependent sum" functor (given by composition $\Sigma_{w}(f)=f w$)

Indexed sets

.... structural polynomials between finite sets are (equivalent to) polynomial tuples over the rig of natural numbers.

Spans

When u is the identity we get a span:

In a span each shape has exactly one place ... Spans are to be thought of as a linear map ...

Can you Differentiate a Polynomial?

-Structural Polynomials
ᄂPolynomial functors

Spans

Can you Differentiate a Polynomial?

-Structural Polynomials
$\left\llcorner_{\text {Composition of polynomials }}\right.$

Composition of polynomials

Composition of polynomials

All squares pullbacks ... the triangle involves the counit $\varepsilon: \Delta_{u}\left(\Pi_{u}(A)\right) \longrightarrow A$.

Key Lemma for composition of polynomials

Lemma

$$
\Pi_{u}\left(\Sigma_{f}(g)\right)=\Sigma_{h}\left(\Pi_{u^{*}}\left(\Delta_{\varepsilon}(g)\right)\right)
$$

Key Lemma for composition of polynomials

Expresses the distributive law!

$$
\begin{gathered}
\left\{(x, z)_{0},(y, z)_{0},(x, z)_{1},(y, z)_{1}\right\} \longrightarrow\{(x, z),(y, z)\}, \underbrace{}_{\{0,1\}} \longrightarrow\left\{\begin{array}{c}
\\
(x+y) \times z=x \times z+y \times z
\end{array}\right)
\end{gathered}
$$

Composition of polynomials

For proof also need Beck-Chevalley ... given the pullback squares

- For stable maps g and g^{\prime} we always have $\Sigma_{f}\left(\Delta_{g}(x)\right) \cong \Delta_{g^{\prime}}\left(\Sigma_{f^{\prime}}(x)\right)$,
- For exponentiable maps f and f^{\prime} we always have $\Pi_{f}\left(\Delta_{g}(x)\right) \cong \Delta_{g^{\prime}}\left(\Pi_{f^{\prime}}(x)\right)$ (follows from above by adjointness).

Composition of polynomials

Want polynomial composition to correspond to polynomial functor composition:

$$
\begin{aligned}
& \text {, } \\
& P_{u^{\prime}, v^{\prime}, w^{\prime}}\left(P_{u, v, w}(x)\right)=\Sigma_{w^{\prime}}\left(\Pi_{u^{\prime}}\left(\Delta_{v^{\prime}}\left(\Sigma_{w}\left(\Pi_{u}\left(\Delta_{v}(x)\right)\right)\right)\right)\right) \text { BC } \\
& =\Sigma_{w^{\prime}}\left(\Pi_{u^{\prime}}\left(\Sigma_{w_{1}}\left(\Delta_{v_{1}^{\prime}}\left(\Pi_{u}\left(\Delta_{v}(x)\right)\right)\right)\right)\right) \text { BC } \\
& =\Sigma_{w^{\prime}}\left(\Pi_{u^{\prime}}\left(\Sigma_{w_{1}}\left(\Pi_{u_{1}}\left(\Delta_{v_{2}^{\prime} v}((x))\right)\right)\right)\right. \text { lemma } \\
& =\Sigma_{w_{1} w^{\prime}}\left(\Pi_{u_{1}^{\prime}}\left(\Delta_{\varepsilon}\left(\Pi_{u_{1}}\left(\Delta_{v_{2}^{\prime} v}((x))\right)\right)\right) \mathrm{BC}\right. \\
& =\Sigma_{w_{1} w^{\prime}}\left(\Pi_{u_{2} u_{1}}\left(\Delta_{e v_{2}^{\prime} v}((x))\right)\right)
\end{aligned}
$$

So composition is associative (up to equivalence).

Morphism of polynomials

When β is an isomorphism the morphism of polynomials is Cartesian.

Morphism of polynomials

The Cartesian part ...

Gives a Cartesian strong natural transformation between polynomial functors:

Note ϵ is strong Cartesian and all functors preserve pullbacks.

Morphism of polynomials

The rest ...

Gives a strong natural transformation between polynomial functors:

Note: η is strong but not Cartesian.

Morphism of polynomials

This gives an exact correspondence between strong natural transformations between polynomial functors and morphisms of polynomials.

NOTE: all these natural transformations are generated by η and ϵ

The bicategory of polynomials
Clearly polynomials form a bicategory ...

They also naturally form a double category

Just mentioned that to keep Robert Pare happy!

Polynomials are left additive

The addition is given by coproduct:

Most maps not additive ... spans are!

Products in the category of polynomials

Here is the pairing operation:

Given by coproduct ...
Need the category to be extensive.

Where are we?

- Structural polynomials correspond to polynomial functors
- (Strong) natural transformations correspond to morphisms of structural polynomials
- Polynomials form a left additive (bi)category (whatever that is!!!)
- Can express initial datatypes and a lot else besides by polynomials

CAN WE DIFFERENTIATE POLYNOMIALS?

Differentiating polynomials

Say a map u is separable when the diagonal in the kernel of u is detachable (i.e. it is a coproduct component). That is the following diagram

is a pullback.
Consider only separable polynomials (i.e. with u separable) ... Closed to all basic constructions (composition, addition, ...).

Differentiating polynomials

Can differentiate polynomials whose multiplicity assignment u is separable:

Differentiating polynomials

- Can differentiate data types:
... agrees with existing notion (in fact, clarifies notion somewhat).
- Can differentiate combinatorial species:
... agrees with existing notion (for polynomial functors).
- An example of a differential category in which negation is unnatural!
- Of course, need to prove this is a differential!!! (chain rule is already challenging ...)

Differentiating polynomials

SO WHAT IS THE DIFFERENTIAL OF A TREE!

Differentiating polynomials

Essentially it is a tree with a leaf picked out and given a new variable name ...

Differentiating polynomials

But how do you express this as a data type?

Differentiating polynomials

-Tree data type based on product
data Prod $a=$ Prod $a \operatorname{a}$ data Tree $a=$ Node Prod (Tree a) Leaf a

- Differential of tree based on differential of product ...
data DProd $b a=R b a$
L a b
data DTree bach (DProde (DTree ba) (Tree a)) DLeaf b

Concluding remarks

- Is this all completely sorted out?

Absolutely not!
(BUT there is a lot there already!)

- Are polynomial functors the only ones which can be differentiated?
Certainly not: just an important class!
- Is this example of a differential useful?

Amazingly the answer is probably YES!!!
END

Some references

[1] N. Gambino and J. Kock,
Polynomial Functors and Polynomial Monads ArXiv:0906.4931 (2010)
[2] T. Altenkirch and P. Morris, Indexed containers In LICS'09 277-285 (2009)
[3] M. Abbott, T. Altenkirch, C. McBride, and N. Gahni, Differentiating data structures, Fund. Inf. 65(1-2):1-28 (2005)
[4] G. Huet, Functional Pearl: The zipper. Journal of Functional programming (5):549-554 (1997)
[5] N. Gambino and M. Hyland Wellfounded trees and dependent polynomial functors In TYPES'03, pages 210-225 (2003)

