Linear Functors and their Fixed Points

Masuka Yeasin
Department of Computer Science
University of Calgary

FMCS 2012

Introduction

- Linear actegories: A linearly distributive category with a monoidal category acting on it both covariantly and contravariantly.
-The Logic of Message Passing (J. R. B. Cockett and Craig Pastro)
- We shall prove that the actions give the structure of a parameterized linear functor and the inductive and coinductive data types form a linear functor pair (when data is built on a linear functor).
- In particular, circuit diagrams are helpful to establish these facts.

Motivation

- The logic of products and coproducts gives the logic of communication along channel.
- Linearly distributive categories manage communication channels.
- Linear actegories provide message passing in process world.
- Linear functor gives a basis on which one can build inductive (and coinductive) concurrent data or protocols.

Algebraic definition of Inductive datatype

An inductive datatype for an endo-functor $F: \mathbb{X} \rightarrow \mathbb{X}$ is:

- An object $\mu x . F(x)$.
- A map cons : $F(\mu x . F(x)) \rightarrow \mu x . F(x)$ such that given any object $A \in \mathbb{X}$ and a map $f: F(A) \rightarrow A$, there exists a unique fold map such that the following diagram commutes.

Algebraic definition of Coinductive datatype

Dually a coinductive datatype for F is:

- An object $\nu x . F(x)$.
- A map dest : $\nu x . F(x) \rightarrow F(\nu x . F(x))$ such that given any object $A \in \mathbb{X}$ and a map $f: A \rightarrow F(A)$, there exists a unique unfold map such that the following diagram commutes.

Fixed points

Lambek's Lemma

If $F: \mathbb{X} \rightarrow \mathbb{X}$ is a functor for which $\mu x . F(x)$ exists then cons : $F(\mu x . F(x)) \rightarrow \mu x . F(x)$ is an isomorphism and (dually) if $\nu x . F(x)$ exists then dest : $\nu x . F(x) \rightarrow F(\nu x . F(x))$ is an isomorphism.

Circular combinator (alternative method)

A (circular) combinator over F is

$$
\frac{A \xrightarrow{f} D}{F(A) \xrightarrow{\mathrm{c}[f]} D} \mathrm{c}[-]
$$

where

Circular definition of Inductive datatype

A circular inductive datatype is:

- An object $\mu x . F(x)$.
- A map cons : $F(\mu x . F(x)) \rightarrow \mu x . F(x)$ such that given a (circular) combinator c[_] over F, there exists a unique fold map $\mu a . c[a]$ such that the following diagram commutes.

Circular definition of Coinductive datatype

Dually a circular coinductive datatype is:

- An object $\nu x . F(x)$.
- A map dest : $\nu x . F(x) \rightarrow F(\nu x . F(x))$ such that given a (circular) combinator $\mathrm{c}[-]$ over F, there exists a unique unfold map $\nu b . c[b]$ such that the following diagram commutes.

Circular rules

We can express cons, dest, fold and unfold in proof theoretically.

- fold map

$$
\begin{array}{|cc}
\hline \forall X & f: X \rightarrow D \\
\hline & \frac{X \rightarrow D}{F(X) \rightarrow D} \\
\hline & \mu x . F(x) \rightarrow D
\end{array}
$$

- unfold map

$\forall X$	$f: D \rightarrow X$
	$\frac{D \rightarrow X}{D \rightarrow F(X)}$
	$D \rightarrow \nu x . F(x)$

Circular rules

- cons

$$
\frac{X \xrightarrow{f} F(\mu x \cdot F(x))}{X \xrightarrow{\text { cons }[f]} \mu x \cdot F(x)}
$$

- dest

$$
\frac{F(\nu x \cdot F(x)) \xrightarrow{f} X}{\nu x \cdot F(x) \xrightarrow{\operatorname{dest}[f]} X}
$$

- These circular rules are used to form datatypes.

Example for inductive datatype

- The set of natural numbers \mathbb{N} with zero and succ constructors

$$
1+\mathbb{N} \xrightarrow{[\text { zero,succ }]} \mathbb{N}
$$

- This map forms an inductive datatype for natural numbers such that the following diagram commutes.

- If we use circular combinator, then

Polycategories

- A Polycategory \mathbb{X} is a category that consists of list of objects with polymaps.
- For example, $P, Q, R \vdash A, B, C$.
- These maps correspond to Gentzen sequents.
- Composition of polymaps is the cut rules. For example,

$$
\frac{P, Q \vdash R, A \quad A, B \vdash C, D}{P, Q, B \vdash R, C, D}
$$

Representability of \otimes and \oplus

We can represent \otimes and \oplus by sequents calculus rules of inference. For example,

$$
\begin{gathered}
\frac{\Gamma_{1}, X, Y, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, X \otimes Y, \Gamma_{2} \vdash \Delta} \\
\frac{\Gamma \vdash \Delta_{1}, X, Y, \Delta_{2}}{\Gamma \vdash \Delta_{1}, X \oplus Y, \Delta_{2}} \\
\frac{\Gamma_{1}, X \vdash \Delta_{1} \quad Y, \Gamma_{2} \vdash \Delta_{2}}{\Gamma_{1}, X \oplus Y, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}} \\
\frac{\Gamma_{1} \vdash \Delta_{1}, X \quad \Gamma_{2} \vdash Y, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, X \otimes Y, \Delta_{2}}
\end{gathered}
$$

Linear distribution

- A representable polycategory gives us linearly distributive category.
- For example, a derivation of one linear distribution is

$$
\frac{\frac{X \vdash X \quad Y \vdash Y}{X, Y \vdash X \otimes Y} \quad Z \vdash Z}{X, Y \oplus Z \vdash X \otimes Y, Z}
$$

Symmetric linearly distributive category

A linearly distributive category is symmetric if both the tensors and pars are symmetric. For symmetric case, there are two linear distributions.

$$
\begin{aligned}
& \delta_{R}^{L}: A \otimes(B \oplus C) \rightarrow B \oplus(A \otimes C) \\
& \delta_{L}^{R}:(B \oplus C) \otimes A \rightarrow \\
&(B \otimes A) \oplus C
\end{aligned}
$$

that must satisfy some coherence conditions. For example,

$$
\begin{aligned}
\delta_{R}^{L} ; 1 \oplus a_{\otimes} & =a_{\otimes} ; 1 \otimes \delta_{R}^{L} ; \delta_{R}^{L} \\
\delta_{L}^{R} ; \delta_{R}^{L} \oplus 1 ; a_{\oplus} & =\delta_{R}^{L} ; 1 \oplus \delta_{L}^{R}
\end{aligned}
$$

Circular rules for linearly distributive categories

- Circular rules are natural formalism to get fixed points in linearly distributive categories.
- If we have closure, then

$$
\begin{gathered}
\begin{array}{|}
\forall X \quad X \vdash \Gamma \Rightarrow \Delta \\
\frac{X \vdash \Gamma \Rightarrow \Delta}{F(X) \vdash \Gamma \Rightarrow \Delta} c[-] \\
\mu x . F(x) \vdash \Gamma \Rightarrow \Delta \\
\Gamma, \mu x . F(x) \vdash \Delta
\end{array} \\
\hline
\end{gathered}
$$

But it is not expressable in the linearly distributive setting.

- Circular rules allow us to express this

$$
\begin{array}{|c}
\hline \forall X \quad\ulcorner, X \vdash \Delta \\
\hline \frac{\Gamma, X \vdash \Delta}{\Gamma, F(X) \vdash \Delta} \subset[-] \\
\Gamma, \mu x \cdot F(x) \vdash \Delta
\end{array}
$$

Monoidal functor

- Suppose $F: \mathbb{X} \rightarrow \mathbb{X}$ is a monoidal functor.
- So there must be the following two natural transformations.
- $m_{\otimes}: F(A) \otimes F(B) \rightarrow F(A \otimes B)$
- $m_{\top}: \top \rightarrow F(\top)$
that must satisfy two equations.
- $\left(m_{\top} \otimes 1\right) m F(u)=u$
- $a_{\otimes}(1 \otimes m) m=(m \otimes 1) m F\left(a_{\otimes}\right)$

Is the greatest fixed point of a monoidal functor monoidal?

Proposition

The greatest fixed point of a monoidal functor is monoidal and dually the least fixed point of a comonoidal functor is comonoidal.

- Consider $\hat{F}=\nu x \cdot F(-, x)$ is the greatest fixed point of a monoidal functor.
- To prove that \hat{F} is monoidal, we have to show that the two equations hold.
- Consider the first equation, $(\widehat{m \top} \otimes 1) \widehat{m} \widehat{F}(u)=u$
- It suffices to show that for a fixed $g,(\widehat{m \top} \otimes 1) \widehat{m} \widehat{F}(u)=\operatorname{unfold}(g)$ and $u=\operatorname{unfold}(g)$.

Defining diagram of \widehat{m} and $\widehat{m T}$

$\left(\widehat{m_{\top}} \otimes 1\right) \widehat{m} \widehat{F}(u)=\operatorname{unfold}\left[\left(m_{\top} \otimes \operatorname{dest}\right) m_{\otimes} F(u, 1)\right]$

$u=\operatorname{unfold}\left[\left(m_{\top} \otimes \operatorname{dest}\right) m_{\otimes} F(u, 1)\right]$

- So $(\widehat{m T} \otimes 1) \hat{m} \widehat{F}(u)=u$
- The greatest fixed point of a monoidal functor is monoidal.

Linear Functor

- A linear functor is a functor that consists of a monoidal $(F: \mathbb{X} \rightarrow \mathbb{Y})$ and a comonoidal $(\bar{F}: \mathbb{X} \rightarrow \mathbb{Y})$ functor and four natural transformations (called "linear strengths").

$$
\begin{gathered}
v_{\otimes}^{R}: F(A \oplus B) \rightarrow \bar{F}(A) \oplus F(B) \\
v_{\otimes}^{L}: F(A \oplus B) \rightarrow F(A) \oplus \bar{F}(B) \\
v_{\oplus}^{R}: F(A) \otimes \bar{F}(B) \rightarrow \bar{F}(A \otimes B) \\
v_{\oplus}^{L}: \bar{F}(A) \otimes F(B) \rightarrow \bar{F}(A \otimes B)
\end{gathered}
$$

- The above data must satisfy several coherence conditions. For example,

$$
\begin{gathered}
\left(m_{\otimes} \otimes 1\right) v_{\oplus}^{R} \bar{F}\left(a_{\otimes}\right)=a_{\otimes}\left(1 \otimes v_{\oplus}^{R}\right) v_{\oplus}^{R} \\
\left(v_{\otimes}^{L} \otimes 1\right) \delta_{R}^{R}\left(1 \oplus v_{\oplus}^{L}\right)=m_{\otimes} F\left(\delta_{R}^{R}\right) v_{\otimes}^{L} \\
\left(v_{\otimes}^{R} \otimes 1\right) \delta_{R}^{R}\left(1 \oplus m_{\otimes}^{R}\right)=m_{\otimes} F\left(\delta_{R}^{R}\right) v_{\otimes}^{R}
\end{gathered}
$$

Linear fixed point

Proposition

The fixed point of a linear functor is linear.

In order to prove this, we have to show that

- The greatest fixed point of a monoidal functor, \hat{F} is monoidal and (dually) the least fixed point of a comonoidal functor, $\overline{\hat{F}}$ is comonoidal.(Proved)
- There exist linear strengths between these two fixed point functors that must satisfy the coherence conditions.

Does linear strength exist?

- Prove $\hat{F}(A) \otimes \overline{\hat{F}}(B) \vdash_{\hat{v}_{\oplus}^{R}} \overline{\hat{F}}(A \otimes B)$ map exists and it is unique fold map.
- It suffices to show that if there is a combinator c[-]

$$
\frac{\hat{F}(A) \otimes X \vdash \hat{F}(A \otimes B)}{\hat{F}(A) \otimes \bar{F}(B, X) \vdash \hat{F}(A \otimes B)} c[-]
$$

\hat{v}_{\oplus}^{R} map exists

- So there exists \hat{v}_{\oplus}^{R}.
- \hat{v}_{\oplus}^{R} is unique fold map such that
$1 \otimes$ cons $; \hat{v}_{\oplus}^{R}=\mathrm{c}\left[\hat{v}_{\oplus}^{R}\right]=\operatorname{dest} \otimes 1 ; v_{\oplus}^{R} ; \bar{F}\left(1, \hat{v}_{\oplus}^{R}\right) ;$ cons.

Coherence condition

- Linear strengths must satisfy the coherence conditions. For example,

$$
(\hat{m} \otimes 1) \hat{v}_{\oplus}^{R} \overline{\hat{F}}\left(a_{\otimes}\right)=a_{\otimes}\left(1 \otimes \hat{v}_{\oplus}^{R}\right) \hat{v}_{\oplus}^{R}
$$

- It suffices to show that they both equal to fold map that means it suffices to find a combinator u [] such that
- $((1 \otimes 1) \otimes$ cons $) a_{\otimes}\left(1 \otimes \hat{v}_{\oplus}^{R}\right) \hat{v}_{\oplus}^{R}=\mathrm{u}\left[a_{\otimes}\left(1 \otimes \hat{v}_{\oplus}^{R}\right) \hat{v}_{\oplus}^{R}\right]$
- $((1 \otimes 1) \otimes$ cons $)(\hat{m} \otimes 1) \hat{v}_{\oplus}^{R} \hat{\hat{F}}\left(a_{\otimes}\right)=\mathrm{u}\left[(\hat{m} \otimes 1) \hat{v}_{\oplus}^{R} \overline{\hat{F}}\left(a_{\otimes}\right)\right]$
$((1 \otimes 1) \otimes$ cons $) a_{\otimes}\left(1 \otimes \hat{v}_{\oplus}^{R}\right) \hat{v}_{\oplus}^{R}=\mathrm{u}\left[a_{\otimes}\left(1 \otimes \hat{v}_{\oplus}^{R}\right) \hat{v}_{\oplus}^{R}\right]$

$((1 \otimes 1) \otimes$ cons $)(\hat{m} \otimes 1) \hat{v}_{\oplus}^{R} \overline{\hat{F}}\left(a_{\otimes}\right)=\mathrm{u}\left[(\hat{m} \otimes 1) \hat{v}_{\oplus}^{R} \overline{\hat{F}}\left(a_{\otimes}\right)\right]$

- $(\hat{m} \otimes 1) \hat{v}_{\oplus}^{R} \overline{\hat{F}}\left(a_{\otimes}\right)=a_{\otimes}\left(1 \otimes \hat{v}_{\oplus}^{R}\right) \hat{v}_{\oplus}^{R}$ holds.
- So if a linear functor has linear fixed point then it is linear.

Linear Actegories

- A linearly distributive category with a monoidal category acting on it both covariantly and contravariantly is called linear actegories.
- Linear \mathbb{A} - actegory is:

$$
\circ: \mathbb{A} \times \mathbb{X} \rightarrow \mathbb{X} \quad \text { and } \quad \bullet: \mathbb{A}^{o p} \times \mathbb{X} \rightarrow \mathbb{X}
$$

- Here $\mathbb{A}=\left(\mathbb{A}, *, I, a_{*}, l_{*}, r_{*}, c_{*}\right)$ is a symmetric monoidal category and \mathbb{X} is a symmetric linear distributive category.
- The two "actions" of \mathbb{A} on \mathbb{X} are \circ and \bullet.
- The unit and counit are denoted by $n_{A, X}: X \rightarrow A \bullet(A \circ X)$ and $e_{A, X}: A \circ(A \bullet X) \rightarrow X$.

Linear Actegories

- The natural isomorphisms in \mathbb{X} for all $A, B \in \mathbb{A}$ and $X, Y \in \mathbb{X}$

$$
\begin{gathered}
u_{\circ}: I \circ X \rightarrow X, \\
u \bullet: X \rightarrow I \bullet X, \\
a_{\circ}^{*}:(A * B) \circ X \rightarrow A \circ(B \circ X), \\
a_{\bullet}^{*}: A \bullet(B \bullet X) \rightarrow(A * B) \bullet X, \\
a_{\otimes}^{\circ}: A \circ(X \otimes Y) \rightarrow(A \circ X) \otimes Y, \\
a_{\oplus}^{\bullet}:(A \bullet X) \oplus Y \rightarrow A \bullet(X \oplus Y) .
\end{gathered}
$$

- The natural morphisms in \mathbb{X} for all $A, B \in \mathbb{A}$ and $X, Y \in \mathbb{X}$

$$
\begin{aligned}
d_{\oplus}^{\circ}: A \circ(X \oplus Y) & \rightarrow(A \circ X) \oplus Y, \\
d_{\otimes}^{\bullet}:(A \bullet X) \otimes Y & \rightarrow A \bullet(X \otimes Y), \\
d_{\bullet}^{\circ}: A \circ(B \bullet X) & \rightarrow B \bullet(A \circ X)
\end{aligned}
$$

Linear Actegories

- The above data must satisfy some coherence conditions. For example,

$$
\left.\left.\begin{array}{c}
a_{\circ}^{*}\left(A \circ d_{\bullet}^{\circ}\right) d_{\bullet}^{\circ}=d_{\bullet}^{\circ}\left(C \bullet a_{\bullet}^{*}\right) \\
d_{\bullet}^{\circ}\left(A \bullet d_{\bullet}^{\circ}\right) a_{\bullet}^{*}=\left(C \circ a_{\bullet}^{*}\right) d_{\bullet}^{\circ} \\
a_{\otimes}^{\circ}\left(a_{\otimes}^{\circ} \otimes Z\right) a_{\otimes}=\left(A \circ a_{\otimes}\right)\left(a_{\otimes}^{\circ}\right) \\
a_{\oplus}\left(a_{\oplus}^{\bullet} \oplus Z\right) a_{\oplus}^{\bullet}
\end{array}\right) a_{\oplus}^{\bullet}\left(A \bullet a_{\oplus}\right)\right)
$$

Actions \Rightarrow Linear functor?

Proposition

$A \bullet$ _ and $A \circ$ _ give the structure of a linear functor.

In order to prove this, we have to show that

- $A \bullet \bullet_{-}$is a monoidal functor and $A \circ_{-}$is a comonoidal functor.
- "Linear strengths" exist that must satisfy the coherence conditions.

Is $A \bullet$ _ a monoidal functor?

- For a functor to be monoidal, there are two natural transformations

$$
\begin{gathered}
m_{\otimes}:(A \bullet X) \otimes(A \bullet Y) \rightarrow A \bullet(X \otimes Y) \\
m_{\top}: \top \rightarrow(A \bullet \top)
\end{gathered}
$$

- These must satisfy two equations.

$$
\begin{aligned}
l_{\otimes} & =\left(m_{\top} \otimes 1\right) m_{\otimes}\left(A \bullet l_{\otimes}\right) \\
a_{\otimes}\left(1 \otimes m_{\otimes}\right) m_{\otimes} & =\left(m_{\otimes \otimes 1)} m_{\otimes}\left(A \bullet a_{\otimes}\right)\right.
\end{aligned}
$$

- To prove $A \bullet$ _ is a monoidal functor, we have to show that the above two equations hold.

Defining diagram of m_{\otimes} and m_{\top}

$l_{\otimes}=\left(m_{\top} \otimes 1\right) m_{\otimes}\left(A \bullet l_{\otimes}\right)$

- So $A \bullet$ _ is a monoidal functor and dually $A \circ_{\text {_ }}$ is a comonoidal functor.

Linear strengths

- Consider one linear strength $v_{\oplus}^{R}:(A \bullet X) \otimes(A \circ Y) \rightarrow A \circ(X \otimes Y)$ that must satisfy the coherence conditions.
- For example, $\left(m_{\otimes} \otimes 1\right) v_{\oplus}^{R}\left(A \circ a_{\otimes}\right)=a_{\otimes}\left(1 \otimes v_{\oplus}^{R}\right) v_{\oplus}^{R}$
- $v_{\oplus}^{R}=a_{\otimes^{\prime}}^{\circ^{-1}} ; A \circ d_{\otimes}^{\bullet} ; \Delta \circ 1 ; a_{\circ}^{*} ; A \circ e$
- $m_{\otimes}=d_{\otimes}^{\bullet} ; A \bullet d_{\otimes^{\prime}}^{\bullet} ; a_{\bullet}^{*} ; \Delta \bullet 1$
$\left(m_{\otimes} \otimes 1\right) v_{\oplus}^{R}\left(A \circ a_{\otimes}\right)=a_{\otimes}\left(1 \otimes v_{\oplus}^{R}\right) v_{\oplus}^{R}$

- Difficult to show categorically...
- Circuit diagrams are easier and they do have to satisfy the net conditions.

Circuit Rules

- Circuit introduction and elimination rules for \otimes

- Circuit introduction and elimination rules for $*$

- Copy rule

Circuit Rules

- Circuit reduction rules for \otimes and $*$

Circuit Rules

- Circuit introduction and elimination rules for o

- Circuit elimination rule for •

Circuit Rules

- Circuit reduction and expansion rules for \circ

$$
A \circ X \mid
$$

- Circuit expansion rule for •

Circuit Rules

- Box-eats-box rule

- Box-elimination rule

Circuit Diagram of m_{\otimes} for

Circuit Diagram for v_{\oplus}^{R}

Circuit Diagram for $\left[\left(m_{\otimes} \otimes 1\right) v_{\oplus}^{R}\left(A \circ a_{\otimes}\right)\right]$

Circuit Diagram for $\left[a_{\otimes}\left(1 \otimes v_{\oplus}^{R}\right) v_{\oplus}^{R}\right]$

- So $\left(m_{\otimes} \otimes 1\right) v_{\oplus}^{R}\left(A \circ a_{\otimes}\right)=a_{\otimes}\left(1 \otimes v_{\oplus}^{R}\right) v_{\oplus}^{R}$.
- $A \bullet$ _ and $A \circ$ _ give the structure of a linear functor.

Conclusion

- The greatest fixed point of a monoidal functor is monoidal.
- The fixed point of a linear functor is linear.
- The actions of linear actegories give the structure of a parameterized linear functor.

Thank you

