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Introduction

Linear actegories: A linearly distributive category with a monoidal
category acting on it both covariantly and contravariantly.
-The Logic of Message Passing (J. R. B. Cockett and Craig Pastro)

We shall prove that the actions give the structure of a parameterized
linear functor and the inductive and coinductive data types form a
linear functor pair (when data is built on a linear functor).

In particular, circuit diagrams are helpful to establish these facts.
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Motivation

The logic of products and coproducts gives the logic of
communication along channel.

Linearly distributive categories manage communication channels.

Linear actegories provide message passing in process world.

Linear functor gives a basis on which one can build inductive (and
coinductive) concurrent data or protocols.
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Algebraic definition of Inductive datatype

An inductive datatype for an endo-functor F : X → X is:

An object µx.F (x).

A map cons : F (µx.F (x)) → µx.F (x) such that given any object
A ∈ X and a map f : F (A) → A, there exists a unique fold map such
that the following diagram commutes.

F (µx.F (x))

F (fold(f))
���
�
�

cons // µx.F (x)

fold(f)

���
�
�

F (A)
f

// A
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Algebraic definition of Coinductive datatype

Dually a coinductive datatype for F is:

An object νx.F (x).

A map dest : νx.F (x) → F (νx.F (x)) such that given any object
A ∈ X and a map f : A → F (A), there exists a unique unfold map
such that the following diagram commutes.

A

unfold(f)
���
�
�

f // F (A)

F (unfold(f))
���
�
�

νx.F (x)
dest // F (νx.F (x))
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Fixed points

Lambek’s Lemma

If F : X → X is a functor for which µx.F (x) exists then
cons : F (µx.F (x)) → µx.F (x) is an isomorphism and (dually) if νx.F (x)
exists then dest : νx.F (x) → F (νx.F (x)) is an isomorphism.
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Circular combinator (alternative method)

A (circular) combinator over F is

A
f // D

F (A)
c[f ] // D

c[ ]

where

A

f ��@
@@

@@
@@

h // A′

f ′~~}}
}}

}}
}

D

⇒ F (A)

c[f ] ""DD
DD

DD
DD

F (h) // F (A′)

c[f ′]||yyyyyyyy

D
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Circular definition of Inductive datatype

A circular inductive datatype is:

An object µx.F (x).

A map cons : F (µx.F (x)) → µx.F (x) such that given a (circular)
combinator c [ ] over F , there exists a unique fold map µa.c[a] such
that the following diagram commutes.

F (µx.F (x))

c[µa.c[a]]
��

cons //µx.F (x)

µa.c[a]
wwooooooooooooo

D
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Circular definition of Coinductive datatype

Dually a circular coinductive datatype is:

An object νx.F (x).

A map dest : νx.F (x) → F (νx.F (x)) such that given a (circular)
combinator c[ ] over F , there exists a unique unfold map νb.c[b] such
that the following diagram commutes.

D

c[νb.c[b]]
��

νb.c[b] //νx.F (x)

destwwooooooooooo

F (νx.F (x))
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Circular rules

We can express cons, dest, fold and unfold in proof theoretically.

fold map

∀X f : X → D

X → D
F (X) → D

µx.F (x) → D

unfold map

∀X f : D → X

D → X
D → F (X)

D → νx.F (x)
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Circular rules

cons

X
f // F (µx.F (x))

X
cons[f ]// µx.F (x)

dest

F (νx.F (x))
f // X

νx.F (x)
dest[f ] // X

These circular rules are used to form datatypes.
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Example for inductive datatype

The set of natural numbers N with zero and succ constructors

1 + N
[zero,succ] //N

This map forms an inductive datatype for natural numbers such that
the following diagram commutes.

1 + N

id+f

��

[zero,succ] // N

f

��
1 + U

[u,h]

// U

1

1

zero // N

f

��

N

f

��

succoo

1
u

// U U
h

oo

If we use circular combinator, then
∀X X `f N

1 `zero N X `succ(X) N

1 + X ` N
N `g N
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Polycategories

A Polycategory X is a category that consists of list of objects with
polymaps.

For example, P,Q,R ` A,B, C.

These maps correspond to Gentzen sequents.

Composition of polymaps is the cut rules. For example,

P,Q ` R,A A,B ` C,D

P,Q,B ` R,C, D
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Representability of ⊗ and ⊕

We can represent ⊗ and ⊕ by sequents calculus rules of inference. For
example,

Γ1, X, Y, Γ2 ` ∆

Γ1, X ⊗ Y, Γ2 ` ∆

Γ ` ∆1, X, Y, ∆2

Γ ` ∆1, X ⊕ Y, ∆2

Γ1, X ` ∆1 Y, Γ2 ` ∆2

Γ1, X ⊕ Y, Γ2 ` ∆1,∆2

Γ1 ` ∆1, X Γ2 ` Y, ∆2

Γ1, Γ2 ` ∆1, X ⊗ Y, ∆2
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Linear distribution

A representable polycategory gives us linearly distributive category.

For example, a derivation of one linear distribution is

X ` X Y ` Y
X, Y ` X ⊗ Y Z ` Z

X, Y ⊕ Z ` X ⊗ Y, Z

X ⊗ (Y ⊕ Z) ` (X ⊗ Y )⊕ Z
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Symmetric linearly distributive category

A linearly distributive category is symmetric if both the tensors and pars
are symmetric. For symmetric case, there are two linear distributions.

δL
R : A⊗ (B ⊕ C) → B ⊕ (A⊗ C)

δR
L : (B ⊕ C)⊗A → (B ⊗A)⊕ C

that must satisfy some coherence conditions. For example,

δL
R; 1⊕ a⊗ = a⊗; 1⊗ δL

R; δL
R

δR
L ; δL

R ⊕ 1; a⊕ = δL
R; 1⊕ δR

L
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Circular rules for linearly distributive categories

Circular rules are natural formalism to get fixed points in linearly
distributive categories.

If we have closure, then
∀X X ` Γ ⇒ ∆

X ` Γ ⇒ ∆

F (X) ` Γ ⇒ ∆
c[ ]

µx.F (x) ` Γ ⇒ ∆

Γ, µx.F (x) ` ∆

But it is not expressable in the linearly distributive setting.

Circular rules allow us to express this

∀X Γ, X ` ∆

Γ, X ` ∆

Γ, F (X) ` ∆
c[ ]

Γ, µx.F (x) ` ∆
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Monoidal functor

Suppose F : X → X is a monoidal functor.

So there must be the following two natural transformations.

I m⊗ : F (A)⊗ F (B) → F (A⊗B)
I m> : > → F (>)

that must satisfy two equations.
I (m> ⊗ 1) m F (u) = u
I a⊗ (1⊗m) m = (m⊗ 1) m F (a⊗)
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Is the greatest fixed point of a monoidal functor monoidal?

Proposition

The greatest fixed point of a monoidal functor is monoidal and dually the
least fixed point of a comonoidal functor is comonoidal.

Consider F̂ = νx.F ( , x) is the greatest fixed point of a monoidal
functor.

To prove that F̂ is monoidal, we have to show that the two equations
hold.

Consider the first equation, (m̂> ⊗ 1) m̂ F̂ (u) = u

It suffices to show that for a fixed g, (m̂> ⊗ 1) m̂ F̂ (u) = unfold(g)
and u = unfold(g).
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Defining diagram of m̂ and m̂>

bF (A)⊗ bF (B)

cm ((RRRRRRRRRRRRR
dest⊗dest // F (A, bF (A))⊗ F (B, bF (B))

m⊗ // F (A ⊗ B, bF (A)⊗ bF (B))

F (1,cm)

��bF (A ⊗ B)
dest

// F (A ⊗ B, bF (A ⊗ B))

>

dm>

��

m> // F (>,>)

F (1, dm>)

��bF (>)
dest

// F (>, bF (>))
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(m̂> ⊗ 1) m̂ F̂ (u) = unfold[(m> ⊗ dest) m⊗ F (u, 1)]
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u = unfold[(m> ⊗ dest) m⊗ F (u, 1)]

So (m̂> ⊗ 1) m̂ F̂ (u) = u

The greatest fixed point of a monoidal functor is monoidal.
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Linear Functor

A linear functor is a functor that consists of a monoidal (F : X → Y)
and a comonoidal (F̄ : X → Y) functor and four natural
transformations (called “linear strengths”).

vR
⊗ : F (A⊕B) → F̄ (A)⊕ F (B)

vL
⊗ : F (A⊕B) → F (A)⊕ F̄ (B)

vR
⊕ : F (A)⊗ F̄ (B) → F̄ (A⊗B)

vL
⊕ : F̄ (A)⊗ F (B) → F̄ (A⊗B)

The above data must satisfy several coherence conditions. For
example,

(m⊗ ⊗ 1) vR
⊕ F̄ (a⊗) = a⊗ (1⊗ vR

⊕) vR
⊕

(vL
⊗ ⊗ 1) δR

R (1⊕ vL
⊕) = m⊗ F (δR

R) vL
⊗

(vR
⊗ ⊗ 1) δR

R (1⊕m⊗) = m⊗ F (δR
R) vR

⊗
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Linear fixed point

Proposition

The fixed point of a linear functor is linear.

In order to prove this, we have to show that

The greatest fixed point of a monoidal functor, F̂ is monoidal and

(dually) the least fixed point of a comonoidal functor, ¯̂F is
comonoidal.(Proved)

There exist linear strengths between these two fixed point functors
that must satisfy the coherence conditions.
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Does linear strength exist?

Prove F̂ (A)⊗ ¯̂F (B) `v̂R
⊕

¯̂F (A⊗B) map exists and it is unique fold
map.

It suffices to show that if there is a combinator c[ ]

F̂ (A)⊗X ` ¯̂F (A⊗B)

F̂ (A)⊗ F̄ (B,X) ` ¯̂F (A⊗B)
c[ ]
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v̂R
⊕ map exists

∀X F̂ (A)⊗X `f
¯̂F (A ⊗ B)

A ⊗ B `id A ⊗ B F̂ (A)⊗X `f
¯̂F (A ⊗ B)

F̄ (A ⊗ B, F̂ (A)⊗X) `F̄ (1,f) F̄ (A ⊗ B, ¯̂F (A ⊗ B))

F̄ (A ⊗ B, F̂ (A)⊗X) `F̄ (1,f);cons
¯̂F (A ⊗ B)

F (A, F̂ (A))⊗ F̄ (B, X) `
vR
⊕ ;F̄ (1,f);cons

¯̂F (A ⊗ B)

F̂ (A)⊗ F̄ (B, X) `
dest⊗1;vR

⊕ ;F̄ (1,f);cons
¯̂F (A ⊗ B)

F̂ (A)⊗ ¯̂F (B) `
v̂R
⊕

¯̂F (A ⊗ B)

So there exists v̂R
⊕.

v̂R
⊕ is unique fold map such that

1⊗ cons; v̂R
⊕ = c[v̂R

⊕] = dest⊗ 1; vR
⊕; F̄ (1, v̂R

⊕); cons.
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Coherence condition

Linear strengths must satisfy the coherence conditions. For example,

(m̂⊗ 1) v̂R
⊕

¯̂F (a⊗) = a⊗ (1⊗ v̂R
⊕) v̂R

⊕

It suffices to show that they both equal to fold map that means it
suffices to find a combinator u[ ] such that

I ((1⊗ 1)⊗ cons) a⊗ (1⊗ v̂R
⊕) v̂R

⊕ = u[a⊗ (1⊗ v̂R
⊕) v̂R

⊕]

I ((1⊗ 1)⊗ cons) (m̂⊗ 1) v̂R
⊕

¯̂F (a⊗) = u[(m̂⊗ 1) v̂R
⊕

¯̂F (a⊗)]
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((1⊗ 1)⊗ cons) a⊗ (1⊗ v̂R
⊕) v̂R

⊕ = u[a⊗ (1⊗ v̂R
⊕) v̂R

⊕]
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((1⊗ 1)⊗ cons) (m̂⊗ 1) v̂R
⊕

¯̂F (a⊗) = u[(m̂⊗ 1) v̂R
⊕

¯̂F (a⊗)]

(m̂⊗ 1) v̂R
⊕

¯̂F (a⊗) = a⊗ (1⊗ v̂R
⊕) v̂R

⊕ holds.

So if a linear functor has linear fixed point then it is linear.
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Linear Actegories

A linearly distributive category with a monoidal category acting on it
both covariantly and contravariantly is called linear actegories.

Linear A- actegory is:

◦ : A× X → X and • : Aop × X → X.

Here A = (A, ∗, I, a∗, l∗, r∗, c∗) is a symmetric monoidal category and
X is a symmetric linear distributive category.

The two “actions” of A on X are ◦ and •.
The unit and counit are denoted by nA,X : X → A • (A ◦X) and
eA,X : A ◦ (A •X) → X.
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Linear Actegories

The natural isomorphisms in X for all A,B ∈ A and X, Y ∈ X

u◦ : I ◦X → X,

u• : X → I •X,

a∗◦ : (A ∗B) ◦X → A ◦ (B ◦X),

a∗• : A • (B •X) → (A ∗B) •X,

a◦⊗ : A ◦ (X ⊗ Y ) → (A ◦X)⊗ Y,

a•⊕ : (A •X)⊕ Y → A • (X ⊕ Y ).

The natural morphisms in X for all A,B ∈ A and X, Y ∈ X

d◦⊕ : A ◦ (X ⊕ Y ) → (A ◦X)⊕ Y,

d•⊗ : (A •X)⊗ Y → A • (X ⊗ Y ),

d◦• : A ◦ (B •X) → B • (A ◦X)
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Linear Actegories

The above data must satisfy some coherence conditions. For
example,

a∗◦ (A ◦ d◦•) d◦• = d◦• (C • a∗◦)
d◦• (A • d◦•) a∗• = (C ◦ a∗•) d◦•

a◦⊗ (a◦⊗ ⊗ Z) a⊗ = (A ◦ a⊗) (a◦⊗)
a⊕ (a•⊕ ⊕ Z) a•⊕ = a•⊕ (A • a⊕)
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Actions ⇒ Linear functor?

Proposition

A • and A ◦ give the structure of a linear functor.

In order to prove this, we have to show that

A • is a monoidal functor and A ◦ is a comonoidal functor.

“Linear strengths“ exist that must satisfy the coherence conditions.
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Is A • a monoidal functor?

For a functor to be monoidal, there are two natural transformations

m⊗ : (A •X)⊗ (A • Y ) → A • (X ⊗ Y )

m> : > → (A • >)

These must satisfy two equations.

l⊗ = (m> ⊗ 1) m⊗ (A • l⊗)

a⊗ (1⊗m⊗) m⊗ = (m⊗ ⊗ 1) m⊗ (A • a⊗)

To prove A • is a monoidal functor, we have to show that the above
two equations hold.
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Defining diagram of m⊗ and m>

(A •X)⊗ (A • Y )

d•⊗

��

m⊗ // A • (X ⊗ Y )

A • (X ⊗ (A • Y ))

A•d•⊗′ // A • (A • (X ⊗ Y ))
a∗• // (A ∗ A) • (X ⊗ Y )

∆•1

OO

>

u•

��

m> // A • >

1 • >

!•>

;;vvvvvvvvv
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l⊗ = (m> ⊗ 1) m⊗ (A • l⊗)

So A• is a monoidal functor and dually A◦ is a comonoidal functor.
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Linear strengths

Consider one linear strength vR
⊕ :(A •X)⊗ (A ◦ Y ) → A ◦ (X ⊗ Y )

that must satisfy the coherence conditions.

For example, (m⊗ ⊗ 1) vR
⊕ (A ◦ a⊗) = a⊗ (1⊗ vR

⊕) vR
⊕

vR
⊕ = a◦

−1

⊗′ ;A ◦ d•⊗;∆ ◦ 1; a∗◦;A ◦ e

m⊗ = d•⊗;A • d•⊗′ ; a
∗
•;∆ • 1
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(m⊗ ⊗ 1) vR
⊕ (A ◦ a⊗) = a⊗ (1⊗ vR

⊕) vR
⊕

Difficult to show categorically...

Circuit diagrams are easier and they do have to satisfy the net
conditions.
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Circuit Rules

Circuit introduction and elimination rules for ⊗

Circuit introduction and elimination rules for ∗

Copy rule
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Circuit Rules

Circuit reduction rules for ⊗ and ∗
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Circuit Rules

Circuit introduction and elimination rules for ◦

Circuit elimination rule for •
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Circuit Rules

Circuit reduction and expansion rules for ◦

Circuit expansion rule for •
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Circuit Rules

Box-eats-box rule

Box-elimination rule

43 / 49



Circuit Diagram of m⊗ for •
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Circuit Diagram for vR
⊕
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Circuit Diagram for [(m⊗ ⊗ 1) vR
⊕ (A ◦ a⊗)]

46 / 49



Circuit Diagram for [a⊗ (1⊗ vR
⊕) vR

⊕]

So (m⊗ ⊗ 1) vR
⊕ (A ◦ a⊗) = a⊗ (1⊗ vR

⊕) vR
⊕.

A • and A ◦ give the structure of a linear functor.
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Conclusion

The greatest fixed point of a monoidal functor is monoidal.

The fixed point of a linear functor is linear.

The actions of linear actegories give the structure of a parameterized
linear functor.
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Thank you
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