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1 Talk Objectives

Robin and I advertised a Boolean restriction category as an

abstract category of partial functions which supports classical

reasoning.

We’ll look at three equivalent definitions of a BRC.

But wait! Does everyday programming logic support classical

reasoning?



1 TALK OBJECTIVES 3

In everyday programming logic, “and” is not commutative.

var x : string;

if (Length(x)>0) and (x[1]=’A’) then . . .

if (x[1]=’A’) and (Length(x)>0) then . . .

are different.

We’ll consider ifp(f, g) for

Case I: p is total (p ∈ Boolean algebra)

Case II: p can diverge, ifp(f, g) computable if f, g are, (p ∈
?)

Case III: p can diverge, possess oracle for halting problem

(p ∈ ??)
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The univeral-algebraic results we discuss invite further work in

restriction categories.

So let’s get going.

But wait! What order do we compose in?

Can we figure this out from context?

g f = g f

g f = gf
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2 Boolean Restriction Categories

A restriction category (Cockett and Lack, 2002) is a cate-

gory X equipped with a unary operation X
f−→ Y 7→

X
f−→ X satisfying the four axioms

(R.1) f f = f

(R.2) Y
f←− X

g−→ Z, f g = g f

(R.3) Y
f←− X

g−→ Z, g f = g f

(R.4) Every X
f−→ Y is deterministic in that for all

Y
g−→ Z, g f = f gf

X(X, Y ) is a poset under the restriction ordering f ≤ g if

g f = f . Composition on either side is monotone.

R(X) = {f : X
f−→ Y } = {X e−→ X : e = e} is the set of

restriction idempotents, and it forms a meet semilattice

under ≤ with e ∧ f = ef = fe.
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In a restriction category, f : X → Y is total if f = idX . All

monics are total.

If X is a split restriction category (in that all restriction idem-

potents split), let M be the class of all restriction monics,

the monics that arise from such splittings.

Completeness Theorem (Cockett and Lack, 2002) A split

restriction category is restriction isomorphic to the partial mor-

phism category induced by the subcategory of total maps and

M-subobjects. The restriction is given by

[X m←− A
f−→ X ] = [X m←− A m−→ X ]

Thus a restriction category is a “category of partial maps”,

noting that the idempotent completion of a restriction category

is a split restriction category.
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Carboni, Lack and Walters 1993: An extensive category is one

in which finite coproducts exist and are well-behaved (i.e., are

like those of Set).

Manes 1992: (Standing on the shoulders of Elgot, Bloom and

others): A Boolean category is a category suitable for (possibly

non-deterministic) computation in which finite coproducts exist

and are well-behaved (i.e., are like those of Set).
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How are these categories defined?

A Boolean category (a) has finite coproducts, (b) is such

that coproduct injections pull back along any morphism to co-

product injections, (c) if X
f−→ X

f←− X is a coproduct, X = 0,

subject to

(B) Coproduct injections pull back coproducts

If (B) is strengthened to

(E) all morphisms pull back coproducts

we get an extensive category.
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Example Rel, sets and relations, is Boolean and plays the

metamathematical role for Boolean categories that Ab does

for abelian categories.

Note: Rel does not have all pullbacks.

Example Sets and bags forms a Boolean category.
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When is a Boolean category extensive?

In any category with initial 0, say that f : X → Y is null if it

factors f = X
g−→ 0→ Y .

Say that f is total if W t−→ X
f−→ Y null⇒ t null.

In a Boolean category, 0 is “strict” in that every total X → 0

is an isomorphism.

In any category, say that f : X → Y is deterministic if

for every coproduct Q ← Y → Q′ there exists a commutative

diagram

Q Y-

P X-

? ?
f

Q′�

P ′�

?

with the top row a coproduct.

Theorem (Manes 1992, Corollary 12.3) A category is extensive

if and only if it is a Boolean category in which all morphisms

are total and deterministic.
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Toward Boolean restriction categories.

In a Boolean category:

Coproduct injections are monic. A summand is a subobject

represented by a coproduct injection.

The poset Summ(X) of all summands ofX is always a Boolean

algebra.

For P,Q ∈ Summ(X), P → P ∪ Q ← Q is a coproduct if

and only if P ∩Q = 0.

For f : X → Y , the pullback

X Y-
f

Ker(f ) 0-

? ?

Defines the kernel Ker(f ) of f . The complementary sum-

mand to Ker(f ) ∈ Summ(X) is the domain Dom(f ) of

f .



2 BOOLEAN RESTRICTION CATEGORIES 13

A Boolean restriction category is a Boolean category with

0 a zero object such that for f : X → Y ,

Dom(f ) X-i

i

@
@

@
@

@
@

@
@R
X

?

f

Ker(f )�

0

�
�

�
�

�
�

�
�	

defines a restriction.

Note that, unlike restriction categories and allegories which are

categories with additional structure, a category is or is not a

Boolean restriction category.
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When is a Boolean category a BRC?

Theorem (Manes 2006) For X a Boolean category with zero

object,

X is a Boolean restriction category ⇔ every morphism is deterministic

When is a category a BRC?

Theorem A category is a Boolean restriction category if and

only if it is the partial morphism category Par(X,M) with X

an extensive category and M its coproduct injections.

Moreover, if the extensive category X has a terminal object 1

then the monad X + 1 classifies these partial morphisms.

Example: The partial morphism category of any Boolean topos.
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When is a restriction category a BRC?

Theorem (Cockett and Manes, 2009). A restriction category

is a BRC if and only if

• it has finite coproducts.

• the initial object is a zero.

• restriction idempotent split and the split monics involved

are coproduct injections.

• Given f, g : X → Y with f g = g f then with respect to

the restriction ordering f ≤ g ⇔ g f = f , f ∨ g exists and

composition on either side preserves such suprema.
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Here goes a segue.

Where such a supremum arises is in

if p then f else g = fp ∨ gp′

A theme of this talk is: let such supremum be everywhere-

defined, to allow a universal-algebraic description.
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3 Any coproduct gives an if-then-else

Let P i−→ X
j←− Q a coproduct in any category X.

Define a binary operation fg = ifPQ(f, g) on X(X, Y ) by

X Y-
f

P X-i

?

i
?

fg

X�
g

Q� j

?

j

In a Boolean restriction category, Q = P ′ and fg = fp ∨ gp′.
Proposition In any category, fg is a rectangular band.

Proof ff i = f i, ff j = f j so ff = f . Similarly,

(fg)h = fh = f (gh). 2
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Continue with P i−→ X
j←− Q

For f, g : X → Y , one checks

f L g ⇔ f j = g j

f R g ⇔ f i = g i

Thus the semigroup isomorphism

X(X, Y )→ X(X, Y )/L × X(X, Y )/R

maps f to its restrictions to P and Q.

For a converse, see Exercise 3.
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A network is the sum of its paths.

For example, one conceptualizes the following formal sum:

ifp(f, ifq(g, h)) = fp+ (gq + hq′)p′

= fp+ gqp′ + hq′p′

With this end, let X now be semiadditive. Thus it has a zero

object 0 and a coproduct X
in1−−→ X + X

in2←−− X is also a

product

X


 1

0




←−−− X +X


 0

1




−−−→ X

X(X, Y ) is an abelian monoid via

f + g = X
( 1 1)
−−−−−−−→ X +X


f

g




−−−→ Y
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Relative to the coproduct P i−→ X
j←− Q, define corresponding

guards p, q : X → X by

p = X


 1

0




−−−→ P i−→ X

q = X


 0

1




−−−→ Q
j−→ X

By construction, these are split idempotents whose monics are

coproduct injections. Moreover, pq = qp = 0, p + q = 1.

It follows at once that for

X Y-
f

P X-i

?

i
?

fg

X�
g

Q� j

?

j

fg = fp + gq.
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4 Universal Algebra

Operations and equations, e.g. semigroups, groups, lattices,

rings, modules over a rig, but not fields.

A quotient algebra of A is A/R where the equivalence relation

R is a congruence, that is, is also a subalgebra of A×A.

For a subclass A, PA, SA, QA is the class of all products,

subalgebras, quotient algebras of algebras in A.

A is a variety if it is closed under P , S and Q. Denote the

smallest variety containing A by V ar(A).

Note: The concepts generalize to categories. For example, re-

striction categories and allegories are varieties of categories!
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Surprising Examples

Huntington 1933: (B,∨, (·)′) is a Boolean algebra (for unique

0, 1) if and only if

x ∨ y = y ∨ x
x ∨ (y ∨ z) = (x ∨ y) ∨ z

(x′ ∨ y)′ ∨ (x′ ∨ y′)′ = x

Sholander 1951: (L,∨,∧) is a distributive lattice if and only if

x ∨ (x ∧ y) = x

x ∨ (y ∧ z) = (z ∨ x) ∧ (z ∨ x)
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Theorem (Garrett Birkhoff, 1935)

• A is a variety if and only if it is the class of all algebra

satisfying a set of further equations in the same operations.

• V ar(A) = QSP (A).

• The equations satisfied by all algebras in V ar(A) are pre-

cisely those equations satisfied by all algebras in A.

• Every variety has free algebras.

• Any variety is generated by its free algebra on ω genera-

tors. (This requires that operations are finitary, which we

assume).

Example (Tarski, 1946) Let A be the free group on 2 gener-

ators. Then V ar(A) is all groups because the free group on ω

generators is a subgroup of A.
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5 Subdirect Irreducibility

If 0 6= p 6= 1 in a Boolean algebra B, B → [0, p] × [0, p′],

q 7→ (p ∧ q, p′ ∧ q) is a Boolean algebra isomorphism.

Corollary A finite Boolean algebra has 2n elements where n

is the number of atoms.

Garrett Birkhoff 1935 generalized product decompositions. A

subdirect embedding of algebra A in a family B of al-

gebras is a subalgebra A → ∏
Bi with all Bi ∈ B and all

A→ ∏
Bi

prj−−→ Bj surjective.

A is subdirectly irreducible if |A| > 1 and A admits no

non-trivial dubdirect embedding, i.e. if A→ ∏
Bi is subdirect,

some A→ ∏
Bi

prj−−→ Bj is an isomorphism.
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Birkhoff proved:

Proposition For |A| > 1, A is subdirectly irreducible if and

only if the intersection of all non-diagonal congruences on A is

again non-diagonal.

Proof idea If R is the set of all non-diagonal congruences,

consider the canonical map A→ ∏
R∈RA/R.

Corollary Every simple algebra is subdirectly irreducible.

Corollary Every two-element algebra is simple, hence subdi-

rectly irreducible.
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Birkhoff then proved:

Theorem Let A be a (finitary!) algebra with |A| > 1. Then

A admits a subdirect embedding A → ∏
Bi with each Bi sub-

directly irreducible.

Proof idea By Zorn’s Lemma, given x 6= y let Rxy be a

maximal congruence not containing (x, y). The canonical map

A→ ∏
x 6=yA/Rxy is the desired subdirect embedding.

Corollary (Stone 1936) Every Boolean algebra is isomorphic

to a Boolean algebra of sets.

Proof 2 is the only subdirect irreducible.

Corollary 2 generates the variety of Boolean algebras. This

means truth tables can be used to establish any Boolean equa-

tion.
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Example

Let (G,+, 0) be an abelian group and also a meet semilattice

(G,∧). Consider the axioms

(BR) x ∧ (y + z) = (x ∧ y) + (x ∧ z)
(LOG) x + (y ∧ z) = (x + y) ∧ (x + z)

With (BR) get Boolean rings with 2 as unique subdirect irre-

ducible.

With (LOG) get abelian lattice-ordered groups with every sub-

group of RR being subdirect irreducible.



6 THE LATTICE OF CONGRUENCES 28

6 The Lattice of Congruences

For any {finitary} algebra A, its congruences form a complete

{algebraic} lattice Cong(A).

Say that R, S ∈ Cong(A) permute if RS = SR. In that

case, RS = R ∨ S = SR.

Theorem (Mal’cev 1954) In a variety of algebras, congruences

permute if and only if there exists a ternary term τ (x, y, z) with

τ (x, x, y) = y, τ (x, y, y) = x

In general, if congruences permute then Cong(A) is a modular

lattice.

Example For groups, τ (x, y, z) = xy−1z is a Mal’cev term.

This shows

• HK = KH for K,H normal subgroups.

• Normal subgroups form a modular lattice.
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Theorem (Alden Pixley 1963) In a variety of algebras, con-

gruences permute and all lattices Cong(A) are distributive if

and only if there exists a “two-thirds minority” term p(x, y, z)

with

p(x, y, x) = p(x, y, y) = p(y, y, x) = x

Example Heyting algebras have a two-thirds minority term

and hence so does Boolean algebras. For Boolean algebras, a

suitable example is

p(x, y, z) = (x ∧ z) ∨ (x ∧ y′ ∧ z′) ∨ (x′ ∧ y′ ∧ z)

Thus the congruences of a Boolean algebra satisfy

R ∩ (ST ) = (R ∩ S)(R ∩ T )

R(S ∩ T ) = RS ∩ RT
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7 Primal Algebras

Let FX be the free algebra generated byX . Elements are equiv-

alence classes of terms under the equations. For example, the

free semigroup is all non-empty lists x1 · · ·xn with n > 0. For

example, xyz is the equivalence class [x(yz)] = [(xy)z]. Find-

ing canonical forms such as “[a(b(cd))]” is the word problem.

The interpretation of an n-variable term τ in an algebra A

is the function An → A obtained as the image of [τ ] under the

unique homomorphism ψn : Fn → AAn
which maps i ∈ n to

the ith projection.

Algebra A is primal if A is finite with at least two elements

and is such that ψn is surjective for all n > 0 –every function

interprets some term.

If P is primal and A is an algebra in V ar(P ), congruences on

A permute and A has a distributive congruence lattice. This is

immediate from Pixley’s theorem.
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Example In the variety of Boolean algebras, 2 is primal. Sier-

pinski’s proof of this will emerge later.

In the exercises you will prove: every primal algebra is simple

and has no proper subalgebras.

AlgebraA is equationally complete if V ar(A) has no proper

subvarieties.

Theorem (Rosenbloom, 1942) A primal algebra is equation-

ally complete.
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Theorem (Krauss, 1942) Let P be a primal algebra.

• Each finite algebra in V ar(P ) is isomorphic to Pm for some

m.

• P is the only primal algebra in V ar(P ). For example, the

Boolean algebra 4 = {0, 1, x, x′} is not primal because any

f : 4→ 4 such that f (0) = x is not a Boolean term.

• Two varieties each generated by a primal algebra of the same

cardinality are isomorphic.

For example, if one knows that ZZ2 is a primal generator of the

variety of rings with unit with x2 = x (which is true), then

a Boolean algebra is the same thing as a ring with unit with

x2 = x.
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Proposition For primal P and n ≥ 0 an integer, the free

algebra generated by n in V ar(P ) is P Pn
.

Proof ψn : Fn → P Pn
is surjective by primal and injective

since Fn and P satisfy the same equations.

Theorem (Tah-Kai Hu, 1969) If P is primal, V ar(P ) is equiv-

alent to the category of Boolean algebras.

Proof Idea For A an algebra in V ar(P ), the set ΨA of homo-

morphisms A→ P is closed in the compact space PA induced

by the discrete topology on finite P , and so is a Stone space.

Then Ψ : V ar(P )op → Stone spaces is an equivalence of cate-

gories.
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8 McCarthy’s Equations for if-then-else

We now enter Case II, letting tests diverge and giving up ifp(f, f ) =

f and p∧q = q∧p. We have these universal-algebraic questions:

•What is the theory of ifp(f, g)?

•What sort of an algebra M do p, q, ... range over?

• How does such M act on an abelian monoid?

We let p ∧ q, p ∨ q take their usual “short-circuit evaluation”

meaning in computer programming.
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John McCarthy 1963

if1(f, g) = f

if0(f, g) = g

ifp(ifp(f, g), h) = ifp(f, h) = ifp(f, ifp(g, h))

if(p∧q)∨(p′∧r)(f, g) = ifp(ifq(f, g), ifr(f, g))

ifp(ifq(f, g), ifq(t, u)) = ifq(ifp(f, t), ifp(g, u))

ifp(ifq(f, g), h) = ifp(ifq(ifp(f, f ), ifp(g, g)), h)

ifp(f, ifq(g, h)) = ifp(f, ifq(ifp(g, g), ifp(h, h)))

Completeness theorem These equations reduce each term

to a canonical form and distinct canonical forms differ in the

standard model.

Thus fg = p(f, g) is a semigroup satisfying the law of the

redundant middle fgh = fh (third equation above). This

is not a rectangular band because ff 6= f .
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9 McCarthy Algebras

What do p, q, ... range over? Boole introduced the “Boolean”

connectives, but these were not axiomatized until Huntington

1904. Similarly, McCarthy used the short-circuit connectives,

but these were not axiomatized until the paper of Fernando

Guzmán and Craig Squier in 1990. They called these algebras

“C-algebras” after “Conditional logic”. By analogy to the sit-

uation with Boole, we feel these should be called McCarthy

algebras.

A McCarthy algebra is (M,∨,∧, (·)′, 0, 2) subject to

(M.1) x′′ = x

(M.2) (x ∧ y)′ = x′ ∨ y′

(M.3) (x ∧ y) ∧ z = x ∧ (y ∧ z)

(M.4) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

(M.5) (x ∨ y) ∧ z = (x ∧ z) ∨ (x′ ∧ y ∧ z)

(M.6) x ∨ (x ∧ y) = x

(M.7) (x ∧ y) ∨ (y ∧ x) = (y ∧ x) ∨ (x ∧ y)

(M.8) 0 ∧ x = 0, 2 ∧ x = 2

(M.9) 2′ = 2, 0′ ∧ 2 = 2
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Some “Boolean” properties hold: Here, 1 = 0′.

x ∧ x = x

x ∧ y = x ∧ (x′ ∨ y)
x ∨ (x′ ∧ x) = x

(x ∨ x′) ∧ y = (x ∧ y) ∨ (x′ ∧ y)
(x ∨ x′) ∧ x = x

x ∧ 1 = x = 1 ∧ x

These properties fail in every nontrivial McCarthy algebra:

x ∧ x′ = 0

x ∨ x′ = 1

3 = {0, 1, 2} is a McCarthy algebra.

x x′ x ∧ y 0 1 2 x ∨ y 0 1 2

0 1 0 0 0 0 0 0 1 2

1 0 1 0 1 2 1 1 1 1

2 2 2 2 2 2 2 2 2 2
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3 is simple, hence subdirectly irreducible.

Theorem (Guzmán and Squier) 3 is the only subdirectly irre-

ducible McCarthy algebra.

Corollary Every McCarthy algebra is a subalgebra of 3I.

Corollary All potential McCarthy algebra equations can be

verified or disproved by 3-truth tables. The Guzmán-Squier

equations are complete!

Corollary In a McCarthy algebra, x = x′ ⇒ x = 2. Thus

every finite McCarthy algebra has an odd number of elements.

Proof Obvious in 3I.

Corollary In a McCarthy algebra, define

ifp(q, r) = (p ∧ q) ∨ (p′ ∧ r)

Then all of McCarthy’s equations hold.
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Implementation of if-then-else in a BRC

The next idea was employed by Guzmán and Squier and was due

originally to Alfred Foster, 1951 who was investigating certain

rings.

Let B be a Boolean algebra. Let MB be the set of all pairs

(p, q) with p, q ∈ B, p ∧ q = 0. Define

0 = (0, 1)

2 = (0, 0)

(p, q)′ = (q, p)

(p, q) ∧ (r, s) = (p ∧ q, q ∨ (p ∧ s))
(p, q) ∨ (r, s) = (p ∨ (q ∧ r), q ∧ s)

Then MB is a McCarthy algebra.

We can do this in any Boolean restriction category.

The origin of the idea is simple. There is a natural bijection

between 3I and pairs of disjoint subsets of I via

I
f−→ 3 7→ (f−10, f−11)

The formulas above are the transport of the pointwise opera-

tions in 3I.
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This leads us to

Proposition For every odd n ≥ 3 there exists an n-element

McCarthy algebra.

Proof Given a McCarthy algebraM , consider it a subalgebra

of some 3I using the pairs-of-sets representation. If I ⊂ J with

J strictly larger, the new 0 and 1 are the pairs (0, J), (J, 1)

which together with the old pairs constitute a new McCarthy

algebra with two more elements.

Corollary 3 is not a primal McCarthy algebra.

Proof Otherwise, every finite McCarthy algebra would have

3m elements.
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10 An Oracle for Halting

What would it take to make 3 primal?

Let uxyz : 3→ 3 be 0 7→ x, 1 7→ y, 2 7→ z.

Define if : 33 → 3 by ifp(q, r) = (p ∧ q) ∨ (p′ ∧ r).
Now observe for any f : 34 → 3 that

f (w, x, y, z) = ifu100z(f (w, x, y, 0),

ifu001z(f (w, x, y, 2), f (w, x, y, 1)))

This works the same way for any n > 0, not just n = 4. For

example,

Halt = u110 = λz ifu100z(0, ifu001z(2, 1))

This 3 is primal providing if and the two unary operations

u100, u001 interpret terms. This idea dates fo Sierpinski, 1945:

“If X is finite, any functionXn → X is a composition of binary

functions”.
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Now if : 33 → 3 already interprets a McCarthy term, so we

need only to get u100, u001 : 3→ 3.

Write u010 as p↓. Then

Halt(p) = u110 = (p ∨ 1)↓

u100 = p′↓

u001 = (p ∨ 1)↓
′

Throwing in p↓ provides an oracle for the halting problem be-

cause

Halt(p) = p′↓ ∨ (p ∨ 1)↓ = u100 ∨ u′001

In that case, 3 is primal.
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A McCarthy algebra with halt or Mh-algebra adds to

McCarthy algebra a unary operation p↓ with equations

0↓ = 0 = 2↓, 1↓ = 1

p ∧ q↓ = p ∧ (p ∧ q)↓

p↓ ∨ p↓′ = 1

p = p↓ ∨ p
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We immediately have:

3 is a primal Mh-algebra.

Also, by exactly the Guzmán-Squier proof, 3 is the only subdi-

rectly irreducible Mh-algebra.

Thus every Mh-algebra embeds in some power 3I , and V ar(3)

is all Mh-algebras.

By Hu’s theorem, Mh-algebras is equivalent to Boolean alge-

bras.
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A more direct proof of this “Morita equivalence” is given in

Manes 1993:

• For H an Mh-algebra, H# = {a ∈ H : a↓ = a} is closed

under {0, 1, (·)′,∨,∧} and is a Boolean algebra under these

operations.

• H 7→ H# is an equivalence of categories.

• The inverse equivalence maps B to the McCarthy algebra

MB = {(p, q) ∈ B2 : p ∧ q = 0} which is an Mh-algebra if

(p, q)↓ = (p, p′).

Thus every Mh-algebra has form MB. General implementa-

tion of the short-circuit operations can be done in a Boolean

restriction category!
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Boolean algebras are rings. What a about Mh-algebras?

For prime p, a p-ring is a commutative ring satisfying px = 0,

xp = x. The concept is due to McCoy and Montgomery, 1937.

Take note of this equation xp = x with regard to later remarks

about abelian restriction semigroups.

In 1957, Alfred Foster proved that ZZp is a primal p-ring which

generates the variety of all p-rings. We conclude from Krauss’

theorem:

Theorem Mh-algebras ∼= 3-rings as a variety.
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11 A Cayley theorem for McCarthy algebras

An idea championed by Steve Bloom

For X a set, define nullary 1, unary f ′ and binary f ∧ g on the

set [X2 → X ] of binary operations on X by

1(x, y) = x

f ′(x, y) = f (y, x)

(f ∧ g)(x, y) = f (g(x, y), y)

We say two binary operations f, g : X2 → X commute if

each is a homomorphism in the other.

Theorem (Bloom, Ésik and Manes 1990)

1. Let A ⊂ [X2 → X ] consist of rectangular bands any two of

which commute, and be closed under 1, f ′ and f ∧ g. Then

A is a Boolean algebra.

2. If B is a Boolean algebra then B → [B2 → B], p 7→
px ∨ p′y, is an injective Boolean algebra homomorphism.
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Consider

p ∨ q 0 1 2 p‖q 0 1 2

0 0 1 2 0 0 1 2

1 1 1 1 1 1 1 2

2 2 2 2 2 2 2 2

p‖q = (p ∧ (q ∨ q′)) ∨ (p′ ∧ q)

Both of these are regular extensions of 2-valued logic in

the sense of Kleene 1952.

Cayley theorem For a McCarthy algebra,M → [M2 →M ],

p 7→ Ip(q, r) = (p ∧ q) ‖ (p′ ∧ r)

is an injective homomorphism in 0, (·)′, ∧.
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12 Abelian Restriction Semigroups

Proposition (James Johnson and Ernie Manes, 1970). Let V
be a variety of abelian monoids equipped with additional unary

operations, each of which is a monoid endomorphism together

with any set of further equations. Then there exists a rig R

with V ∼= R-Mod.

Corollary Abelian restriction semigroups arise as the modules

over a rig.

Abelian restriction semigroups are abelian semigroups together

with x such that

xx = x

x = x

xy = x y

By the way: A question from the cited paper which I believe

remains open is to characterize those rigs R for which R-Mod

is balanced.
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Observation Let A be a commutative semigroup such that

∀x ∃n > 1 xn = x. Then A is an inverse semigroup, hence a

restriction semigroup; x = xn−1.

• Every idempotent is a restriction idempotent.

• x ≤ y ⇔ x2 = xy.

• Total ⇔ invertible.

As a special case, let A =
∏
Fi be a product of (the multiplica-

tive semigroups of) finite fields with
∨ |Fi| <∞. Then

• if x ⊥ y (that is, x y = 0), x ∨ y exists and is x + y.

• A is a locally Boolean poset in the restriction order.
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Many examples of abelian restriction semigroups exist besides

these:

• Any abelian monoid with trivial restriction.

• The lower sets of an abelian restriction monoid forms an

abelian restriction monoid under the setwise operations IJ ,

I .

• One can take arbitrary products, subalgebras and quotients.

Open Question What is the rig whose modules are all abelian

restriction monoids?
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13 Conclusion

So, where are the promised challenges for restriction categories?

By now you’re all brain dead.

So I wrote them all down on the handout!

CONGRATS ON SURVIVING TUTORIAL 20!


