On Tannaka Dualities

Takeo Uramoto

Department of Mathematics, Kyoto university Foundational Methods in Computer Science 2012

14 June, 2012

Takeo Uramoto (Kyoto univ.)

On Tannaka Dualities

What Tannaka duality is.

What I do.

What should be done.

Takeo Uramoto (Kyoto univ.)

Introduction

What Tannaka duality is.

Tannaka duality is a duality between algebraic structures and their representations.

• Tannaka duality consists of reconstruction and representation. What I do.

What should be done.

Introduction

What Tannaka duality is.

Tannaka duality is a duality between algebraic structures and their representations.

• Tannaka duality consists of reconstruction and representation. What I do.

- Reconstruct a Hopf algebra in **Rel** from its representations.
- Estimate the number of monoidal structures on the category of automata.

What should be done.

Introduction

What Tannaka duality is.

Tannaka duality is a duality between algebraic structures and their representations.

• Tannaka duality consists of reconstruction and representation. What I do.

- Reconstruct a Hopf algebra in **Rel** from its representations.
- Estimate the number of monoidal structures on the category of automata.

What should be done.

- On fundamental theorem.
- On representation problem.

1. Tannaka Duality Theorem

Some referrences on Tannaka duality theorem and its generalizations.

- A. Joyal and R. Street, *An introduction to Tannaka duality and Quantum groups.*
- P. McCrudden, Tannaka duality for Maschkean categories.
- P. Deligne and J.S. Milne, *Tannakian Categories*.

Taking representations

Given a coalgebra C in \mathbf{Vect}_k , one can construct the category $\mathbf{Rep}_f(C)$ of finite dimensional representations of C. Denote the forgetful functor by $F_C : \mathbf{Rep}_f(C) \to \mathbf{Vect}_k$.

Remark: representations of C =right C-comodules.

Taking representations

Given a coalgebra C in \mathbf{Vect}_k , one can construct the category $\mathbf{Rep}_f(C)$ of finite dimensional representations of C. Denote the forgetful functor by $F_C : \mathbf{Rep}_f(C) \to \mathbf{Vect}_k$.

Remark: representations of C =right C-comodules.

Converse construction

Given $F : \mathbf{C} \to \mathbf{Vect}_k$, a functor s.t. F(A) is finite dimensional, one can construct $C_F \in \mathbf{Vect}_k$, the coalgebra obtained by:

$$C_F = \int^{\tau \in \mathbf{C}} F(\tau)^* \otimes F(\tau) \tag{1}$$

Taking representations

Given a coalgebra C in \mathbf{Vect}_k , one can construct the category $\mathbf{Rep}_f(C)$ of finite dimensional representations of C. Denote the forgetful functor by $F_C : \mathbf{Rep}_f(C) \to \mathbf{Vect}_k$.

Remark: representations of C =right C-comodules.

Converse construction

Given $F : \mathbf{C} \to \mathbf{Vect}_k$, a functor s.t. F(A) is finite dimensional, one can construct $C_F \in \mathbf{Vect}_k$, the coalgebra obtained by:

$$C_F = \int^{\tau \in \mathbf{C}} F(\tau)^* \otimes F(\tau) \tag{1}$$

Constructively, this is constructed by taking an appropriate quatient space:

$$C_F = \left(\bigoplus_{\tau \in \mathbf{C}} F(\tau)^* \otimes F(\tau) \right) / \sim (2)$$

14 June, 2012

Takeo Uramoto (Kyoto univ.)

On Tannaka Dualities

Fundamental Theorem of Coalgebras

A coalgebra in \mathbf{Vect}_k is the union of its finite dimensional sub-coalgebras.

This is essentially because vectors in $C \otimes C$ is a *finite* sum of $c_1 \otimes c_2$.

Fundamental Theorem of Coalgebras

A coalgebra in \mathbf{Vect}_k is the union of its finite dimensional sub-coalgebras.

This is essentially because vectors in $C \otimes C$ is a *finite* sum of $c_1 \otimes c_2$.

Theorem (Reconstruction theorem)

For an arbitrary coalgebra $C \in \mathbf{Vect}_k$, if $F : \mathbf{C} \to \mathbf{Vect}_k$ is the forgetful functor $F_C : \mathbf{Rep}_f(C) \to \mathbf{Vect}_k$, then we have an isomorphism:

$$C \xrightarrow{\simeq} C_{F_C}$$
 (3)

Coend formula

A coalgebra can be reconstructed from its finite dimensional representations:

$$C = \int^{\tau \in \operatorname{Rep}_f(C)} F(\tau)^* \otimes F(\tau)$$

Tannaka duality in \mathbf{Vect}_k

Comparison functor

There is a canonical functor $\overline{F} : \mathbf{C} \to \mathbf{Rep}_f(C_F)$ such that the following commutes:

$$C - - - \frac{\bar{F}}{F} \gg \operatorname{Rep}_{f}(C_{F})$$

$$F \qquad F_{C_{F}} \qquad (4)$$

$$Vect_{k}$$

Remarkably, there is a characterization of fibre functors $F : \mathbf{C} \to \mathbf{Vect}_k$ such that $\overline{F} : \mathbf{C} \to \mathbf{Rep}_f(C_F)$ is an equivalence.

Comparison functor

There is a canonical functor $\overline{F} : \mathbf{C} \to \mathbf{Rep}_f(C_F)$ such that the following commutes:

$$\mathbf{C}_{---\frac{\bar{F}}{-}} \gg \mathbf{Rep}_{f}(C_{F})$$

$$F \qquad F_{C_{F}} \qquad (4)$$

$$\mathbf{Vect}_{k}$$

• • • • • • • • • • • •

Remarkably, there is a characterization of fibre functors $F : \mathbf{C} \to \mathbf{Vect}_k$ such that $\overline{F} : \mathbf{C} \to \mathbf{Rep}_f(C_F)$ is an equivalence.

Theorem (Representation theorem)

If **C** is k-linear abelian and F is exact and faithful, then \overline{F} is an equivalence of categories (and vice versa).

Takeo Uramoto (Kyoto univ.)

Main theme of Tannaka duality can be decomposed into the following two parts:

• Reconstruction problem:

to reconstruct an algebraic structure from the category of its representations.

- compact groups [Tannaka, '39], [Krein, '49]
- locally compact groups [Tatsuuma, '67]
- Hopf algebras [Ulbrich, '91]
- quasi Hopf algebras [Majid, '92] etc.
- Representation problem:

to characterize what category is equivalent to a category of representations of an algebraic structure.

- pro-algebraic groups [Deligne and Milne, '81] : Tannakian category
- compact groups [Doplicher and Roberts, '89]

Universality of Coalgebra

The following universality of a coalgebra is important:

 $C = \int^{\tau \in \operatorname{Rep}_{f}(C)} F(\tau)^{*} \otimes F(\tau)$ because this universality shows several correspondences between structures on $\operatorname{Rep}_{f}(C)$ and those on C. Bialgebra structures induce monoidal structures.

Multiplication to monoidal structure

Given a bialgebra structure (μ, η) on a coalgebra $C \in \mathbf{Vect}_k$, one can construct a monoidal structure $(\otimes_{\mu}, I_{\eta})$ on $\mathbf{Rep}_f(C)$, s.t. the forgetful functor $F_C : \mathbf{Rep}_f(C) \to \mathbf{Vect}_k$ is monoidal. Bialgebra structures induce monoidal structures.

Multiplication to monoidal structure

Given a bialgebra structure (μ, η) on a coalgebra $C \in \mathbf{Vect}_k$, one can construct a monoidal structure $(\otimes_{\mu}, I_{\eta})$ on $\mathbf{Rep}_f(C)$, s.t. the forgetful functor $F_C : \mathbf{Rep}_f(C) \to \mathbf{Vect}_k$ is monoidal.

Conversely, we have the inverse construction due to the universality of coalgebras.

Monoidal structure to multiplication

Given a functor $F : \mathbf{C} \to \mathbf{Vect}_k$ and a monoidal structure (\otimes, I) on \mathbf{C} s.t. F is monoidal, one can construct a bialgebra structure (μ_{\otimes}, η_I) on C_F .

Remark : We mean strong monoidal by "monoidal". **Remark** : The non-strong case is also studied in, e.g., [Majid, '92].

・ロト ・聞ト ・ヨト ・ヨト

Antipodes induce left dual objects.

Antipode to duals

If a bialgebra $B \in \mathbf{Vect}_k$ has its antipode $S : B \to B$, then the monoidal category $\mathbf{Rep}_f(B)$ has left dual objects.

Antipodes induce left dual objects.

Antipode to duals

If a bialgebra $B \in \mathbf{Vect}_k$ has its antipode $S : B \to B$, then the monoidal category $\mathbf{Rep}_f(B)$ has left dual objects.

The converse is also true.

Dual to antipode

Given a monoidal functor $F : \mathbf{C} \to \mathbf{Vect}_k$ s.t. **C** has left dual objects, then the bialgebra C_F is a Hopf algebra.

Especially..

The monoidal category $\operatorname{Rep}_{f}(B)$ has left dual objects if and only if B is a Hopf algebra.

Takeo Uramoto (Kyoto univ.)

Image: Image:

There are known several directions to generalize Tannaka duality theorem and its analogues.

- Tannakian categories [P. Deligne and J. Milne, '82]
- Tannaka duality for Maschkean categories [P. McCrudden, '02]
- Enriched Tannaka reconstruction [B. Day, '96]

2. Discrete Analogue of Tannaka Duality

Tannaka duality in **Rel**

This study is originaly aimed at solving the following classification problem.

Original Problem

- How many monoidal structures can exist on the category Aut(Σ) of automata and simulations?
- Are there infinitely many monoidal structures?
- Can we give a good classification of them?

Tannaka duality in **Rel**

This study is originaly aimed at solving the following classification problem.

Original Problem

- How many monoidal structures can exist on the category Aut(Σ) of automata and simulations?
- Are there infinitely many monoidal structures?
- Can we give a good classification of them?

The motivation comes from the following recent approach to concurrency theory based on categorical framework of state-based systems.

Motivation

"The microcosm principle and concurrency in coalgebra" [Jacobs et al, '08]

• Understand several existing constructions on state-based systems as categorical operations on particular category of universal coalgebra.

Image: A matrix

Tannaka duality in Rel: Reconstruction problem

Given a Hopf algebra $H \in \mathbf{Rel}$, we have following universality of H.

(Almost trivial) Universality of H $H = \int^{\tau \in \operatorname{Rep}(H)} F(\tau)^* \otimes F(\tau)$ (5)

But this expression is not satisfactory because **Rel** is neither complete nor cocomplete. In fact:

Tannaka duality in Rel: Reconstruction problem

Given a Hopf algebra $H \in \mathbf{Rel}$, we have following universality of H.

(Almost trivial) Universality of H

$$H = \int^{\tau \in \operatorname{Rep}(H)} F(\tau)^* \otimes F(\tau)$$
(5)

But this expression is not satisfactory because **Rel** is neither complete nor cocomplete. In fact:

Lack of (co-) equalizers

$$X = \{\bullet, \bullet\} \in \mathbf{Rel}$$
 and consider the following relation $f : X \to X$:
 $\bullet \to \bullet$
Then there is no equalizer for f and the identity $id_X : X \to X$.

Takeo Uramoto (Kyoto univ.)

Tannaka duality theorem (Reconstruction of compact groups)

G: compact group, $\operatorname{Rep}_f(G, \mathbb{C})$: category of fin. dim. rep. of *G*. $F : \operatorname{Rep}_f(G, \mathbb{C}) \to \operatorname{Vect}_k$ = the forgetful functor. Let $T(G) \subseteq \operatorname{End}(F)$ be a subset of natural transformations $F \Rightarrow F$ satisfying:

$$U(\tau \otimes \rho) = U(\tau) \otimes U(\rho)$$
$$U(I) = id_I$$
$$\bar{U} = U$$

Then T(G) forms a topological group and is canonically isomorphic to G.

Similar construction is known also for pro-algebraic groups [Deligne-Milne].

Tannaka duality theorem (Reconstruction of compact groups)

G: compact group, $\operatorname{Rep}_f(G, \mathbb{C})$: category of fin. dim. rep. of *G*. $F : \operatorname{Rep}_f(G, \mathbb{C}) \to \operatorname{Vect}_k$ = the forgetful functor. Let $T(G) \subseteq \operatorname{End}(F)$ be a subset of natural transformations $F \Rightarrow F$ satisfying:

$$U(\tau \otimes \rho) = U(\tau) \otimes U(\rho)$$
$$U(I) = id_I$$
$$\bar{U} = U$$

Then T(G) forms a topological group and is canonically isomorphic to G.

Similar construction is known also for pro-algebraic groups [Deligne-Milne].

Reconstruction via natural transformations Can we reconstruct $H \in \mathbf{Rel}$ by using some class of natural transformations $F_H \Rightarrow F_H$ on the forgetful functor $F_H : \mathbf{Rep}(H) \to \mathbf{Rel}$?

Takeo Uramoto (Kyoto univ.)

C: arbitrary monoidal category with left dual objects. $F : \mathbf{C} \rightarrow \mathbf{Rel}$: a (strict) monoidal functor.

Poset structure on End(F)

Given $U, V : F \Rightarrow F$, we denote by $U \leq V$ if for each $\tau \in \mathbf{C}$,

 $U(\tau) \subseteq V(\tau)$

Remark : End(F) \ni U : $F \Rightarrow F$ consists of $U(\tau) \subseteq F(\tau) \times F(\tau)$.

C: arbitrary monoidal category with left dual objects. $F : \mathbf{C} \rightarrow \mathbf{Rel}$: a (strict) monoidal functor.

Poset structure on End(F)

Given $U, V : F \Rightarrow F$, we denote by $U \leq V$ if for each $\tau \in \mathbf{C}$,

 $U(\tau) \subseteq V(\tau)$

Remark : End(F) \ni U : $F \Rightarrow F$ consists of $U(\tau) \subseteq F(\tau) \times F(\tau)$.

Conjugate operator on End(F)

Given $U \in \text{End}(F)$, the conjugate $\overline{U} : F \Rightarrow F$ is defined: for each $\tau \in \mathbf{C}$, the component on τ is given by,

$$\bar{U}(\tau) = (U(\tau^*))^*$$

Remark : The internal * is dual in C, and the external * is dual in Rel.

17 / 34

Especially, there is the minimal element $0: F \Rightarrow F$ whose components are empty sets $0(\tau) = \emptyset \subseteq F(\tau) \times F(\tau)$.

Atoms in End(F)

A natural transformation $U: F \Rightarrow F$ is called an atom if for every V, $V \leq U$ implies that V is equal to either 0 or U.

Denote by $H_F \subseteq \operatorname{End}(F)$ the set of all atoms in $\operatorname{End}(F)$.

Especially, there is the minimal element $0: F \Rightarrow F$ whose components are empty sets $0(\tau) = \emptyset \subseteq F(\tau) \times F(\tau)$.

Atoms in End(F)

A natural transformation $U: F \Rightarrow F$ is called an atom if for every V, $V \leq U$ implies that V is equal to either 0 or U.

Denote by $H_F \subseteq \operatorname{End}(F)$ the set of all atoms in $\operatorname{End}(F)$.

Some relations on H_F

$$\begin{split} H_F \times (H_F \times H_F) &\supseteq \Delta_F &= \{(U, (V, W)) \mid U \leq W \circ V\} \\ (H_F \times H_F) \times H_F \supseteq \mu_F &= \{((U, V), W) \mid U \otimes V \leq W\} \\ H_F \times I \supseteq \epsilon_F &= \{(U, *) \mid U \leq id_F\} \\ I \times H_F \supseteq \eta_F &= \{(*, U) \mid \forall V, W. \ V \otimes U \leq W \Rightarrow V \leq W\} \\ H_F \times H_F \supseteq S_F &= \{(U, V) \mid U \leq \bar{V}\} \end{split}$$

This structure gives a reconstruction of Hopf algebras in Rel.

Theorem (Reconstruction theorem)

If $F : \mathbf{C} \to \mathbf{Rel}$ is $F_H : \mathbf{Rep}(H) \to \mathbf{Rel}$ for some $H \in \mathbf{Rel}$, then there is a canonical isomorphism of Hopf algebras:

$$H \simeq H_{F_H}$$

We describe a sketch of the proof.

This structure gives a reconstruction of Hopf algebras in Rel.

Theorem (Reconstruction theorem)

If $F : \mathbf{C} \to \mathbf{Rel}$ is $F_H : \mathbf{Rep}(H) \to \mathbf{Rel}$ for some $H \in \mathbf{Rel}$, then there is a canonical isomorphism of Hopf algebras:

$$H \simeq H_{F_H}$$

We describe a sketch of the proof.

Notation

Let H be a Hopf algebra in **Rel** and $\tau = (X \rightarrow X \otimes H) \in \mathbf{Rep}(H)$.

$$x \xrightarrow{a} x' \Leftrightarrow (x, (x', a)) \in \tau$$

Remark : $\tau \subseteq X \times (X \times H)$.

Sketch of the proof.

Lemma. 1 (Comultiplication)

For every $a, b, c \in H$, we have:

$$(a,(b,c)) \in \Delta \quad \Leftrightarrow \quad \left\{ egin{array}{ll} orall au = (X o X \otimes H) \in \mathbf{Rep}(H), \ x \stackrel{a}{ o} x' \Rightarrow \exists x''. \ x \stackrel{b}{ o} x'' \stackrel{c}{ o} x' \end{array}
ight.$$

Remark :
$$\Delta \subseteq H \times (H \times H)$$
.

Lemma. 2 (Multiplication)

For every $a, b, c \in H$, we have:

$$((a,b),c) \in \mu \iff \begin{cases} \forall \tau = (X \to X \otimes H), \forall \rho = (Y \to Y \otimes H) \in \mathbf{Rep}(H), \\ x \xrightarrow{a} x' \text{ in } \tau \land y \xrightarrow{b} y' \text{ in } \rho \\ \Rightarrow x \otimes y \xrightarrow{c} x' \otimes y' \text{ in } \tau \otimes \rho \end{cases}$$

Remark : The underlying set of $\tau \otimes \rho$ is given by $X \times Y = X \otimes Y$. Wedenote $(x, v) \in X \otimes Y$ by $x \otimes v$.Image: Colspan="2">Colspan="2"Takeo Uramoto (Kyoto univ.)On Tannaka Dualities14 June, 201220 / 34

Sketch of the proof

Lemma. 3 (Antipode)

For every $a, b \in H$, we have:

$$(a,b) \in S \iff \begin{cases} \forall \tau = (X \to X \otimes H) \in \mathbf{Rep}(H), \\ x \xrightarrow{a} x' \text{ in } \tau \Rightarrow x' \xrightarrow{b} x \text{ in } \tau^* \end{cases}$$

Remark : The underlying set of τ^* is also $X(=X^*)$ for $\tau = (X \to X \otimes H)$.

Lemma. 3 (Antipode)

For every $a, b \in H$, we have:

$$(a,b) \in S \iff \begin{cases} \forall \tau = (X \to X \otimes H) \in \mathbf{Rep}(H), \\ x \xrightarrow{a} x' \text{ in } \tau \Rightarrow x' \xrightarrow{b} x \text{ in } \tau^* \end{cases}$$

Remark : The underlying set of τ^* is also $X(=X^*)$ for $\tau = (X \to X \otimes H)$. We restate these lemmas in terms of natural transformations. To do so, we need the following notation.

Notation

For $a \in H$, a natural transformation $U_a : F \Rightarrow F$ is defined: for each $\tau = (X \rightarrow X \otimes H)$, the component $U_a(\tau) \subseteq X \times X$ is given by,

$$U_a(\tau) = \{(x, x') \mid x \xrightarrow{a} x' \text{ in } \tau\}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition. 1 (Comultiplication)

For every $a, b, c \in H$, we have:

$$(a,(b,c))\in\Delta \Longleftrightarrow U_a\leq U_c\circ U_b$$

Proposition. 1 (Comultiplication)

For every $a, b, c \in H$, we have:

$$(a,(b,c))\in\Delta \Longleftrightarrow U_a\leq U_c\circ U_b$$

Proposition. 2 (Multiplication)

For every $a, b, c \in H$:

$$((a, b), c) \in \mu \iff U_a \otimes U_b \leq U_c$$

Proposition. 3 (Antipode)

For every $a, b \in H$:

$$(a,b) \in S \iff U_a \leq \bar{U}_b$$

Takeo Uramoto (Kyoto univ.)

In the case of compact group G.. [Joyal-Street]

A natural transformation $U: F \Rightarrow F$ on $F: \operatorname{Rep}_f(G, \mathbb{C}) \to \operatorname{Vect}_k$ is of the form $\pi(x)$ for some $x \in G$ if and only if U is self-conjugate and tensor-preserving.

In the case of compact group G.. [Joyal-Street]

A natural transformation $U: F \Rightarrow F$ on $F: \operatorname{Rep}_f(G, \mathbb{C}) \to \operatorname{Vect}_k$ is of the form $\pi(x)$ for some $x \in G$ if and only if U is self-conjugate and tensor-preserving.

The notion of atoms characterizes U_a .

Proposition. 4

A natural transformation $U : F_H \Rightarrow F_H$ on $F_H : \operatorname{Rep}(H) \to \operatorname{Rel}$ is of the form U_a for some $a \in H$ if and only if U is an atom in $\operatorname{End}(F_H)$.

In the case of compact group G.. [Joyal-Street]

A natural transformation $U : F \Rightarrow F$ on $F : \operatorname{Rep}_f(G, \mathbb{C}) \to \operatorname{Vect}_k$ is of the form $\pi(x)$ for some $x \in G$ if and only if U is self-conjugate and tensor-preserving.

The notion of atoms characterizes U_a .

Proposition. 4

A natural transformation $U : F_H \Rightarrow F_H$ on $F_H : \operatorname{Rep}(H) \to \operatorname{Rel}$ is of the form U_a for some $a \in H$ if and only if U is an atom in $\operatorname{End}(F_H)$.

Thus now we can describe the canonical isomorphism from H to H_{F_H} :

Canonical isomorphism

The canonical isomorphism is explicitly given by the following correspondence:

$$U_{ullet}:H
i a\mapsto U_a\in H_{F_H}$$

Takeo Uramoto (Kyoto univ.)

Example (canonical embedding $Sets \rightarrow Rel$)

Let F_0 : **Sets** \rightarrow **Rel** be the canonical embedding, then the poset $\text{End}(F_0)$ is isomorphic to the poset represented by the following Hasse diagram:

$$\bigcirc id_{F_0}$$

 $\bigcirc 0$

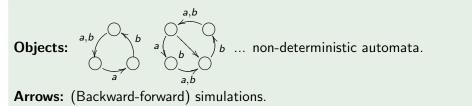
Thus H_{F_0} is a singleton $\{id_{F_0}\}$.

We do not forget the original problem.

Original problem

How many monoidal structures can exist on $Aut(\Sigma)$? Are they finite or infinite? Can we give a good classification of them?

Rough description of $Aut(\Sigma)$



Some consequences for original problem

Typical monoidal structures on $Aut(\Sigma)$

- CCS-like parallel composition of automata.
- CSP-like parallel composition of automata.
- Interleaving composition of automata.

Typical monoidal structures on $Aut(\Sigma)$

- CCS-like parallel composition of automata.
- CSP-like parallel composition of automata.
- Interleaving composition of automata.

There is a functor $F : \operatorname{Aut}(\Sigma) \to \operatorname{Rel}$ that sends an automaton to its state-set, and a simulation to itself. These typical monoidal structures make $F : \operatorname{Aut}(\Sigma) \to \operatorname{Rel}$ strict monoidal.

Typical monoidal structures on $Aut(\Sigma)$

- CCS-like parallel composition of automata.
- CSP-like parallel composition of automata.
- Interleaving composition of automata.

There is a functor $F : Aut(\Sigma) \to Rel$ that sends an automaton to its state-set, and a simulation to itself. These typical monoidal structures make $F : Aut(\Sigma) \to Rel$ strict monoidal.

Restricted classification problem

Classify monoidal structures on $Aut(\Sigma)$ such that $F : Aut(\Sigma) \rightarrow Rel$ is strict monoidal.

Remark : In what follows, "monoidal structure" means such monoidal structures.

(日) (周) (三) (三)

Classification of monoidal structures

There is a bijective correspondence between monoidal structures on $Aut(\Sigma)$ and bialgebra structures on the coalgebra Σ^* consisting of finite words.

Classification of monoidal structures

There is a bijective correspondence between monoidal structures on $Aut(\Sigma)$ and bialgebra structures on the coalgebra Σ^* consisting of finite words.

Example (Interleaving v.s. word shuffling)

The interleaving composition on $Aut(\Sigma)$ is in correspondence with the shuffling operation on finite words under the above bijective correspondence.

Classification of monoidal structures

There is a bijective correspondence between monoidal structures on $Aut(\Sigma)$ and bialgebra structures on the coalgebra Σ^* consisting of finite words.

Example (Interleaving v.s. word shuffling)

The interleaving composition on $Aut(\Sigma)$ is in correspondence with the shuffling operation on finite words under the above bijective correspondence.

Corollary: $Aut(\Sigma)$ has only finitely many monoidal structures.

If the set Σ consists of *n* members, then the number M(n) of monoidal structures on $Aut(\Sigma)$ is finite: there is a rough estimation,

$$n! \leq M(n) \leq 2^{n^3+n}.$$

Takeo Uramoto (Kyoto univ.)

One can prove the following fact by combinatorial argument on finite words.

Lemma: Σ^* can not be a Hopf algebra in **Rel**.

The coalgebra $\boldsymbol{\Sigma}^*$ can not be a Hopf algebra with respect to any bialgebra structure on it.

One can prove the following fact by combinatorial argument on finite words.

Lemma: Σ^* can not be a Hopf algebra in **Rel**.

The coalgebra $\boldsymbol{\Sigma}^*$ can not be a Hopf algebra with respect to any bialgebra structure on it.

This fact is translated to a fact about $Aut(\Sigma)$ via Tannaka dualtiy.

Corollary: $Aut(\Sigma)$ cannot be autonomous.

More strongly: for any monoidal structure on $Aut(\Sigma)$, there exists an automaton that does not have its left dual.

Some consequences for original problem

Automata are representations of finite words.

For $F : \operatorname{Aut}(\Sigma) \to \operatorname{Rel}$, we have an equivalence: $\operatorname{Aut}(\Sigma) \simeq \operatorname{Rep}(H_F)$:

- $H_F = \Sigma^*$: the set of finite words.
- $\Delta_F = \{(u, (v, w)) \mid u = v \cdot w\} \subseteq H_F \times (H_F \times H_F)$

Some consequences for original problem

Automata are representations of finite words.

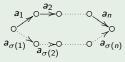
For $F : \operatorname{Aut}(\Sigma) \to \operatorname{Rel}$, we have an equivalence: $\operatorname{Aut}(\Sigma) \simeq \operatorname{Rep}(H_F)$:

• $H_F = \Sigma^*$: the set of finite words.

•
$$\Delta_F = \{(u, (v, w)) \mid u = v \cdot w\} \subseteq H_F \times (H_F \times H_F)$$

Example: Automata with permutable paths

 $\mathbf{C} \subseteq \mathbf{Aut}(\Sigma)$: the full subcategory consisting of automata such that for each $\sigma \in \mathfrak{S}_n$,



For the restriction $F : \mathbf{C} \to \mathbf{Rel}$, we have an equivalence $\mathbf{C} \simeq \mathbf{Rep}(H_F)$.

• H_F : the set of multisets

•
$$\Delta_F = \{(p, (q, r)) \mid p = q + r\} \subseteq H_F \times (H_F \times H_F)$$

э

Observation

In the reconstruction procedure of $H \in \mathbf{Rel}$, the poset structure of End(F) plays a key role...why?

Observation

In the reconstruction procedure of $H \in \mathbf{Rel}$, the poset structure of End(F) plays a key role...why?

Observation

For $F : \mathbf{C} \to \mathbf{Rel}$, the coend exists if and only if the associated poset $\operatorname{End}(F)$ is freely generated by its atoms.

Observation

In the reconstruction procedure of $H \in \mathbf{Rel}$, the poset structure of End(F) plays a key role...why?

Observation

For $F : \mathbf{C} \to \mathbf{Rel}$, the coend exists if and only if the associated poset $\operatorname{End}(F)$ is freely generated by its atoms.

Observation

- Rel can be embedded into the category SLat
- \otimes on **Rel** can be extended to \otimes on **SLat**.
- SLat is complete and cocomplete.

Lesson from these observation

The place we should work in is not **Rel**, but **SLat** (or something like that).

Lesson from these observation

The place we should work in is not **Rel**, but **SLat** (or something like that).

Correspondence

- The category \mathbf{Vect}_k^f of finite dimensional spaces is repraced by **Rel**.
- The category **Vect**_k is replaced by **SLat**.

Lesson from these observation

The place we should work in is not **Rel**, but **SLat** (or something like that).

Correspondence

- The category \mathbf{Vect}_k^f of finite dimensional spaces is repraced by **Rel**.
- The category **Vect**_k is replaced by **SLat**.

Conjecture: Fundamental theorem in SLat

For a coalgebra $C \in \mathbf{SLat}$:

$$\mathcal{C} = \int^{ au \in \mathbf{Rep}_f(\mathcal{C})} \mathcal{F}(au)^* \otimes \mathcal{F}(au)$$

where $\operatorname{Rep}_{f}(C)$ consists of representations of C whose underlying set is in Rel, and $F : \operatorname{Rep}_{f}(C) \to \operatorname{SLat}$ denotes the forgetful functor.

Significant point of Tannaka duality

Starting from a category **C** which seemingly has nothing to do with coalgebras, one can prove an equivalence of **C** and the category $\operatorname{Rep}_{f}(C)$ of some coalgebra C.

Significant point of Tannaka duality

Starting from a category **C** which seemingly has nothing to do with coalgebras, one can prove an equivalence of **C** and the category $\operatorname{Rep}_{f}(C)$ of some coalgebra C.

Conjecture (hope)

There is a category **Game** of some kind of games and a functor $F : \text{Game} \rightarrow \text{SLat}$ with $F(\tau)$ in **Rel**, such that **Game** $\simeq \text{Rep}_f(C_F)$.

Thank you!

Image: A mathematical states of the state

æ