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We give a categorical semantics to the call-by-name and call-by-value versions of Parigot's
Au-calculus with disjunction types. We introduce the class of control categories, which combine a
cartesian-closed structure with a premonoidal structure in the sense of Power and Robinson. We
prove, via a categorical structure theorem, that the categorical semantics is equivalent to a CPS
semantics in the style of Hofmann and Streicher. We show that the call-by-ka+oalculus forms

an internal language for control categories, and that the call-by-valeealculus forms an internal
language for the dual co-control categories. As a corollary, we obtain a syntactic duality result: there
exist syntactic translations between call-by-name and call-by-value which are mutually inverse and
which preserve the operational semantics. This answers a question of Streicher and Reus.

1. Introduction
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M is mapped to a function im arguments with: possible result types. The existence of such a
duality in the context of the u-calculus was conjectured by Streicher and Reus (1998).

An interesting aspect of this duality is that it exchanges functional and imperative features.
For instance, a purely functional call-by-value term is mapped to a call-by-name term that relies
almost exclusively on control operators, and vice versa. This observation suggests that, from
a practical point of view, certain algorithms are more naturally formulated in a call-by-value
paradigm, and others in call-by-name. It is interesting to compare this with Filinski’s work, in
which he obtains a duality result by working with a larger and more symmetric syntax, in which
the dual of a term is essentially its mirror image (Filinski 1989).

The main contribution of this paper, and the basis for the above-mentioned duality result, is
a sound and complete categorical semantics for both the call-by-name and call-bynalue
calculus. We introduce the class @dntrol categoriesin which the call-by-name pu-calculus
can be interpreted in much the same way as the simply-typed lambda calculus is interpreted in a
cartesian-closed category. We prove a categorical structure theorem that shows that every control
category is equivalent to a “category of continuations”, in the sense of Hofmann and Streicher
(1997). This structure theorem implies the soundness and completeness of the categorical inter-
pretation of the\p-calculus with respect to a natural CPS semantics. But more is true: we show
that the call-by-namgy-calculus forms ainternal languagédor the class of control categories.

We then repeat this process for the call-by-value calculus. We show that the call-by-value
Au-calculus forms an internal language for the class@tontrol categorieswhich are simply
the categorical duals of control categories. The syntactic duality result is then a corollary of the
syntax-free categorical duality.

It should be stressed that the results of this paper are not particular A tbalculus. They
apply equally well to other, more traditional languages with continuation-like control constructs,
such ascallcc in ML or Scheme, or Felleisen§ operator (Felleisen 1986). Operationally, all
these calculi are equivalent; for instance, the equivalence betweaptt@&culus and a call-by-
name version of Felleisendwas shown by De Groote (1994b). One of the reasons that we have

The discussion about the relative advantages and disadvantages of the two parameter passingchosen the\u-calculus as the basis for the semantics in this paper is because it is technically

techniques, call-by-name and call-by-value, is almost as old as the theory of programming lan-
guages itself. While many modern functional programming languages use the call-by-value
paradigm, which is easy to implement and semantically intuitive, Felleisen and Hieb write in
their “Revised report on the syntactic theories of sequential control and state” that there is “no
theoreticalreason for choosing one over the other, even in the presence of control operators and
assignments” (Felleisen and Hieb 1992).

In this paper, we study the relationship between the call-by-name and call-by-value paradigms
for Parigot's\p-calculus. The\u-calculus is an extension of the simply-typed lambda calculus
with certain sequential control operators. We show that, in the presence of product and disjunc-
tion types, the call-by-name and call-by-valhg-calculi areisomorphicto each other, in the

convenient to work with two separate name spaces, and thus with two-sided sequents, rather than
with explicit negation types. This two-sidedness also facilitates our statement of duality.

Related Work

This work draws on several recent developments in the categorical semantics of control operators.
The starting point of our work is Hofmann and Streicher’s categorical semantics of the call-by-
name\p-calculus in terms of categorical continuation models (Hofmann and Streicher 1997).
Our control categories are an abstraction of these models. Unlike categories of continuations,
control categories are defined as categories with algebraic structure, and they allow a covariant

sense that there exist syntactic translations between them that preserve the operational semanticsinterpretation of the\u-calculus without any explicit reference to continuations. The crucial

and that are mutually inverse up to isomorphism of types. These translations take the form of a
duality: they turn argument-driven computation into demand-driven computation by exchanging
input and output throughout, turning terms “inside out”. The presence of disjunction types makes
this possible: we canregard ateih: Ay A...ANA, — By V...V B, asafunctionim argu-

ments withm possible result types. Under the duality between call-by-value and call-by-name,

ingredient in defining the structure of a control category is the realization that disjunction is not
bifunctorial, but that it forms a premonoidal structure in the sense of Power and Robinson (1997).
Our structure theorem relates this abstract approach to Hofmann and Streicher’'s more concrete
semantics by showing that any control category is equivalent to a category of continuations.

In the call-by-value case, our model is almost identical to Thielecke’s interpretatiop it a
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category (Thielecke 1997). Indeed, a co-control categoryis-aategory with additional struc- ccc to denote morphisms: thus a morphigm A — B will be denoted by a typing judgment
ture. Thielecke’'s semantics does not include disjunction types, maybe because they are not cen- z:A > M : B in the usual way. Obvious subscripts are often omitted. Sometimes, we use the
tral to the computational phenomena and real-life programming languages that he is interested notation==5 to label evident ccc isomorphisms.

in modeling. However, for this present work, the disjunction types are crucial, because they are
indispensable for the statement of duality. In particular, our call-by-name semantics is strictly
different from that of Thielecke, and cannot be expressed purely in terngs-edategories.

Also, the presence of disjunction types reveals the nature of Thielecke’s “self-adjointness” prop- Premonoidal categories were introduced by Power and Robinson (1997). We summarize the
erty, which becomes a special instance of a co-cartesian-closed structure. A structure theorem definition here. A premonoidal category is similar to a monoidal category, except that the tensor
similar to ours was shown independently by Fihrmann (1998) for the cage-afategories. product is only assumed to be functorial in each argurseparatelybut not necessarilpintly.

Also, in a more recent development, Filhrmann has given a more general account of the relation- Thus, the tensor product in a premonoidal category is not in general bifunctorial; for lack of a
ship between direct and monadic models, which generalizes some aspects of the present work to better term we call such an operation a binoidal functor. The formal definition follows, where

2.1. Premonoidal categories

arbitrary computational effects in place of continuations (Fuhrmann 1999).

A different class of models for the call-by-namg-calculus, based on fibrations, was defined
by Ong and Ritter and later generalized to the disjunctive case by Pym and Ritter (Ong 1996;
Pym and Ritter 1998). The focus of these models is different from ours, as they stress the fibered
nature of the\u-calculus with respect to control contexts, and thus they are, in a sense, higher-
order. However, these models are rich in algebraic structure, and indeeq-tsculus forms
an internal language for them, in the suitable fibered sense. One may go back and forth between
Ong/Ritter models and control categories by identifying the ohjeett the fiberA with the
object4 % A in a control category. This appears to be an instance of a more general construction
of obtaining a fibration from a premonoidal structure, see also (Power and Robinson 1997).

Sometimes the question is raised what, if anything, is the computational significance of the
disjunction types in theu-calculus. The question arises because these types are originally moti-
vated mainly by logical and categorical concerns, and not by computational considerations. But
it turns out that the disjunction types do indeed have a computational interpretation, in terms of
certain manipulations with stacks. This is best seen in an abstract machine model. From the CPS
semantics of this paper, one can derive a Krivine-style abstract machine, as was done for the
fragment without disjunction in (Streicher and Reus 1998). The abstract machine model for the
disjunctive call-by-name u-calculus, and an implementation, is described in detail in a sepa-

rate paper (Selinger 1998). For the purposes of this present paper, we emphasize the logical and

categorical perspective.

Outline

In Sections 2 through 4, we introduce control categories and exhibit their basic structure. In
Sections 5 through 7, we discuss the interpretation of the call-by-name and call-by\yalue
calculi. In Section 8, we discuss duality. Some technical proofs from Section 3 are given in the
Appendix.

2. Control categories

In a cartesian-closed category, we use the notatign: A — 1 for the terminal arrows, 72
for the first and second projection, g) for pairing,e 4. : B4 x A — B for application, and
f*: B — C4forthe curry of amagf : B x A — C. We also use the internal language of a

|A| denotes the class of objects of a categlryregarded as a discrete subcategory.

Definition 2.1. Let A, B, andC be categories. Ainoidal functor F': A ® B — C is given by
two bifunctorsFy : A x |B| — C andF; : |A| x B — C, such thatFy(A4, B) = Fi(A, B) for
all pairs of objectsA, B.

SinceF, and F; agree where they are both defined (namely on objects), there is no harm in
denoting both of them by and thus writingF'(A, B), F(f, B), andF (4, g), whereA, B are
objects andf, g are morphisms. However, it does not in general make sense to Mfjtey),
because the two composité¥ f, B’) o F(A, g) andF(A4’, g) o F(f, B) may not coincide. A
bifunctor is just a binoidal functor where the latter two compositions are equal.

The notationF" : A ® B — C is justified because the following pushout defines a tensor
product inCat:

|A] x |B] —= A x |B|

Al x B A®B

Thus, a binoidal functor can be regarded as a functor ffom B to C. An explicit description
of the categoryA ® B is given in (Power and Robinson 1997). More generally, we can define
n-oidal functorsF' : A; ® ... ® A,, — C for everyn.

When we speak of natural transformations between binoidal functors, we always mean trans-
formations that are natural in each component separately. For bifunctors, this coincides with the
usual definition.

Definition 2.2. A binoidal category is a categoryP together with a binoidal functo® : P ®
P — P. We use the usual infix notatioh % B. A morphismf : A — A’ in a binoidal category
is central if for every morphismg : B — B’, the two composite$f % B’) o (A ® ¢g) and
(A’ ® g)o (f ® B) agree, and the two composite8’ % f) o (¢ ® A) and(g ¥ A') o (B % f)
agree. In this case, we also use the notafiéhg, respectivelyg % f.

Premonoidal categories are defined by analogy with monoidal categories. Notice that the struc-
tural isomorphisms are required to be central.

Definition 2.3. A premonoidal category is a binoidal categor¥, together with an object and
central natural isomorphisngsy g.c : (AZB)3C - AR (B%C),ln:A— A% 1, and
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ra:A— 1% A, subjectto the usual coherence conditions:

(AB®B)RC)B®D 32 (A%B)B(C3¥D)> A% (B3 (CH D))

3B ABr

(AR 1L)3B2 AR (L3 B).

A symmetric premonoidal category has in addition a family of central natural isomorphisms

cap: A% B — B7 A, satisfyingc o ¢ = id and coherence:
A
/ \r\

AL —S > 13 A

(ARB)RC —2>AR(BBC)—= (BRC)B A

c%’Cl la
B%c

(BRA)BC—2-BR(ARC) "5 BR(CH A),

The operationy is also called a (symmetrigyetensor.

The central morphisms of a premonoidal categBryorm a monoidal subcategory, called
the center of P, and denoted by *. Clearly, the center is the largest subcategory on which
restricts to a proper (bifunctorial) tensor product. Coherence for premonoidal categories follows
easily from Mac Lane’s result for monoidal categories (Mac Lane 1963; Kelly 1964), since all
the relevant coherence diagrams are contained in the center.

Premonoidal categories share many properties of monoidal categories, but some special care
is necessary when manipulating them. For instance, one should keep in mind that there are
innocent-looking expressions, such 4s¥ A, that are not functorial. Also notice that ff :

A — A’ is a morphism, then the induced family of arrods¥ B — A’ % B is not in general
natural inB. We say that a family of mapsgg : F(B) — G(B) is natural in central B if it is
natural with respect to central: B — B’, and analogously for dinaturality.

A remark on the choice of symbols: | originally chose the upside-down amper&gnie®-
cause it suggests a tensor product with a disjunctive flavor. | did not intend to imply a connection
to linear logic by this choice. However, in recent work with O. Laurent and L. Regnier, it turned
out that control categories are a model of proof-nets for polarized linear logic, and, to my sur-
prise, the connective’®” indeed corresponds to the “par” of linear logic under this interpretation.

A more detailed account of this connection will appear elsewhere.

2.2. Codiagonals and focus

Definition 2.4. Let P be a symmetric premonoidal categorysinmetric monoidin P is given
by an object4, together with two central morphismg : L — AandV, : AT A — A,

Peter Selinger
satisfying the usual equations:

An L2 g3 a 8L my

(AR A)BATL J3 4

v ABA
a \A C\L \A
b V/ .
ATY v AN A

AB(ABA)—= AR A

A symmetric premonoidal categotyas codiagonals if there is a chosen symmetric monoid
(A,ia,Va4) for each objectd, compatible with the premonoidal structure in the following sense:

L iaan ABBRAXRB
\ %
ip=id, : 1L — 1, I=r AR B, AR B AR B.
oy adis ARARBRB OV

In the last diagram, some obvious associativity isomorphisms have been omitted. Since every
premonoidal category can be shown to be equivalent to a strict one (Power and Robinson 1997),
we will henceforth and without loss of generality treat associativity as if it were an identity map.

Notice we do not require that the families of maps: . — AandVys : A% A — A are
natural inA; in fact, it is not even obvious how one would state the naturalify gf Instead, we
will call a central morphisny : A — B discardable if

1
i/ \f andcopyable if
A —f> B,

This terminology is taken from (Thielecke 1997). Strictly speaking, we should use the terms
co-discardableandco-copyablebut this would be cumbersome. Discardability and copyability,
like centrality, are notions of “well-behavedness”.

o
ana L pyp

3 f 2

A———B.

Definition 2.5. A morphism is calledocal if it is central, discardable, and copyable.

Remark 2.6. The focal morphisms form a subcategory®f called thefocus of P, which we
denote byP*. The focus is contained in the center. It is closed utleAll the structural maps
(a I,r,c i, andV) are focal, and so are the left and right weakening maps defined by

W,y = ALAanL A5 4np
wW,; = BL13B22E 45p

Sometimes, we denote either of these mapwbyhe focus has a canonical finite coproduct
structure:
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Lemma 2.7. In P¥, the objectL is initial, and % is a coproduct with the following injections
and co-pairing:

in = 4 A%B,
inf = BY. AxB,
if.g] = A3BL2% cxc Y ¢

In fact, P* is the largest subcategory B on which? restricts to a coproduct.

Remark 2.8. One ha®! C P* C P. In general, the focus of a symmetric premonoidal category
with codiagonals is strictly contained in the center: for instanc®, i a monoidal category
where the tensor is not given by a coproduct, then the the center isRIwlifiereas the focus is

not. However, in the case of a control category, to be defined shortly, we will see that the center
and the focus always coincide.

2.3. Distributivity

Definition 2.9. SupposéP is a symmetric premonoidal category with codiagonals. Suppose that
P also has finite products. We say tiis distributive if the projectionsr; : A x B — A and
my : A X B — B are focal, and if for all object€’, the functor— % C preserves finite products.

Note that the functor % C preserves finite products iff for all objectls B, andC, the natural
maps

(AxB)yC T2 Ancyx (BRC) and 130 21
are isomorphisms. We denote the inverse of the first map by ¢ : (AB C) x (BB C) —

(Ax B)®C.

Lemma 2.10. If P is a distributive, symmetric premonoidal category with codiagonals, then the
focus ofP is closed under the finite product structure.

Proof. First, it is trivial to see that> 4 : A — 1 is focal. Second, whenevgr: C — A and
g:C — Barecentraland : D — E, then

o5 p 2280 (4% pyx (B3 D) (AxB)® D
c%’hl l(A??h)x(B?yh,) l(AxB)%’h
cnp L (A% E) « (BB E)— > (Ax B) D E.

The left square commutes by hypothesis, the right one by naturalily kbffollows from the
definition ofd that the map along the top {¢, g) & D, and similarly along the bottom. Thus,
the perimeter of the diagram shows thgt g) is central. Next, assume thgtand g are also
discardable and copyable. The commutativity of the following two diagrams follows by post-
composing each of them with; and with,, and by using the fact that; andr, are focal.

Peter Selinger 8

Thus,(f, g) is discardable and copyable as well.

LB,
1 cxC (f.9)3(f.9)

s
Ve
c (f.9)

Ax B C

(Ax B)® (A x B)

lvAxB

A X B.

O

Notice that sincel~! was defined in terms of pairing, the lemma also implies that, and
thusd, is focal.

2.4. Control categories

To the structure that we have considered so far, we now add cartesian-closedness, along with
some conditions that relate the cartesian-closed structure and the premonoidal structure.

Definition 2.11. SupposéP is a distributive symmetric premonoidal category with codiagonals.
SupposeP is also cartesian-closed. Lefi 5. : B4 % C — (B % C)4 be the canonical
morphism obtained by currying

eBC

ane: (BARCO)x A LN pancyanc) L (BAx A)3C 2% By C

The categoryP is called acontrol category if sap.c : BA® C — (B C)" is a natural

isomorphism inA, B, andC, satisfying the following coherence conditions:

1. The following diagram commutes, whe'g ;, ., = BRC4 < CARB 2422, (CRB)A =
(BRC)4,

BA®CP (BA®C)P

Sl l *
cce

(BB CP)A £ (BB C)P)A —x (BN C)4)P

2. The following two diagrams commute, whekey : A — A x Ais (id4,id):

BA® pA —S> (BA% B)A
\ %

Remark 2.12. While it automatically follows from the definition &f4 5 ¢ that it is natural in
A andB, the requirement that it is natural @ is needed as a separate axiom.

The isomorphisnss 5 ¢ : BAR®C — (B®C)# is calledexponential strength. The require-
ment thasis an isomorphism is equivalent to the requirement that for eferip x A — BXC,
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there exists a uniqué* : D — B4 X C such that

(BABC)x A——=BxnC.

o

Dx A

Thus, one has a natural isomorphism of hom-§Bt< A, B % C) = (D, BA ® C), giving rise
to afibered ccc-structuren P.

Remark 2.13. So far, all the structural maps (of the premonoidal structure, the codiagonals, and
the finite product structure) have been focal. However, we do not require the application map
e : B4 x A — B to be focal, nor for the focus to be closed under currying. On the other hand,
the exponential streng8n p.c : B4 % C — (B X C)4 turns out to be focal, as we will show

in Lemma 3.5 below.

2.5. Example: Categories of continuations

As an example of a control category, we consider a category of continuations in the style of
Hofmann and Streicher (1997). We begin with a categOryith distributive finite products
and coproducts, and with a distinguished objBetsuch that for all objectst, an exponential
R* exists. For example, one may taketo be a bicartesian closed category (Lambek and Scott
1986), although in general, we do not require arbitrary exponentials to exist. We say that
satisfies thenono requirement if the canonical morphisr 4 : A — RE" is monic for allA. In
this case, we call the catego€ya response category, and the objeck its object of responses.
This terminology is borrowed from continuation semantics. For simplicity and without loss of
generality, we assume that the exponentials are chosen such $ad impliesR“ # R5.

Given a response catega®, we define itscategory of continuations, denotedR €, to be the
full subcategory ofC consisting of the objects of the for“. The crucial observation under-
lying continuation semantics is that the categ®¥ is cartesian-closed (Agapiev and Moggi
1991, Lafont, Reus, and Streicher 1993). Indeed; jrone has

RA x RB =~ RA+37 (RB)RA i~ RBXRA

1= R°, :
and, being a full subcategor®,C inherits this structure fror. Moreover, the categori © has
a canonical premonoidal structure, given on objects by

L:=R'=R, RN RP:=RY™"

The operatior?¥ is functorial in the first argument vi&4*Z =~ (R4)5, and in the second
argument viaR4* " =~ (RP)4, Notice that the operatiof? is not functorial in both arguments
jointly. All maps of the formR/ are focal. The structural mapsl, r, ¢, i, andV are defined in
the obvious way.

Lemma 2.14. The category of continuation®€ is a control category.
Proof. The axioms are easily checked. For instance, exponential strength holds because

(RB)RA 29 RC =~ RBXRAXC ~ (RB @RC)RA'
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O

A converse is also true: in Section 3.9, we will prove the main theorem about control cate-
gories: every control category is equivalent to a category of continuations.

3. The structure of a control category
3.1. Coherence

Lemma 3.1. The following hold in a control category:

(1) BA®C®D 2 BA

SA,B,C3D (Ip)*
sa,B,c3¥D IBA

SA,B, L

(BB C)A % D22{B 3 0 3 D)A. BAR 1L 2EL(B Ry 1)A,

B7sa,c.p

3 BBRCABD—3BR(CID)4

Sa.p,cB3D

@) B®C
s’A,B,C’?D cce e

B'RcIES(BRO).

SA,BRC,

(B3C)A3 D5(B 3 C 3 D)A.

AnA Sar,BA ¢ A A/(SA,B.C)A/ ANA
6) BMHYY 3 C (BA®RC) (BB C)Y)
BAXA/ 7?0 SA><A’.,B<C (B ??C)AXA/-

Proof. See appendix.

3.2. Centrality and discardability

We show here that any central map is discardable. In Section 3.6, we will be able to show that
any central map is also copyable, and thus the center and the focus coincide in a control category.

Lemma 3.2. In a control category, any central morphism is discardable.

Proof. Let f : A — B be central. Leid* : 1 — L+ be the curry of the identity map. Then the
first of the following three diagrams commutes by centrality. The second diagram is the same as
the first one up to coherent isomorphisms, and thus it also commutes. Finally, the third diagram
is obtained by uncurrying. Thug,is discardable.

15ALTL 1y g 1A 4 I

I@fl lj_iﬁf = idl lfl =
id* 3B ix

13B——=11%3pB 1—2>pt
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3.3. Some focal structural maps

Lemma 3.3. In a control category, any morphism of the foli : CZ — C4 is focal, where
f:A— B.

Proof. The commutativity of the two diagrams

cEyp—L. canp cryor—2 L panoa
c%’gl lC/”?g and VCBl lVCA
CB@E%OAWE CB o CA
follows from that of
cnD)! Fxf
(©3 D)8 PL (cm p)a (c30)pxB 2D (o3 c)axa
<c7s’g>'*l lmgv‘ and chsl lchA
CcBE)f f
cn e cn g oB < oA
respectively, by naturality o' ® % D = (C % D)” and of C® B CB = (C % C)B*5B, d
Lemma 3.4. In a control category, the natural ccc isomorphisis =~ B and (BA)A/ =~
BAXA" gre focal.
Proof. This follows from Lemma 3.1(4) and (5). O

Lemma 3.5. In a control category, the exponential strength s.c : BA® C — (B3 C)* is
focal.

Proof. To see that it is central, consider the diagram

c)®D SA,B¥C,D

pincnyp- (pyoyinp (BXC 3 D)*
BAvycml l(B’??C)M?h l(B?’S’C’?S’h)A
BE xC,
pincyp 2P pyoyanp R (g o)A,

By coherence, the morphism along the top is equalit@ ¢z p, and similarly along the bottom.

The right square commutes by naturality of strength, and so does the perimeter. The left square,
then, implies thas, ¢ is central. Showing thads g, ¢ is copyable comes down, modulo co-
herence, to showing that

(BRB)A>ARCRC—">(B®BRCN(C)A*A

l(vwv)A
(B3 C)4,

vAﬁvl

BA®RC

which follows by naturality ok.
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Lemma 3.6. Forall A, B, C, the canonical morphism p . : B4 — (C % B)°™4, which is
obtained by currying

C%e

WX (CBA) c® B,

fap.c: BYx (CRA) (C3BY) x (CBA) L CR(BAxA)

is focal. Moreover, p is natural i, B and dinatural in centralC, and it satisfies the following
coherence properties:

1) BA—" —(cm B)A @ BAxD- 22 (cmB)CTARD

T P | I

(DX C % B)PICAA, (BB D)A —2=~(C' 3 B3 D)°4,

id*,

AA

o~ .- p
idpoya

(BC)AC. (B%’A)BQ?A.

@ BA-Ls(oxpLma @)1

f>Xg.he. f(ge

Proof. See appendix.

3.4. A remark on consistency

One may ask whether it is consistent to trivialize the structur® ofe. to assume tha¥ is
bifunctorial. It turns out that any control category in whighis bifunctorial is equivalent to a
boolean algebra. The reader may find it instructive to compare the following lemma to the fact,
proved in (Lambek and Scott 1986, p.67), that in a bicartesian closed category, there is no arrow
A — OunlessA 0.

Lemma 3.7. There is no central morphistfi: 1 — A, unlessA = 1.

Proof. First, we claim thatiff,g : 1 — A andf is central, thery = g. Consider the diagram

o
131 2% am1<

lﬁgl lA"’?g lq
BA w

19424 A a< 4

All cells commute, and the morphisms along the top and left sides are isomorphisms. Hence it
follows thatf = g, proving the first claim. Now suppose that 1 — A is central, and leB be

any object. Therf® : 1 = 1! — AB is central by Lemma 3.3. By our first claim, the hom-set

(1, AB) =1, and hencéB, A) = 1, showing thatA is terminal. O

Corollary 3.8. A control category in whichy is bifunctorial is equivalent to a boolean algebra.
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Proof. If % is bifunctorial, then all morphisms are central. Thus, any hom:Betd) =

(1, AB) has at most one element by Lemma 3.7. It follows that the category is equivalent to

a poset, and the control category structure trivializes to a boolean algebra structure. [

3.5. Classical features: excluded middle and double negation

It is well-known that lambda calculi with control operators, such as\fixealculus, correspond

to classical logic under a propositions-as-types correspondence. This fact was first discovered
by Griffin (1990). Since control categories are going to be models for such calculi, it should
therefore not be surprising that control categories are models of propositional classical logic.
Objects correspond to propositions, and arrows correspond to proofs. The op@étratiodels
disjunction. Note that all the axioms of control categories are intuitionistically valid, except for
the existence of an inverse to the nap B4 % C — (B % C)*. The latter makes the logic
classical. We can define arrows for excluded middle and double negation:

—1

thdy:1 2 (LB A)A S 1454
OA:ALLLA
04: 11" B (am 1)ams?

(excluded middle)

(double negation introduction)

Amd

Z, A% Ay (double negation elimination)

=

Of course 4 is just the natural map that can be defined in any ccc.

Lemma 3.9. In a non-trivial control category:

Q) G0 =104 14" 1A

(2) Op004=idy: A— A.

(3) tndy4 is dinatural in A, but not in general central.

(4) 04 is naturalin A, but not in general central.

(5) 64 is focal, but not natural inA. Howeverg 4 is natural in centralA.

Proof. (1): This follows from Lemma 3.6(3). (2): An easy diagram chase. (3): Dinaturality
follows from naturality of ands. Notice that by Lemma 3.7nd 4 is not central unless 4 3 A =
1. (4): The map) 4 is natural in any ccc. 104 : A — 11" is central, then anymap: A — B
is central, becaus¢g = g odp o f = Op o 1 04 by (2), which is central by (5) and
Lemma 3.3. (5)8 4 is focal by its definition, becaugeis focal by Lemma 3.6 and ™ is focal
by Lemma 3.3. The naturality @f4 in central A follows from the dinaturality ofnd andp in
centralA. Ll

The central morphisms are characterized by the factthas natural in centrald:

Lemma 3.10. A morphismf : A — Bis centralifand only iff 004 = 0p o 1+
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Proof. “Only if” follows from Lemma 3.9. For “if”, supposef c 8 4 = 0p o 147, and let
g : C — D. Consider the following cube:

fzCc
ARC BXC
0ABC
Lf 0 RC
1y e A; Xy B
9
LLBWg
a 3D
Lty A¥D B3 D
02D
Lf 0D
1 %D
1% p 1+%%p

The top and bottom faces commute by assumption. The left, right, and front faces commute
becausé 4, 0, and L1’ are central. Moreover, the top left arrdy, % C' is a split epic by
Lemma 3.9(2), and thus the back face commutes, showing tisatentral. O

3.6. The center and the focus coincide

From Lemma 3.2, we know that any central map is discardable. We can now show that in a
control category, the center and the focus coincide:

Lemma 3.11. In a control category, any central morphism is copyable.

Proof. The proof is adopted from Thielecke (1997). Suppfised — B is central. Consider
the following cube:

s
AN A Rl BX B
0404
N N LR L)
JR o SR R IR v
vt
v
v A ! B
v i
0B
1t Tl 17

The front face and the two sides commute becausé, 04, anddp are copyable by Lemmas 3.3
and 3.9. The top and bottom faces commute becéusis natural in centrad by Lemma 3.9.
Moreover, the top left arrow 4 % 6 4 is a split epic with right inverséd s % J_iA) o (AR Dy).
Thus, it follows that the back face commutes, showing fhistcopyable.
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3.7. The basic adjunctions of the center

Let P be a control category. Recall that the centePofvas denoted by °. We use the usual
notation for hom-sets. Thu® (A, B) is the set of all morphisms, arld*(A, B) is the set of
central morphisms from to B.

Lemma3.12. P(1,B % A) =2 P*(L4, B), naturally in A and centralB.

~

Proof. Writing p, 5 for L4 P48, (B3 )B4 =, BBEYA we definepap : P(1,B 3
A) —P*(LA, B)andya p : P*(14, B) — P(1,B % A) by

pap(f) = 14222 pema Bl g g
daplg) = 179 143494 poyy

Notice thate(f) is indeed central by Lemmas 3.3, 3.4, and 3:8s clearly natural in central
B. The naturality of¢ in A follows from that ofp 4 . To see thai)(¢(f)) = f holds for all
f:1— B2 A, consider the following diagram:

IL)LA@A&)BBWA@A%Bl@AL)B:@A.

) ls ls ls o
id )f

i (B A)!

AA ————= (B A)BBA
The diagram commutes, from left to right, by definitiortied, Lemma 3.6(2), naturality of and
Lemma 3.1(4), respectively. The composition along the taf)(i8(/)). The composition along
the bottom isf by Lemma 3.6(4) and standard ccc manipulations. To showgthatg)) = g
holds for centraly, consider

(BBA

g A tnd
BB3A _B7" BLAWA B Bl cee B.

p] TgLAfs’A Tgl [g
p (lA)tnd
_—

LA (J_A)J_A’??A (LAY —2 s 14
T(ﬂ‘)s
.fbm (LAY
(LA

The leftmost square commutes by dinaturalitypaf centralg. The leftmost triangle commutes
by Lemma 3.6. The other parts commute by definitiomdfand by ccc calculations. Clockwise
along the top, we hav@(+(g)), and counterclockwise along the bottom, we have O]

Lemma 3.13. P(4, B) = P*(LB, 14) = P*(L1" B). The firstisomorphism is natural i
and B, and the second isomorphism is naturaldrin central B.

Proof. Define

0f

¢A,B : P(AvB) - P.(LBv J~A) by ¢(f) = LB — LA7
Yap PULE LN P B) by oY) = L1722
945 P (LY B)— P(A,B) by o) = A2 11 IMp
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Notice thats(f) andy(g) are indeed central, by Lemmas 3.3 and 3.9(5). Clearig,natural in
A and B. Moreover, is natural inA and in centralB becausé g is. We need to show that all
three maps are isomorphisms:

DNzt

b(g)) = LB L5 ue? L) an L0

\/

POEm) = 14" L“H<M7B

The commutativity of these diagrams follows from Lemma 3.9. O

I (e(f))) =

Putting the last two lemmas together, we immediately get:

Corollary 3.14. P*(1+,B%¥ A) = P(1,B%¥ A) = P*(14, B), naturally in central4 and
central B. O

3.8. Functors and equivalences of control categories

Let P andP’ be control categories. Atrict functor of control categories F : P — P’ is a
functor that preserves chosen structure, i.e., it preserves chosen binary prédugts,, and
exponentials, as well as the chosen morphisms associated with that structure. Notice that it fol-
lows from Lemma 3.10 that such a functor preserves central maps; thus, we do not need this as a
special requirement.

In practice, we are usually more interested in functors that preserve the stgtorssomor-
phism In the context of control categories, it is sensible to require the structure to be preserved
up tocentralisomorphism, as expressed in the following definition:

Definition 3.15. A (weak) functor of control categoriesis a functorF : P — P’, together with
central natural isomorphisms
nap: FAXFB = F(Ax B)
nip: FARFB = F(A®B)
1.
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commuting with the morphism structure in all the evident ways, for instance:

n* FA%n*-
FAx FB—— F(A x B) FAR® 1 —>FARF1

e R

FA, FA———F(A% 1).

It follows from Lemma 3.10 that weak functors of control categories preserve the center. Note
that this in particular implies that weak functors of control categories can be composed.

We will also need a notion of equivalence of control categories. Here, too, it is appropriate to
modify the standard definition to take into account the concept of centrality.

Definition 3.16. An equivalence of control categories P andP’ is given by a pair of weak
functors of control categorie$; : P — P’ andG : P’ — P, together with twacentralnatural
isomorphismsZ o F' = idp andF' o G = idp. If two control categories are equivalent in this
sense, we also write ~ P’.

We say that a functoF' : P — P’ is centrally essentially onto objectsif for eachB € |P’|,
there exists al € |P| and a central isomorphisi = F A.

Lemma 3.17. Assuming the axiom of choice, a weak functor of control categétie® — P’
is part of an equivalence if and only # is full, faithful, and centrally essentially onto objects.

Proof. A very slight modification of the usual argument for categories with structure. [

3.9. The structure theorem for control categories
The fundamental theorem about control categories is the following structure theorem:

Theorem 3.18 (Structure Theorem).Any control categoryP is equivalent to a category of
continuationsRkC.

SupposeP is a control category. Le€ = (P*)° be the dual of the center &. Thus, the
objects ofC are those oP, and a morphism i€ from A to B is a central morphism froms to
Ain P. To avoid confusion, we will writed for the object4, when considered as an object of
C. Similarly, we will write f: A — B foracentral morphisnf : B — A, when considered as
a morphism ofC.

Lemma 3.19. The categonC has distributive finite products and coproducts.

Proof. The centefP* is closed under finite products by Lemma 2.10. Moreover, since center
and focus coincide, the premonoidal structur@agstricts to a finite-coproduct structure Br?
by Lemma 2.7. Thus has finite products and coproducts. The distributivityJofollows from
that of P. O

In C, define an object of responsBs.= 1T

Lemma 3.20. The categoryC has exponentials of the for@4 for every objectfl. Moreover,
the canonical morphisr ; : A — RE" is monic. ThusC is a response category.
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Proof. Using the natural equivalence of Corollary 3.14, we have
C(B x A, R)=P*(L*,B®A) = P*(14, B) = C(B, L4),

naturally inﬁ, B. Thus, we can defing 4 = P‘ in C. Moreoverg; : A RR/i is@ CA
11*, which is monic becausg, is a split epic inP by Lemma 3.9(2). U

Proof of Theorem 3.18lt remains to be shown that the category of continuati®fs is
equivalent toP as a control category. By Lemma 3.13, we know that the contravariant functor
F:P — P*givenbyF(A) = L4 andF(f) = L/ is full and faithful. ThusF° : P — Cis a
full and faithful covariant functor. Moreover, the objects in the imagé@'8F are precisely those
of the form LA = RA, Thus, FP restricts to an equivalence of categorles— R€. We must
show that it preserves control category structure. Being an equivalérfeslearly preserves
finite products and exponentials. We calculate that it preserves the premonoidal structure:

FOP(A% B) = LAPE — RAXB — RAy RB — [Ax 1B — Fo(A) 3 FP(B),
FP(l)y=1t=R=1.

One must also check that fgr: B — B’ in P, one hasF"°P(A B f) = FP(A) ¥ F°P(f), i.e.,
1A3f = | fA . RAXB _, RAXB’ Unwinding the definition of exponentiation {, one finds
that this holds if the following commutes:
P* (1438 () —=>P(1,C 3 AN B) — > P*(L5,C 3 A)
P'(LAWfA,C)l lP'(if,CWA)

Pe(LA%B () —=>P(,CRAZB) —E>P'(J-B/,C78A)

But the isomorphisms, from Lemma 3.12, are naturaBirand thus this commutes. Finally, it
is routine to check thaf'°? preserves the structural maasl, r, c, i, andV. This proves the
theorem. ]

4. More on the structure of a control category

In this section, we examine the structure of control categories further. The material of Subsec-
tions 4.1 and 4.2 is needed in preparation for the interpretation of the call-by-valoalculus;
the rest of this section may be skipped in the first reading.

4.1. The weak co-closed structure of a control category

By combining the cartesian-closed structure with Lemma 3.12, we get the following sequence of
isomorphisms:

P(B,CRA)=P(1,(CBAB)2P(1,Cx AB) = P* (147 (),

naturally in A, B, and centralC’. Thus, for any object4, the functorF : P* — P given by
F(C) = C ® A has a left adjoinG : P — P*, given byG(B) = 14" The unit of this
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adjunction is

o

coapp: B 2 A" =, 1A% 3 4,
We denote the image of a mgp B — C % A under the adjunction bgocurry(f) : L A% .
The mapsoappandcocurrydo neither define a co-closed structure®®mor onP *. However,
from the adjunction, one has
B0% a7y
icocurry(f)%’A

CHA

forall f: B — C' % A, and moreovecocurry( f) is the uniquecentral morphism making this
diagram commute. ThuiAB defines aveakco-closed structure B, and we write

Bo A:= 147,

4.2. Co-control categories angh—-categories

For the interpretation of the call-by-valug-calculus, it will be convenient to dualize the notion

of a control category. Aco-control category is the categorical dual of a control category. In
particular, it has finite coproduct$ + B with initial object0, co-exponentials which we write
asBy, a pretensorl ® B with unit 7, and a weak closed structude— B. The following table

lists some notation that we are going to use for objects and morphisms of a co-control category:

On objects On morphisms
Control Co-control  Control categories Co-control categories
1 0 O:A—1 0:0— A
Ax B A+ B i:lL—A t:A—1
1 I V:ABRA—- A A:A->ARA
AN B A® B e:BA*xA—B 2B—Bas+A
BA By f*:C— BA *f By — C
Bo—A A—oB coapp: B— (Bo—A)® A app:(A—-oB)® A— B

cocurry(f) : (Bo—A) — C curry(f) : C — (A — B)

We use the usual notation for coproducts. Following Thielecke (1997), the dual of thé map
is calledthunk and the dual ob is calledforce The remaining structural maps keep the same
names as their duals.

Every co-control category is @—-category in the sense of Thielecke (1997), wherk is
defined ad4 = A —o 0. Notice that one haB, =~ (-A4) ® BandA — B = —-(A ® —B);
thus each two of the construciss, A —o B, and—A can be defined in terms of the third.
Conversely, one can show that eveyy:-category can be fully and faithfully embedded in a co-
control category. Thus, co-control categories can be seen as a natural extensieoategories
with finite coproducts. The presence of finite coproducts is important for the duality result in
Section 8.
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Table 1.The signature of control categories

Nullary morphism constructors: Object constructors:

id: A—A 1 L AxB A—B A®B
O A—1 . .

m: AxB-oA Binary and unary morphism constructors:
T2 AEB*)B f:A— B g:B—C
€: B4 xA—B ofiA=C

a:  (AFB)RC— AR (BRC) ger:

|- A AN L f:A—B g:A—C
c: ABB-BR®A (f,9): A= BxC

i 1A fiAxB—-C

V: ABASA f*iA-CP

d: (ABC)x(B®C)— (AxB)3C f:A>B

sl: (BRC)A = BARC fRC:ARC - BRC

4.3. Control categories as algebras

The structure of control categories, like that of cartesian-closed categories, is equational in the
sense of Lambek and Scott (1986). This means that the structure can be given by object construc-
tors, morphism constructors, and universally quantified equations on hom-sets. Any categorical
structure that is given in this way enjoys good properties, because the usual algebraic construc-
tions, such as constructing a free algebra or a quotient, have categorical equivalents. Thus, it
makes sense to speak of a congruence relation on a control category, to take a quotient, or to
freely adjoin a class of arrows.

The object and morphism constructors of control categories are shown in Table 1. Here, it is
understood that each given morphism constructor actually stands for a family of constructors,
indexed by objects. Some constructors that appear in our definition of control categories are not
shown here; they are definable in terms of the remaining ones, and are thus redundant.

The structure of control categories is given by type-indexed equations (with variables) on hom-
sets over this signature. These equations can be found in the definitions in Sections 2.1 through
2.4, and we do not repeat them here. For illustration, let us only point out that the requirement
that a certain morphism is focal can indeed be expressed equationally. For instance, the focality
of my : A x B — Alis expressed by the following three equations:

molaxp = la,
m1 0 Vaxp Vao (AR 7)o (m B (Ax B)),
(mABD)o((AxB)Bg) = (ABg)o(m BC), forallg: C — D.

4.4. The center of a category of continuations

We have remarked in Section 2.5 that in a category of continuafifnsany morphism of the
formRY : R* — RB,forg: B — Ain C, is central. As Fihrmann has shown, the converse is
true iff C satisfies Moggi'qualizing requiremern{iMoggi 1988; Filhrmann 1999). We say that
an objectd € |C]| satisfies the equalizing requirement if the canonical morpbigm A — RE*
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is an equalizer in the following diagram:

P O
oA A > RA
A RE® _+ . pR®

RROA
We say thaCC satisfies the equalizing requirement if all of its objects do.

Remark 4.1. The equalizing requirement is satisfiedif, is a split monic, which is the case,
for instance, ifC is the category of non-empty sets giit] > 2.

Lemma 4.2. Let R€ be a category of continuations. For any objettc |C|, the following are
equivalent:

(1) Every central morphisnfi : R4 — RPB is of the formR9, for someg : B — A.
(2) The objectA satisfies the equalizing requirement.

Proof. Denote byf; : B — RE" the curry and uncurry of a map: R4 — RE. Notice that
if g: B— A, thenf = R9ifand only if f} = 04 o g. Also note that sucly is necessarily
unique, since we have assumed, in the definition of a response categoytimmonic. By
Lemma 3.10f is central if and only iff 00 pa = Oy o R* Ina category of continuations, we
havefiza = R24, and by ccc manipulations, it follows thads central if and only iD praofy =
RE™ fr. It follows that every central morphisifi: R4 — R” is of the formR9, for someg,
if and only if for everyf, it is the case tha# 4 o f} = RE™ o f* implies f* = 04 o g, for
someyg, if and only if A satisfies the equalizing requirement. O]

Remark 4.3. Not every response category satisfies the equalizing requirement. For a trivial
counterexample, le€ be the full sub-ccd{0,1} of the category of sets. Lek = 1 be the
terminal object. Notice that, sind@ is a posetg 4 is monic for all A. However,A = 0 does not
satisfy the equalizing requirement. Indeed, the unique fhagR® — R! is central, but not of

the formR9 forg : 1 — 0.

4.5. On explicitly chosen value categories

In our definition of control categories, the center is a derived notion: a morphism is central if it
satisfies certain equations. Thus, the center is not an explicitly given part of the structure. Com-
putationally, the central morphisms are used to model effect-free computatioadiies as we

will see in our interpretation of the call-by-valug-calculus in Section 7. Some authors, such as
Jeffrey (1997), prefer to present premonoidal categories together with an explicitly cladsen
category which is a fixed subcategory of the center. In the context of premonoidal categories,
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Definition 4.4. Let P be a control category. A subcatego¥y is called avalue category if
|P| C 'V C P*, andifV is closed under all the structural operations of control categories (shown
in Table 1), except and currying. We further require thaf contains the maps 4 g ¢ and
Pa 5. c» and all maps of the forr /. If V is a chosen value category Bf then the morphisms
of V are calledvalues.

SupposeP andP’ are control categories with respective chosen value categ@rimsdV'.
We say that a (weak) functor of control categories P — P’ preserves values if it restricts
to a functor fromV to V', i.e., if f € V implies F(f) € V'. In this case, we also writ&' :
(P, V) — (P, V’). We say that an equivalenéé: P — P’, G : P’ — P of control categories
respects values if it restricts to an equivalence of the categorsandV'. This means not only
that bothF' and G preserve values, but also that each component of the natural isomorphisms
GoF =idp andF oG = idp: is a value. IfP andP’ are equivalent in this sense, we also write
(P, V)~ (P, V).

If RC is a category of continuations, I&S be the subcategory consisting of morphisms of
the formR/. ThenRS is a value category aR€, and we call it thecanonical value category.
Note that in Remark 4.3, we gave an example of a category of continuations whose canonical
value category was strictly contained in the center. Since the center of any control category is
itself a value category, this shows that value categories are not in general unique. However, the
following lemma shows that at certain types, the values are uniquely determined.

Lemma 4.5.1f P is a control category with chosen value categdvy then V(L4 B) =
P*(14,B).

Proof. By the proof of Lemma 3.12, any central map |4 — B is of the formB?Y o p, and
hence a value. O

Notice that this implies that in a co-control category, the values at the call-by-value function
type A —o B = —(Ap) are uniquely determined. The valugs C — (A —o B) are precisely
the maps of the fornf = curry(g). Under our interpretation of th&u-calculus in Section 7,
these maps are precisely the lambda abstractions.

In the context of chosen value categories, we can give an improved version of the Structure
Theorem. In Theorem 3.18, we have shown that every control cat®y@gquivalent to a cat-
egory of continuation® €. However,C is not in general uniquely determined By It turns out
that with respect to a chosen value cateddrpf P, the categonC is unique up to equivalence.

This is made precise in the following theorem:

Theorem 4.6 (Second Structure Theorem).Let P be a control category with chosen value
categoryV. Then there is a response categ@ysuch thafP, V) ~ (R€, RS). Moreover,C is
unique up to equivalence of response categories.

there is a clear advantage in working with chosen value categories, because functors that pre-
serve the algebraic structure of premonoidal categories do not in general preserve centrality; but
by making values part of the given structure, one can require functors to preserve them. Since,
on the other hand, functors of control categories automatically preserve the center, the need for

Proof. Existence: LeC = V°P. One prove® ~ RC exactly as in the proof of Theorem 3.18,
takingV in place ofP*. Lemma 4.5 serves to ensure thahas all the properties @& ® that were
relevant to the proof. Moreover, under the equivalence, the images of valéé are precisely

value categories is not so clear in this context. Still, it is possible to accommodate this point of
view if desired, and in this section we will show that this leads to a slightly improved statement
of the Structure Theorem.

the valueskR’ € RS. Uniqueness: First, observe that any response catdgasyequivalent to
the dual ofRP via the contravariant functor that magso R4 andf to R/. Clearly, this functor
is full and onto objects; it is also faithful sind®@ satisfies the mono requirement. Now suppose
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Table 2.The typing rules for the u-calculus

var) - fzmAel

(van Tra:A|a 7A€ @pp DFMiA—B|A TEN:A|A

(cons) TFMN:B| A
TFcA:A| A (ab3 INa:AFM:B | A

*) rFxe4M:A—-B| A
PhEx:T 1A (namd TEM:AIA ¢ Aca

(pair) TEM:A| A 'EN:B| A PHlaM:1 | A

H(M,Ny:AANB | A ) FEM:1 | aAA

) TFM:AAB| A H TFuAM:A|A

[ : :

(m2) TFmbM:B | A

(P,V) =~ (RP,RP). Then we havdD ~ (RP)% ~ VO = C; moreover, this equivalence
identifies the response objeRt € D with R = 11 € C. Thus,D andC are equivalent as
response categories. O

5. The Ap-calculus
5.1. The syntax of thau-calculus

We will show how to interpret Parigot’au-calculus (Parigot 1992) in a control category. We
begin by reviewing the syntax of theu-calculus with finite products. Let, 7, . .. range over a
setB of type constants. Types, ranged over by, B, .. ., are constructed by the grammar:

A:::alTlA/\B|A—>B|L

LetV andN be two given, infinite, disjoint sets object variablesx, y, . . . andcontrol variables
a, 3, ..., respectively. Control variables are also calieiines. Let C be a set of typedbject
constants ¢, dB, . ... The pair(B, K) is called asignature of the Au-calculus, and sometimes
denoted by:. Raw terms)/, N, . .. are constructed by the grammar:

M=z |t |« | (M,N) | ;M | oM | MN | \a®.M | [o]M | pa®.M

A term of the formua .M is called au-abstraction, and a term of the fornin] M is called a
named term. In the terms\z4. M andua?. M, the object variable:, respectively the control
variableq, is bound. As usual, we identify raw terms up to renaming of bound object and control
variables.

The typing of the\u-calculus is defined as follows. Aobject context is a finite, possibly
empty sequencE = z1:By,z2:Bo, ..., x,: B, of pairs of an object variable and a type, such
thatz; # =, for all i # j. We writeI' C I" if " is contained i’ as a set. Acontrol context
A = ag:4q,a9:A,, ..., an: A, is defined analogously. &yping judgment is an expression
of the formI' - M : A | A, i.e., a quadruple consisting of an object context, a term, a type,
and a control context. In the logical interpretation of a sequent, the symBdtands for an
implication, and the symbol|” stands for a disjunctiorvalid typing judgments are derived by
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the rules in Table 2. Arguation is an expression of the forin - M = N : A | A, where
'FM:A | Aandl' - N : A | A are valid typing judgments.

5.2. An informal description of the semantics of thye-calculus

To motivate the constructs of the:-calculus, we first give an informal discussion of the intended
semantics. A formal semantics will be given by means of CPS translations in Sections 6 and 7.
The p-abstractions and named terms of the-calculus are operators that influence the se-
guential flow of control during the evaluation of a term. Informally, when a subterm is evaluated,
one of two things could happen: it could return a value to its environment, or it could cause the
control flow to jump to some other part of the program. A term that contains such a jump may
never return a value to its environment at all, in which case it can be given the typhich is

the “empty type” of which there are no values.

In the \u-calculus, a prototypical term of typeis the terma] M. It does not return anything,
but passes the value 8f to a control variable named instead. One can think ef as a named
channel, and of the value @ff as being sent along this channel. One also says\ithistthrown
to a. Channels are typed: if has typeA, then this means that values of tydecan be thrown to
Q.

We also need a binding construct for channels. TikebstractionN = ua“.M creates a
named channel and then begins to evaluaté. If in the process of evaluatinyy/, some value
gets thrown tay, then this value immediately becomes the value of the whole expre¥sidhe
evaluation ofM is not continued in this case. Thus, sircés declared to be of typd, the term
N must have typeld as well. What should the type @ff be? In the\u-calculus, the bodyw/ of
a u-abstraction has typé. Thus, the question of what to do whéi returns a value does not
arise. However, this is not a serious restriction: one can easily deal with ferrokarbitrary
type by using the idionua.[8] M, or everua?.[a] M whenM has typeA.

A typing judgmentzq:B, ..., 2By F M 1 A | a1:A4, ..., an: A, means thatV] is a
well-typed term with at most free typed object variables and at mastfree typed control
variables. One can think dff as a function inn arguments which has, + 1 possible result
channels: it may return an ordinary value of typeor it may return an exceptional value of type
A; on some channel;.

On the surface, there is a certain similarity between the control constructs bfitbalculus
and the exception handling mechanism of ML. As a first approximation, one may think of throw-
ing a valueV to « as raising an exceptiam with valueV'. Similarly, one may think of the term
po .M as providing a handler for the exceptian However, this analogy is only superficial,
and there is an important difference between ML exception handling anéittealculus: the
latter isstatically scopedThis means, the terv = pa“.M binds those occurrences afin
M in its syntacticscope. Occurrences afthat are substituted intd/ (for instance as the result
of reducing a\-redex) arenotbound in/N. On the other hand, ML exceptions atgnamically
scopedwhich allows a function, among other things, to handle an exception that one of its ar-
guments throws. Because of its static scoping, Xpecalculus is a calculus afontinuations
not exceptions, and the-abstraction mechanism is closely related to control operators such as
cal | cc in Scheme, or Felleiseni.
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5.3. Adding classical disjunction to theu-calculus

The Au-calculus can be regarded, and was originally conceived, as a term calculus for multi-
conclusioned classical sequent calculus proofs. This connection to logic suggests that one should
be able to extend the calculus to include a disjunction type constructor. Indeed, there is a standard
way of adding disjoint sum types to the lambda calculus via left and right injections and a case
construct. However, the proof theory of disjunction in classical logic is quite different from that in
intuitionistic logic, and Pym and Ritter (1998) show how to add a different, classical, disjunction
type to the\p-calculus. They also show that these classical disjunction types are strictly different
from the disjoint sum type under the call-by-name semantics. On the other hand, we shall see
that under call-by-value, the two disjunction types coincide.

In the following, we essentially adopt Pym and Ritter’s classical disjunction type, although we
use a slightly different, more symmetric syntax for terms. Formally, we add one type constructor
and two term constructors to the:-calculus:

A

... |AvB

M oo | o, BIM | (e, BB).M

The two new term constructors are generalizationg-abstraction and naming that deal with
two control variables, rather than one. Informally, one may think of a value of fypeB as
being either a value of typd or a value of typeB. Depending on which is the case, the term
[, B} M will throw the value of M to « or 8. Similarly, the termu(a®, 3%).M catches any
value that is thrown tev or 3, and synthesizes it to a value of tydev B. The typing rules for
disjunction are:

I-M:AVEB | A
FFla,BlM:L ]| A

(namé) if a:A,3:B € A,

'FM:1 | aA B:B,A

!
W) LA 3P M AV E | A

Notice that the typing rules imply that in the patter(n.#, 3%).M, the variablesy and 3 are
different. When writing terms in the disjunctivgu-calculus, we will sometimes use a more
generous syntax fog-abstractions and named terms. For instapge,”, (32,~7)).M is an
abbreviation fop(a?, 8V9).[8] (85, ~¢). M, and similarly[e, [8,v]] M is syntactic sugar for
the term[3, 7] ud BV [, 6] M.

The disjunctionA Vv B is classical For instance,

M = p(a®, p474). (82" [z

is a closed term of typel V (A — 1). Itis instructive to examine the behavior of this term,
because it is an illustration of how the static scoping works. Informally, when the Aéris
initially evaluated, it will return a closurgz4.[a]z of type A — 1 to its environment. Should
the environment ever attempt to apply this closure to some vabfetype A, then the control
flow will jump back to the term\/ in the environment in which it was originally called. At that
point, M will evaluate tov.
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6. The call-by-name interpretation of the Ap-calculus

Thep-calculus was originally introduced as a call-by-name language (Parigot 1992; Ong 1996),
although Ong and Steward have later given it a call-by-value interpretation (Ong and Stewart
1997). We will first consider the call-by-name semantics, and leave the call-by-value semantics
for the next section.

The operational semantics of the call-by-namecalculus can be given in several different
familiar styles. Parigot gave a strongly normalizing system of reductions for his original calculus,
an approach that was generalized to the extensional and disjunctive case by Pym and Ritter
(1998). However, the reduction rules for the control operators are less than intuitive, and they
involve complex substitution operations and permutations of contexts.

For our purposes, it is more convenient to consider a continuation passing style (CPS) se-
mantics. One such semantics, based on Plotkin’s original call-by-name semantics for the simply-
typed lambda calculus (Plotkin 1975), was given by De Groote (1994a). We adopt a different
CPS translation which was given by Hofmann and Streicher (1997) and which takes advantage
of a richer target language with finite sums and products. Streicher and Reus (1998) demon-
strated that such a CPS translation can serve as the basis for an abstract machine model, yielding
a stack-based Krivine machine for the call-by-naxpecalculus. We extend the CPS translation
to include disjunction types, and take it as the basis for our categorical interpretation of the call-
by-name disjunctive u-calculus in a control category. It is also possible to systematically extend
the Krivine machine semantics to account for disjunction types. This is carried out in (Selinger
1998).

6.1. The call-by-name CPS translation

Consider the disjunctiv&-calculus over some signatufB, ). We will give the call-by-name
semantics of this calculus by a CPS translation. The target language of the translation is a lambda
calculus\™* with sum, products, and a distinguished typef responses. Function types are
restricted to the casd — R, and consequently, lambda abstractionsi/ occur only when

M has typeR. Let =g, denote the usualn-equivalence oh #>+, with surjective pairing and
exhaustive sums.

To keep the notation brief, we use various forms of syntactic sugar for the sums and products of
the target calculus. We use patterned lambda abstraktiony) 4> 2. M, which is customarily
defined as an abbreviation for A< M| z/x, m22/y]. We also use the co-pairing notation
[M, N] as a shorthand for the expressitkk4+5.casek of inl ky = Mk, | inr ky = Nky).

Notice that[M, N] is the term that corresponds {8/, N') under the canonical isomorphism
(A+ B — R) = (A — R) x (B — R).We also use lambda abstraction patterns for co-pairing;
thus \[z, y]A+T B~ M is a shorthand foAzATE=F M[Aa?.z(inl a)/z, \bB.z(inr b) /y]. The
initial type 0 is equipped with a type cast operatorMf has type), thenO 4 M has typeA. By

*, we denote the canonical term of the unit tyipe

Definition 6.1 (Call-by-name CPS translation). We assume that the target calculus has a type
constant for each type constant € B of Au. For each typed of the Au-calculus, we define
a pair of types 4 andC 4 of the target calculus, called, respectively, the typeanttinuations
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Table 3.The CPS translation of the call-by-namg-calculus

z = kKA gk wherez : A
o = MkEa gk
* = MeKT.Ogk

M. N = McKarB [M,NJk whereM : A,N: B
m M = \kFa . M(inl k) whereM : AA B
mo M = kKB . M(inr k) whereM : AA B
MN = MeEB . M(N,E) whereM : A— B,N: A
AzA. M = M\&,k)yKa—B Mk whereM : B

oM = K1 Ma whereM : A

po .M = Aafa M« whereM : 1

o, BIM = KL M(a,pB) whereM : AV B
uwa? . BBY.M = Xa, B)Kave Mx whereM : L

and ofcomputations of type A:

K, = 4, whereo is a type constant
K+ = 0,

Karng = Ka+ Kp,

Ka.p = (CaxKp,

K, = 1,

Kavp = KaxKsp,

Cy = Kj— R.

For each object constant' € K of the Au-calculus, we assume that the target calculus has a
constant of type C 4. Moreover, for each object variableand each control variable of the
Au-calculus, we assume a distinct variableespectivelyi, of the target calculus. The call-by-
name CPS translatiof of a typed term)M is given in Table 3. It respects the typing in the
following sense:

21:B1, ..,z By FM A | apiAy, .. amiAm
in:Cr, a1 KAy, .. Gm:Ka, FM:Ca

We also writel' = M : A | A for the translation of a typing judgment, and similarly for equa-
tions.

1)

ilzCBI, ..

This particular CPS translation, for the fragment without products and disjunction, was discov-
ered by Hofmann and Streicher (1997). It differs from Plotkin’s original call-by-name translation
(Plotkin 1975) by introducing one less double negation at function types, thus taking advantage
of the richer target language. We compare the two translations in detail in Section 6.5.

Notice that the translation of the control operators is straightforward: they simply exchange
current continuations. Thus, the translation reveals the nature of the control variables of the
calculus: they are essentially variables of the target language, to which the user of the source
language has limited access. One could take this idea further andaalbiinary expressiong
of the target calculus to appear in the constfet/ of the source calculus. A similar extension
was proposed by Streicher and Reus (1998). Such an extension would be in the spirit of Filinski's
symmetric lambda calculus (Filinski 1989), as it would put terms and continuations on equal
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footing. However, such extensions also lead to an incomprehensible programming style, and
since they do not add any expressive power to the language, we do not consider them further.

Definition 6.2. Let M and N be terms of the\u-calculus such thabF - M : A | A and
I'EN:A | A We say thatf andN arecall-by-name equivalent, in symbolsM =,, N, if
M =3, N. More generally, ifT is a theory of the\ ®**+-calculus, we define theall-by-name
Ap-theory generated by to be the set of equatiod¥ | E € 7 }.

Note that the class of call-by-name:-theories is closed under arbitrary intersections. As a
matter of fact, it has a finite equational axiomatization. For the fragment without products and
disjunction, this follows from Hofmann and Streicher’s result (Hofmann and Streicher 1997).
We will show how to obtain a finite axiomatization of the theories of the full calculus as a
consequence of the Structure Theorem, after discussing the interpretation of the call-by-name
Au-calculus in a control category.

6.2. The interpretation of the call-by-name:-calculus in a control category

The target calculus™*+ of our CPS translation can be interpreted directly in a response category
C. Recall that this was a category with distributive finite products and coproducts, a distinguished
objectR, and exponentials of the for@“. Let us momentarily identify the typds 4 andC 4

with their interpretation inC. Then by Property (1), the CPS translation of a typing judgment

21:B1,. ., xn: By B M A | ai:Aq, ..., an: Ay, gives rise to a morphism i@:

Cp, x...xCg, x Ka, x...x Kyu,, — Ca.
UsingC4 = R¥4 and currying, this amounts to a morphism
CBl ><~'~><CB,L HRK'AXK'Al><4..><I(Am7

which lies within the continuation catego®©. Thus, we can use the standard premonoidal
structure on€ to write

CBl X...XCB,,LHCA%)CAIW...@CA

m*

We have thus eliminated any reference to the continuation tipg$rom the interpretation of a
typing judgment. Indeed, one can interpret the call-by-namealculus in a control categoily
directly, without explicitly mentioning continuations. The interpretation is very natural:

Definition 6.3 (Categorical call-by-name interpretation). Let P be a control category. To in-
terpret theAu-calculus with signaturé3, ), assume a choice of an objettfor every type
constant € B. Each type constructor is interpreted by the corresponding object constructor of
control categories:

lo]n = & whereg is a type constant
[[T]]n = 1,

[ANBl, = [A]. x [Bla,

[A— Bl = [Bl.M"",

[[J-ﬂn = 1,

[AvB], = [A]l.®[B].
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Table 4.The interpretation of the call-by-nam:-calculus in a control category

[CFx;:B; | Aln r% B LesA

[CHcA:A| Al = r&18a%ana

[CF*:T | Al = r3i1=134

[CH(MN):AAB | A, = MV 43 A ) B3A) L (AxB) B A

[CFmM:A| Al r M, axpyma B3 4ma

[CFmM:B | Al = r M axpyma 232 A

[CFMN:B | Al = FM(BA%’A)X(A%’A) (BAxA) B A 28, A
[CEXAM:A—B | Aln= T2 (gypays = pana

[T+ )M : L | Al - '[M“" ABAYTEARA Y A2 1 RA
[CruaAM:A| A, = 02 3anA2 a5

ICFlaiaM:L | Aln = T2 g0, A W22 Agaga YAV, A = ) 32

[[M]l n

[[F)—,u(a“,ﬁB).M:A\/B\A]]n =T—% 1I%ABBRBA =S (ABB)BA

If I' = x1:By,...,z,:B, is an object context, we writf'],, := [B1]n» X ... X [Byn]», and we
denote theth projection map byr; : [['], — [Bi]n. Similarly, if A = a1:A4,...,am:A, isa
control context, we writ¢A],, := [A1], ¥ ... % [An]-, and we use the notatiow; : [A;],, —

[A],, for the jth weakening map. Typing judgments are interpreted relative to a choice of a
morphismé : 1 — [A],, for each object constant! € K. A typing judgment" - M : A | Ais
interpreted as a morphism

[CHM:A| A], [T — [Aln % [A]n,

which is also abbreviated {d\/],,. The interpretation is defined by recursion on the structure of
M, as shown in Table 4. To keep the notation reasonable, we have omitted the semantic brackets
from the interpretation of types, hoping that no confusion will arise.

Lemma 6.4.1f P = RC is a category of continuations, then the call-by-name categorical
interpretation of the\p-calculus inP coincides with the interpretation of the call-by-name CPS
translation inRC. |

From the Lemma, which is easily checked by induction on terms, together with the Structure
Theorem 3.18, one immediately gets soundness and completeness for theories:

Proposition 6.5 (Soundness and Completenessfhe theories induced on the:-calculus by
the call-by-name categorical interpretation are precisely the theories induced by the call-by-
name CPS translation. O

6.3. The call-by-name u-calculus is an internal language for control categories

Recall from Section 4.3 that the structure of a control category is given by operations on objects
and morphisms, and equations on hom-sets. On the image of any given call-by-name interpre-
tation of theAu-calculus in a control category, all these structural operations, as they appear in
Table 1, are in fact definable by operations on types and typing judgments.
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Table 5.Control category operations on typing judgments
Nullary operations:

id = xA F oz:A

< = xzA Eoox: T

st = zAANB o omax: A

T2 = zAANB F mox: B

€ = xzm(A—-B)ANA F (mz)(mz): B

a = z:(AvB)VvC Fooue®, (BE,79) e, B4z s AV (B VCO)

| = xA Foou(e?,db).alz: AV L

c = xAVB Foou(BB,a?).]a,Blz: BV A

i = mzl Fopatz: A

v = xz:AVA Fopod ooz A

d = z(AVC)A(BVC) +  p(6*B 4. [6)(pa [a, y]miz, uBB.[8,v]maz) : (AAB)V C

st = zA— (BVO) Foou(6A—B 2O [0 Az A uB8B.[B,]zz: (A — B)VC

Binary and unary operations:

f= A M:B g= m:BEN:C
gof= wAF (B N)M:C
f= mAFM:B g= ©mAFN:C
(f,9) = x:A+ (M,N): BAC
f= ©tANBEFM:C
f = wArF B (2B M)(z,y) : B— C
f= ©mtAFM:B
FfBC = x:AVCF uBB,~9). 18] zA. M)pat.la,y]z: BV C

Let z be a fixed object variable. We say that a typing judgment istandard form if the
object context declares exactly the one variablend the control context is empty. We abbreviate
standard form typing judgments toB - M : A, i.e., we omit the empty object context. Note
that every typing judgment,:By, ..., 2,:B, = M : A | ag:A1,. .., an:A,, is equivalent to a
standard form

By A ... ABp b pla,a,. .., o). Ja]( Az ..

in the sense that the two denote the same morphism under any interpretation in a control category.
Table 5 defines the syntactic operations on standard form typing judgments which correspond to
the structural operations of control categories.

cxp M) (mz) .. (mpx) t AV ALV .UV Ay,

Lemma 6.6. Under the call-by-name interpretation, the structural operations of control cate-
gories are defined by the operations on typing judgments that are shown in Table 5.

Proof. Itis easy to check this case by case. For instance, if the interpretatiod ¢f N : B
is f : [A]n — [B]. and the interpretation of:B - M : Cisg : [B]n — [C]x, then the
interpretation of:: A - (AzB.M)N : C'is

[4], £ [c]iel-
[CTn-

Definition 6.7 (Syntactic control category). For a given\u-signatureX and a call-by-name

% [Bln = [Cla,

which is indeedj o f : [A4],, — O
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theory 7, we can construct theyntactic control category P3 - as follows: The objects of
Py, 1 are the types of the language, with the object constructors given by the corresponding
type constructors. Morphisms froshto B are named by valid standard form typing judgments
x:A+ M : B. Two typing judgments: A+ M : Bandxz:A+ N : B name the same morphism

if (:AF M = N : B) € T. The operations of a control category on morphisms are defined as
in Table 5.

Lemma 6.8. P%. - is a well-defined control category.

Proof. We must show thaP?: - satisfies all the defining equations of a control category, i.e.,
that the corresponding equations between typing judgments hald By the fact that7 is a
theory, together with the completeness of the categorical interpretation, there is a control category
P together with a call-by-name interpretatips- | ,, such thafz:A - M = N : B) € T iff
[x:A+ M : B],, = [x:AF N : B],. By Lemma 6.6, the required equations holdnthus in
7. O

There is a canonical call-by-name interpretatjen]® of the Au-calculus with signatur& in
P%, ,, defined bys := o andé := z:T F ¢ : A. It has the property that the interpretation of
each typing judgment is call-by-name equivalent to its standard form. ThéRair-, [ —19) is
determined up to isomorphism by the following universal property: For €aodas'pecting call-
by-name interpretatiofi— ] ,, in a control categor®, there is a unique strict functor of control
categoried” : P - — P suchthatF[A]% = [A],, forall typesA, andF[I'+ M : A | A]% =
[THDM:A | A, forallvalid typing judgmentd - M : A | A.

The construction oPy: - allows us to pass from theories to categories. The opposite is also
possible:

Definition 6.9 (The internal language of a control category).Given a small control category
P, we can construct from it a signatufeand a call-by-name theory as follows:3 has the
objects ofP as its type constants, and one object constafit"Z for each morphisnf : A — B.
Consider the canonical interpretation of this languagPB imamely the one that interprets each
type constants by itself and each object constart—™? by f* : 1 — B4. Let7 by the call-
by-name theory induced by this interpretation. We call the (3aif") theinternal call-by-name
language of P.

Lemma 6.10. If (X,7) is the internal call-by-name language of a control categ®tythen
g],T ~ P.
Proof. Clearly, the canonical interpretation of the internal languag is onto objects and
morphisms, as each morphisfn: A — B is the denotation of:A + c;x : B. Thus, the

canonical functor of control categori®s}, » — P, given by the universal property #3, ., is
full and onto objects. It is faithful by definition af. Thus,P % , ~ P by Lemma 3.17. |

6.4. An axiomatization of the call-by-name:-theories
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Table 6.Axioms of the call-by-namigu-calculus

Axioms for the lambda calculus with products:

(B=) (aA.M))N = MI[N/z]:B

(n—) Az .Mz = M:B if x ¢ FV(M)
(BA)  mi{My, Ma) = M;:4A;

(mA)  (miM, w2 M) = M:AANB

(nt) = = M:T

Axioms for Ap. and disjunction:

¢-)  (na?=E.MN = BB M[BI(-IN/[a](-)]: B if B¢ FN(M, N)
(Cr)  mai(uatr*A2 M) = ppt M([Blmi(—)/[a](=)] : A; if 3¢ FN(M)
&) laBly*VE.M = Mla,Bl(=)/]-)] s L

Bu)  [@]patr.M = M /a]: L

(u)  pat.a]M = M:A if a & FN(M)
Bv) [, B, BB)M = Mo /o, /B]: L

(nv)  w(a?,8B).a,BIM = M:AVB if o, 3 & FN(M)
(1) [EHM = M:1

is already very close to the categorical semantics. Sometimes it is more convenient to have an
equational description of theories, for instance, as the basis of a rewrite semantics.

Having shown that the call-by-name:-calculus forms an internal language for control cate-
gories, we can characterize the call-by-name theories as follows:

Proposition 6.11. Fix a signatureX. Then a congruence relatiof on typing judgments is a
call-by-name\u-theory if and only if all of the following hold:

1. An equation is irY if and only if its standard form is iff".

2.Py 7, as constructed in Lemma 6.8, is a well-defined control category.

3. The canonical interpretatiop— [ : A — P - interprets each typing judgment by its own
standard form. '

Proof. If 7 is a theory, then the three conditions hold by the results of the previous section.
Conversely, assume the conditions hold. Then]? : Ay — P%, 7 is an interpretation in a
control category, and it validates exactly the equation§ inThus7 is a call-by-name\u-
theory. O]

One can use this characterization to give a sound and complete axiom axiomatization of the
call-by-name\ u-theories as follows. We write F\M/), respectively FNM ), for the free object
and control variables of a terdv. As before, we identify terms up te-equivalence, renaming
bound variables as necessary to avoid captures. We consider three kinds of substitution. We write
M|[N/z] for the usual substitution of a terf¥i for an object variable: in M. We write M [a’ /]
for the substitution of the context variahié for the context variable in M, andM o’ /«, 8’/ (]
for two such substitutions performed simultaneously. Finally, we consider the so-vaked
substitution: If M is a term,C(-) is a context, andx a name, then thenixed substitution

We obtained soundness and completeness of the categorical call-by-name interpretation almost M[C(-)/[a](-)] is the result of recursively replacing i any subterm of the fornfn] (-) by

“for free”, because of the way theories were defined; namely, in terms of a CPS translation, which

C(-), and any subterm of the forfa 1, az](-), wherea € {a1, as}, by C(ua.Jay, as)().
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More formally, M [C'(-)/[«](-)] is defined by recursion of/. The two important clauses are

([a]M)[C=)/[a](-)] = CM[CH/[](]),
([Oéh Oéz]]\{) [C(_)/[Oé}(_)]

Mixed substitution commutes with all other term forming operations, avoiding captures as nec-

essary.

An axiomatization of the call-by-nameu-theories is shown in Table 6. To make the axioms
more readable, we have not shown the typing contexts explicitly; we assume each equation to
be placed in a typing context which makes the left-hand side and right-hand side well-typed.
By a congruence relation on terms we mean a set of equations which is reflexive, symmetric,

transitive, and closed under the term formation rufesies) and under weakening.

Theorem 6.12 (Axiomatization of call-by-name\u-theories). Let7 be a set of equations of
the disjunctive\p-calculus over some fixed signature. THEns a call-by-name theory if and

only if it is a congruence relation on terms that satisfies the equations in Table 6.

Proof. Soundness is easily verified, for instance via the CPS translation and Proposition 6.5,
together with appropriate substitution lemmas. The proof of completeness is a long and tedious

verification of the properties in Proposition 6.11.

Remark 6.13. Pym and Ritter (1998) have given a strongly normalizing, confluent reduction
semantics to the call-by-name disjunctive-calculus based on a similar set of axioms, using a

slightly different syntax.

6.5. Comparison with the Plotkin call-by-name translation

Our call-by-name CPS translation is based on that of Hofmann and Streicher (1997). It dif-
fers from Plotkin’s original call-by-name CPS translation for the simply-typed lambda calculus
(Plotkin 1975) by introducing fewer double negations. To obtain Plotkin’s call-by-name transla-

tion from ours, change the definition &f 4, 5 to

Kisp = (Ca—Cp)—R.

Notice that this is isomorphic t§(C4 x Kp) — R) — R, and thus to the double negation
of our definition of K 4. 5. One can regard this as a way of working around the absence of
products in the target language. In the definition of the CPS translation, one changes the clauses

for application and lambda abstraction accordingly:

MN = MefB M(AmC—C mNk) whereM : A — B, N : A,
MM = MeFKa-B k(A€ M) wherelM : B.

This is precisely Plotkin’s 1975 call-by-name translation of the simply-typed lambda calculus.
Notice that it induces a different semantics than the Hofmann/Streicher translation: for instance,
Plotkin’s translation does not validate the fyllaw, whereas the Hofmann/Streicher translation

does.

Plotkin’s translation, too, can be formulated categorically. The Plotkin call-by-name interpre-
tation[ — ], of the Ap-calculus in a control category is defined just like the standard one, except

C(uat.Jay, o] M[C(=)/[](-)]) if @ € {ag,a2}.
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Table 7.The CPS translation of the call-by-valug-calculus

z = KAz wherez : A

cA = MkKa ke

* = KT kx

(M, N) = MkKarns M(AmVA.N(AnVBE k(m,n))) whereM : A, N : B
M = KA MOAmVarB krim) whereM : AN B
T M = XKB. M(AmVArB krom) whereM : AN B
MN = MEB M(OmVa-B N(OnVA.m(n,k))) whereM :A— B,N:A
AzA M = MkKa—B k(A (Z,c)Va*XKs Mc) whereM : B

(oM = XKL Ma whereM : A

na M = aKa M« whereM : L

[o, BIM = XK1 M[a, 8] whereM : AV B
waA BB) .M = \a,g|Kave Mx whereM : A

for the following changes: the interpretation of the function type is changed to

[Alp

[A—B], = 1%
and the interpretation of application and abstraction are changed to

(05aTA)X(ATA)
_—

[C+MN:B|A], = - Ml 12% 5 A ana)
(BABA)x (AR A) L (BAxA) B A 25 BRA,
[CExAM:A—B|A], = 1M (pyays Sl paga 2478 17" g0

One easily checks that the categorical definition coincides with the syntactic one. Thus, the
Plotkin call-by-name semantics can be seen to introduce “one extra thunk” for functional clo-
sures.

We remark that the u-calculus with Plotkin’s call-by-name semantics daesform an inter-
nal language for control categories; in particular, the interpretation of the object constructors is
not sufficient to span the category.

7. The call-by-value interpretation of the Ap-calculus
7.1. The call-by-value CPS translation

Using the same target calculus as before, we define a CPS translation for the call-bypsalue
calculus over a signatu(é, K).

Definition 7.1 (Call-by-value CPS translation). As before, we assume that the target calculus
has a type constagtfor each type constant € 15 of Au. For each typeld of the Au-calculus, we
define three type¥ 4, K4, andC 4 of the target calculus, called respectively the typeablies,
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continuations, andcomputations of type A:

Vs = 7, whereo is a type constant
VT = 1,

Varp = Va x Vg,

Vaop = VaxKp—R,

Vi = 0,

Vave = Va+ Vg,

Ka = Va—R,

Cy = K4 — R.

Again, we assume that for each object variabnd control variable: of the Ap-calculus, there

is a distinct variable: or a of the target calculus. Further, we assume that the target calculus has
a constant of type V4 for each object constant* of Ax:.. The call-by-value CPS translatidd

of a typed termM is given in Table 7. It respects types in the following sense:

OB E M A | Ay, .. oA,
JamKa, FM:Cy
The difference between the call-by-name and call-by-value interpretations is that in the latter,

object variables are interpreted as values, and not as computations. We aldotwrite: A | A
for the translation of a typing judgment, and similarly for equations.

.TliBl,.. .

@

Z1:VB,,...,Tn VB, 01:K4,, ...

Notice that in the call-by-value CPS translation, the clauses for the control operators are identi-
cal to the ones for call-by-name, modulo the identificatiofuof3] with («, 5) under the canon-
ical isomorphism(A + B — R) = (A — R) x (B — R). The clauses for the pure lambda
calculus part are essentially Plotkin’s original ones for call-by-value (Plotkin 1975), except that
Plotkin did not use a target calculus with pairs and would have defheds = V4 — Cp.
However, unlike in the call-by-name case, our call-by-value translation coincides with Plotkin’s
up to isomorphism of types.

As usual, the clauses for pairing and application fix a particular evaluation ordéf fand
N, and in each case, the opposite choice would have been equally plausible.

Definition 7.2. Let M and N be terms of the\u-calculus such thaf - M : A | A and
I'FN:A| A Wesaythat andN arecall-by-value equivalent, in symbolsM =, N, if
M =3, N. More generally, if7 is a theory of the\**-calculus, we define theall-by- value
Au-theory generated by to be the set of equatiofs? | E € T}.

Remark 7.3. This notion of a call-by-value theory corresponds to Moggi'scalculus more
closely than to Plotkin’s\,-calculus (Moggi 1988; Plotkin 1975). It is well-known that the-
calculus derives more equations than Mecalculus; for instance, the equatiohw.z) M = M
is validated by the\.-calculus and by the CPS translation, but it is not derivable inthealculus
(Moggi 1988, Rem. 4.1). See also the axiomatization in Section 7.4

7.2. The interpretation of the call-by-value:-calculus in a co-control category

As before, we can interpret the target calculds of the CPS translation in a response category
C. By Property (2), the interpretation of a typing judgmentB;,...,z,:B, F M : A |

Peter Selinger 36

Table 8.The interpretation of the call-by-valug:-calculus in a co-control category

inl

[CFz;:B; | Ay = r%sp T BitA
[Cre:A ] A], = 1515 a4 oavn
[CF*:T | Als = LA
T (M,N): AAB | Aly, = Ta 2TaeTs 20O g gp, BTN 4o p
[CHmM:A| AL - My A B)ra ML ALA
[CFmM:B | Al = r M AgB)yra ¥ gia
("[M]»®id) ; ((d@*[N]v)

FA—>FA®FA

ATFMN:B | Al (AoB) oA B

CFAAM:A—B|Aly = Ta Y. 4 B wheref =Tx 4 2 (oA, 20, B
[CF[a:]M:L | Ay = DMl g A DA ALA YA 2 04
[TFpa®.M:A | Als - F%O+A+A—»A+A
; A ; o
[T+ o, o )M : L | Al = DM ga A DR A pA THAY A = 04n

[M]w

[CFu@?,BB)Y.M: AVvB | Al, = I' —% 0+A44+B+A = (A+B)+A

a1:Ay, ..., am: Ay, is a morphism

Vg, X ...x Vg, xKg, x...xKy,6 — Ca.

By currying, and using 4 = R¥4, one gets

VB, X... XV,
KaxKy, x...xKy, —R" B

which is a morphism im2€. Using the premonoidal structure, one can rewrite this to

KAXKALX .XKAm—>KBl7S)...7?KB”.

Thus, we have eliminated the typ€g andC 4 from the interpretation. Just as for call-by-name,

it is now possible to give a direct categorical interpretation of the call-by-valuealculus in

a control category. However, since the arrows go “the wrong way”, it is more natural to state
the interpretation in terms of co-control categories. Thus, the above typing judgment will be
interpreted as a morphism is a co-control category:

K, ®..9Kp, = Ka+Ku, +...+Ky4,,.

Recall from Sections 4.1 and 4.2 the weak closed structure on a co-control category, which
is given by the operatiosl —o B and the mapspp : (4 — B) ® A — B andcurry :

(C® A,B) — (C,A — B). This structure is used to interpret the call-by-value function
type. Notice that it satisfies some of the laws that one would typically expect for call-by-value
function spaces, for instande—o A =2 (A —©0) ©0) 2 A, A o B~ (A® (B —0)) -0,
I1=0-—00,etc.

Definition 7.4 (Categorical interpretation: call-by-value). LetP be a co-control category. The
interpretation of the\u-calculus with signaturéB3, ) proceeds relative to a choice of an object
¢ for every type constant € B. Each type constructor is interpreted by the corresponding object
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constructor of co-control categories:

ke = 7, whereo is a type constant
IIT]]TJ = I7

[[A A B]]v = [[ ﬂv ® [[B]]m

[A— B, = [A], — [B].,

[[J-]]v = 0,

[[AVBHU = [[Aﬂv + [[B]]u~

For an object conteXt = z1:B1,...,Z,:By,, we write [I'], = [B1]y ® ... ® [Byn]v, andw;

for the ith weakening map. For a control contekt= «1:Ay1, ..., am:4:,, we write [A], =
[A1] + ...+ [An]o, andin; for the jth injection. Typing judgments are interpreted relative to a
choice of acentralmorphismé : I — [A],, for each object constant' € K. The interpretation
of a typing judgment’ - M : A | Ais a morphism

[TEM:A| A],: [Ty — [A]v + [Aw,

defined by recursion oA/ as shown in Table 8. In the clauses in Table'B\/], : Ta — A
refers to the co-curried form ¢f\/], : T' — A + A.

Notice how in the clauses for application and pairing, the premonoidal structure forces us to
choose an evaluation order. In these claugéss evaluated beforéy.

Lemma 7.5.1f P = RC is a category of continuations, then the call-by-value categorical
interpretation of the\u-calculus inP°P coincides with the interpretation of the call-by-value
CPS translation inR €. O

Again, it is easy to check the Lemma by induction on terms. The Structure Theorem 3.18 then
immediately yields soundness and completeness for theories:

Proposition 7.6 (Soundness and Completeness)he theories induced on the:-calculus by
the call-by-value categorical interpretation are precisely the theories induced by the call-by-
value CPS translation. U

We remark that the use of co-currying in the clauses for pairing, applicatior\-abdtraction
is essential, even though it looks innocuous. The reader is invited to check, for instance, that
[T'H(M,N): AN B | A],isnotequal to

[M],®id id®[N]
- _—

r&rerl (A+A)@T (A+A) @ (B+A) L (A® B) + A,

no matter which of the natural mags: (A+A) ® (B+A) — (A ® B) + A one chooses
(there are two such maps). Also notice the use of the co-curried form of the interpretation in the
following lemma.

Definition 7.7. A value of the call-by-value\pu-calculus is a term in the grammar
Viosa | |« | (V) | mV | mV | Az M | wa?,85).[V | w(a?, 55).18)V,
where in the last two cases, neithenor 3 occurs freely in/.

Lemma 7.8. If Visavalue, therf[l -V : A | A], : T'a — Ais central.
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Table 9.Co-control category operations on typing judgments

Nullary operations:

id = xz:A oz A

m] = x:l Fopaltz: A

inl = x:A F (e, 8B).alz: AVB

inr = x:B Foou(a?,8B).8lx: AV B

> = =B F uA=AB 0 ) blOwA faly, ) : (A — 1) AB)V A

a = x:AN(BACQ) F ((mea,mmex), mamex) : (AANB)AC

| = xAANT F omz:A

c = xBAA F (maz,maz): ANB

t = xzA Eox: T

A = zA Fo(z,z): ANA

d = xz:(AVB)AC Foou(6ANC nBACY 8 {(pal [n){uBE [, BTz, Tax), o) -
(ANC)V (BAC)

st = (A= L)AB)AC F+ (mmaz,(mamz,mz)): (A— L)A(BAC)

Binary and unary operations:

f= ©AFM:B g= ©m:BFN:C
gof= zAF(MB.N)M:C
f= xBFM:A g= zCHFN:A
[f.9] = @:BVCF pat [o](AaB M) (uBP . [o] 0 .N) (1yC [8,7]z)) : A
f= xBFM:CVA
*f = x:(A— L) ABF . (ma)(pal.[y, o] AzB . M) (rez)) : C
f= ©mArM:B
f®C= ©:AANCF (DzA.M)(mz),mz): BAC

Proof. Recall from Section 4.1 thaturry(f) is always central. This settles the case wHére
is a lambda abstraction. The other cases are equally obvious. U

Remark 7.9. Since we are interested in equational theories, and not in reduction semantics, we
are more liberal with the definition of a value than one would otherwise be. Our notion of value
corresponds to the existence predicate ofthealculus in (Moggi 1988), and it includes terms,
such asry (V, V'), that are not in normal form.

7.3. The call-by-value\u-calculus is an internal language for co-control categories

The results in this section are analogous to those for the call-by-name calculus in Section 6.3.
Just as we were able to define the structural operations of a control category syntactically by
operations on typing judgments under the call-by-name interpretation, we can do the same for
the structural operations of a co-control category under the call-by-value interpretation. The op-
erations on typing judgments are shown in Table 9.

Lemma 7.10. The operations on typing judgments in Table 9 define the corresponding struc-
tural operations on a co-control category under the call-by-value interpretation, up to natural
isomorphism of objects. O]

Definition 7.11 (Syntactic co-control category).For a\u-signatureX and a call-by-value the-
ory 7, we construct theyntactic co-control category P, - as follows: The objects dPy, - are
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the types of the language. The object constructors are given by the corresponding type construc- Table 10.Axioms of the call-by-valugu-calculus

tors, whereB 4 is defined agA — L) A B. Morphisms fromA to B are named by valid standard
form typing judgments:: A = M : B. Two typing judgments:A+ M : Bandz:A+ N : B
name the same morphism(if: A - M = N : B) € T. The operations of a co-control category
on morphisms are defined as in Table 9.

Lemma 7.12. Py, 1 is a well-defined co-control category. a

The canonical call-by-value interpretatipr- | 9 of the Ap-calculus with signatur& in PY, -
is defined bys := o andé := z:T + ¢ : A. The interpretation of each typing judgment is call-by-
value equivalent to its standard form. The @ -, [ - ) is determined up to isomorphism by
the universal property: For eadhrespecting call-by-value interpretati¢n-| ,, in a co-control
categoryP, there is a unique strict functor of co-control categorfes P §,  — P such that
F[A]S = [A], forall AandF[T' - M : A | A]Y =[T'+ M : A | A], for all valid typing
judgmentd' - M : A | A.

Definition 7.13 (The internal language of a co-control category)Given a small co-control
categoryP, we construct from it a signatud® and a call-by-name theof/. The type constants
are again the objects &, and we take one object constant'— for each morphisnf : A —
B. Consider the canonical interpretation of this languagP ifat interprets type constants by
themselves and object constans'— 5 by curry(f) : I — (A — B). Recall from Section 4
thatcurry(f) is always central, and thus this interpretation is well-definedZLby the induced
call-by-value theory. The pai®, 7) is called thenternal call-by-value language of P.

Lemma 7.14. If (X, 7) is the internal call-by-value language of a co-control categBrythen
Py, ~P.

Proof. Each morphisny : A — B is the denotation of:A - c¢x : B. Thus, the canonical
interpretation of the internal languagelhis onto objects and morphisms, and hence the canon-
ical functor of co-control categoriey, , — P, which exists by the universal property, is full
and onto objects. It s faithful by definition f. Thus,P % , ~ P by Lemma 3.17. |

7.4. An axiomatization of the call-by-valug:-theories

An analogue of Proposition 6.11 holds for call-by-value theories:

Proposition 7.15. Fix a signatureX. Then a congruence relatioghi on typing judgments is a
call-by-value)p-theory if and only if all of the following hold:

1. An equation is irY” if and only if its standard form is iff".

2. Py, 7, as constructed in Lemma 7.12, is a well-defined co-control category.

3. For every object constant the morphisne: T - ¢ : A is central inP§, .

4. The canonical interpretatiop—]9 : Ay — P, 7 interprets each typing judgment by its own
standard form, up to natural isomorphism of types. O

As in the call-by-name case, we use this characterization to give a complete axiomatization
of the call-by-value\p-theories. The axioms are shown in Table 10. As before, we have omitted

Axioms for the lambda calculus with products:

(B=) letzA =VinM = M[V/«]: B

(—) MAVaz = V:B if 2 & FV(V)
Br)  mi(Vi, Vo) = Vi: A

(nA) (m V,m2V) = V:AAB

(nr) = =V:T

(id) letzA = Minx = M:A

(comp letyB = (letzA = MinN)inP = letz® = Minlety? = NinP:C if z ¢ FV(P)
(letapp) MN = letzA~B = Minlety? = Ninzy: B if z & FV(N)
(letpair) (M, N) = letzd = Minlety? = Nin (z,y): AANB if x ¢ FV(N)
(letx) mM = letz1MN2 = Minmz: A;

Axioms for A and disjunction:

© letz4 = pa.Min N = pBB.Mlletz? = (-)in[B]N/[a](-)] : B if B & FN(M, N)
By)  [o et M = Mla//a]: L

(M) o o] M = M:A if a ¢ FN(M)
(Bv) [, Blu(a?, BB).M = Mo/, 3'/B] : L

(v)  we?,B58).[a,BlM = M:AVB if o, B ¢ FN(M)
(B1) MM = M:1

(lethame [a] M = letz® = M in [a]z: A

(let ame) [, BIM = letz? =Minfa,Blz: A

the typing contexts. We also use the customary notdfign: 4 = M in N) to denote the term
(A.rA.N)M. The letterd/, V1, andV; denote values, as defined in Definition 7.7.

Theorem 7.16 (Axiomatization of call-by-valueAp-theories). Let7 be a set of equations of
the disjunctive\u-calculus over some fixed signature. THEns a call-by-value theory if and
only if it is a congruence relation on terms, satisfying the equations in Table 10.

Proof. Soundness is again easy. Completeness is proved by verifying the conditions of Propo-
sition 7.15. O

Remark 7.17. The above axiomatization combines Moggi’s axioms for the computational lamb-
da calculus, some of Ong and Stewart’s axioms for the call-by-valuealculus, and the obvious
axioms for disjunction. The reader will easily verify that certain other axioms, which are not
included in our list, are derivable from it, for instance the following two equations, which each
assert the emptiness of the type

(empty T z:l F
(L) r =

M =

N:A | A
(letzt =MinN) = A

pot M A | if o & FV(M)

8. Filinski duality for the Ap-calculus

We have shown that the call-by-namg-calculus is an internal language for control categories,
and the call-by-valua.-calculus is an internal language for co-control categories. An immediate
but surprising consequence is that the call-by-name and call-by-value calculi are syntactically
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Table 11.The syntactic translation from call-by-value to call-by-name
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Table 12.The syntactic translation from call-by-name to call-by-value

On types: On types:
(o) = o, whereo is a type constant (oh = o, whereo is a type constant
(™) = 1 (Th = 1
(AnB) = (A)v(B) (AnB) = (A)Vv(B)
(L) =T (EW) = T
(AvB) = (A)A(B) (AvB) = (A)A(B)
(A—B) = ((]BI) —>(]A[)) — 1 qA—>B|> = (QAD —>L)/\QBD
On terms: On terms:
() = )\KqAD.[I]K (E3) = )\/»e(‘A‘).[a:]n
(c?) = ArlA) [c(AD)k (c?) = AxlAD 04D,
() = (Mg () = XIThg
(M, N)) = AlANBD (M) (pa D (N (uy P [z, y]r)) (M, N)) = ARIANBY (M) (uz 4D AN (uy (P [z, y]w))
(m1 M) = ARl (M) (@A), y1BY) ] ) {1 M) = Al (M (u(040, y0BD) [a]k)
(2 M) = AcIBD (M) (u(@t, y15D).[y]x) (w2 M) = AcIBDYMD(u(I4D, y15D) [y]x)
(A2 M) = A7 B) g(\BB . uzA.(M)B) (NzA. M) = AclA=BD (71 k) (ualAD (M) (r2k))
(MN) = AxIBL ()Y I (N (vk)) (MN) = AxIBDYMP(ND, &)
([c] M) = Al (M) ([a] M) = AL (Mo
(le™)M) = ArlH ()l ([o*]M) = ArlLbqar)elad
(ua?. M) = M@ (Aol (M)x)s (pa?. M) = A1) (A4 M)k
(lov, B M) = sl (Mo, ) ([ 1M} = sl (M), B)

(u(a?t, BB). M) A& AVBD (A ABB (M)*)(m1 k) (T2kK)

isomorphic to each other. More precisely, there are syntactic translations from call-by-value to
call-by-name and vice versa, which are mutually inverse up to natural isomorphism of types and
equivalence of terms.

Such a duality between call-by-value and call-by-name equational theories was first discov-
ered by Filinski (1989) in his work on the symmetric lambda calculus. Filinski's calculus treats
continuations as first-class objects and it has a special syntax that stresses the symmetry between
continuations and values. Unlike Filinski, we are not working with a custom-made language.
However, the categorical semantics reveals a close connection: it is not difficult to see that Fil-
inski's symmetric lambda calculus forms another internal language for control categories, and
thus that its expressive power equals that of the disjunctivealculus. Thus, the categorical
semantics provides a unified framework in which such dualities can be explained in a way that is
independent of any particular syntax.

Computationally, the duality between call-by-name and call-by-value can be understood as
a duality between demand-driven and data-driven computation, which reverses the direction of
data. Proof-theoretically, it is an extension of De Morgan duality from formulas to proofs.

Formally, the translation of a call-by-name languége7) into a call-by-value language can
be achieved by forming the syntactic control categBry -, and then considering the internal
call-by-value language dP¥, ,-)°P. Similarly, one gets a translation from call-by-value to call-
by-name. However these translations are not optimal, because they introduce a lot of unnecessary
constants.

It is possible to optimize the translations in such a way that no additional constants are intro-
duced. To do this, we need to extend the syntax ofaesalculus just slightly and allow a set

(u(a? BEY.M) = ARIAVED (\aAABE.(M)s)(m1k)(m2r)

K’ of typedcontrol constants, in addition to the usual object constants. Thus, a signature for the
extended language is a trip{8, IC, K’). We extend the definition of named terms to the case
[04]M, wherep“ is a control constant. The semantics generalizes effortlessly to this extension.
The translation between the call-by-value and call-by-name calculi exchanges object and con-
trol constants. It also exchanges object and control variables, and it reverses typing judgments,
turning terms “inside out”. Thus, a call-by-value functionrorguments withn possible return
addresses gets translated into a call-by-name functien afguments witm return addresses.
More precisely, the translations preserves typing in the following sense:

21:B1, ..,z By FM A artAy, .. amiAm
a1:(A1), ... o (An), @A (M)e : L | z1:(B1), ..., xn:(Bx)

Because terms are turned “inside out”, a special varialdppears in the translation that rep-
resents the “outside” of a term. The variabl@lays a similar role as the current continuation

in a CPS transform. The two translations are shown in Tables 11 and 12. Notice that they are
identical, except for the translations of function types, lambda abstraction, and application.

Proposition 8.1. Both translations preserve CPS transforms, and thus the categorical semantics,
up to natural isomorphism of types. It follows that the two translations are mutually inverse, in

the sense that
M =, po.({M)a)* and

up to natural isomorphisms of types.

M =, pa.{(M)a)*,
1

Note that, because the translations preserve CPS transforms, a term and its translation evaluate
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in precisely the same manner. Thus, the translations do not just preserve equational theories, but These arrows satisfy similar coherence conditions, and the following joint coherence conditions:
in fact, the operational semantics as well. In particular, given appropriate notions of observation,
they also preservebservationakquivalence.

yasop 9 (AR B) x (CB® D) (Ax (C3 D)3 B
Remark 8.2. The fact that the tensor product in a co-control category is premonoidal, and not Wd/l lwd”zyB
monoidal, is reflected by the well-known fact that in the call-by-value calculus, the following

CB3wd
two terms are not equivalent in the presence of side-effects (Thielecke 1997): ’

CR®((A®B)x D) CR(AxD)®B

letz4 = Minlety® = Nin P,

and
lety® = Ninletz4 = M in P.
On the other hand, in call-by-name, these two terms are equivalent. The dual of this phenomenon (A®B®C)xD LA (B®C) x D)
is given by the following two terms, which are equivalent in call-by-value, but not in call-by-
name. wd AZwd
letz4 = oA (letyB = uBB.Pin N)in M, (A3 B)x D)3 C ™2 A% (Bx D)3 C.

lety® = puBB.(letz? = pa™.Pin M)in N.
This follows again from naturality al and coherence fav andd.

Appendix A. Some proofs from Section 3

In this Appendix, we give some technical proofs that were omitted from Section 3. These are
included for completeness and reference, and need not be consumed in the first reading. Most of
these proofs are diagram chases that are more easily done by hand than typeset.

Proof of Lemma 3.1(1)Consider

For any objectsd, B, andC, letwd, ¢ : (A% B) x C — (A x C) % B be the map given (BABCHD)x A—2s (BARC)x A) 3D XL (BAx A)BC 3D
b
y (s%’D)xAl (sxA)WDl lﬂ?C"’?D
wdipe = (A3B)xC Y (4xpB)x(c3B) S (AxC)3B. wd

(BRCA3D)x A—"> (BRO)Ax )3 D —2 >~ pBxnC3D.
Thenwdy p,¢ is natural inA andC, and natural in discardabi®, becausev andd are. More-

over,wd satisfies coherence: The left square commutes by naturalitywfl. The right square commutes by definition of

(A®B®C)x D Ax B Currying along the top and right, one gets g c»p. Currying along the left and bottom, one
wd | getssa pxc,p © (Sa,8,c B D). O
wdl IxBl
(ABB)x D)3 C) *% (AxD)RBAC, (A% 1)x B (AxB)3 L,

(ABB)x C x D Proof of Lemma 3.1(2)Consider

wdx D wd €
BAxA——B
(AxC)®B)x D"~ (AxC x D)% B. IxA l' J'
These follow from naturality and coherencedodindw, which in turns follow immediately from wd L

A 5 A 5
their respective definitions. Symmetrically, define (BRL)x A (BExA)B L BB L.

wdy 0 = Ax(BRCO) Wx(BRO), (B®A)x (BRC) 4 B3 (AxC), The triangle commutes by coherencevaf, the square by naturality ¢f Currying clockwise,

wdi po = (ABB)xC AVB)W (AR B)x (ABC) S AR (B x C). one getsl 5)4, currying counterclockwise, one gets 5 1 ol pza. O
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Proof of Lemma 3.1(3)Consider

/%D
£3oA B7S’CA7S’D)XA BA9s

wi|  (BRCA)x A)XD BR(CABD)x A |wa

wd’' 3D BAwd
(s’ x A)® BR(sx A)

(BBO)YAx AR BR(CA%x A)R®D B®((C % D)4 x A)

BRe®D
\ oo

BB®CAD.

(BBOABD)x A (B78(C78D) ) x A

This commutes. Currying clockwise, one g&lSp -z © (B%sa,p,c¢). Currying counterclock-

wise, one gets, pzc,p © (Sy .o ¥ D). |
Proof of Lemma 3.1(4)Consider

(B1RC) x 1

Wl\

(B®C)x1

(BI®C)x (1B C) —>BIYS’C
y \
><17§?C B®R®C.

Clearly this commutes. Currying clockwise, one gets the natural ccc isomorphism, and currying

counterclockwise, one gess 5 c. =

Proof of Lemma 3.1(5)Consider

(BAYA 3 C)x Alx A 2224 (B3 o)A w41 A2 (B3 0)A)A s A% A

wdx A lexA exXA
(BMA'xA") B C)x A =T (BB C)xA————F—> (BB C)"xA

wd l wd

(BMA xA'xA) % C LT (BAxA) B C ¢

cce

(BAXAXA'xA) B C.

Y B®C

This commutes; currying counterclockwise, we gty 4, 5 ¢, whereas currying clockwise, we
!
get(sa,p,c)? 0Sa pac. O

45
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Proof of Lemma 3.6(1)Consider

BAx (DBCBA) — DR (BAx (0% A) -2 D3 o3 (B x A)
p><(D7§’C7X’A)l D%’(px(C%’A))l lD?gcm

(CB B x (DBCB AL DR (CH B3 x (€3 A) -2~ pxC3B.

The left square commutes by naturalitywdl’. The right square commutes by definitionf

Currying along the top and right, one ggtg g p»c. Currying along the left and bottom, one
getsPoz 4,c38,0 © Pa,B,c- O

Proof of Lemma 3.6(2)Consider

(BAR D)x(C X A)

s><(C7§’A (pPBD)x(CBA)
(B® D)4 078A ((C %3 B)C34 3 D)x(C % A)

BA XD BAX(C ®A))
C3wd wd' %D
C7S’(s><A) (px(CBA))B
B7?D cxn BA><A »D C@BC@A (C®A)BD
lc’i’?ei’?/
C%e e®D
C®BZR®D.

The three upper parts commute by naturality and coherensd ahdwd’. The lower left com-
mutes by definition o§, and the lower right by definition qf. Currying along the left, one gets
P4.B®D.C ©SA,B.D- Currying along the right, one ge$g:z 4,c35,p © (pA,B,c ® D). O

Proof of Lemma 3.6(3)First, for anyA, B, andC, letp; : C% A — (CY?B)BA be the curry
and uncurry op : B4 — (C ® B)“?4. Notice that

% (C'3 A) 3B

\/

BAXA Ne

ic‘%’c
C7?(()><BA)

(€ A)x BA o 05 (A x BA) — %

Wd//
(CB9) %
BA

C7§?BB ) x

3 (BB" x BA)



Control Categories and Duality a7

and thus, by currying and by definition sf,
=034 oxpst 5 (on BB

To show the claim, it suffices to show that

p:
14— (193 B)B"

o~ |~

JC g>Af. e f(ge) (BC)BA

Now consider

C .
103 4+2% joyppt (L€ % B)B*

| e I _ b

(L3 )L (| pEhye —Es (L3 BYBY)C —Ss (L3 B)C)B?

) :

AC (BBA)C cce (BC)BA.

IR

This commutes by naturality o by the first commutative diagram in Definition 2.11, and by
Lemma 3.1(2). Along the top, we hapé, and along the bottong, > A f.\c. f(gc). U

Proof of Lemma 3.6(4)Consider

1x(BRA)— = BR(1xA)

o)
B2 (id* x A)

id*x(B%’A)l
AA X (BRA) M BR (44 x A) — > B A,

The square commutes by naturalityed’. The triangle commutes by cartesian-closed structure.

Currying along the left and bottom, one gpts 4 5 o id’. The arrow along the top is just, so
by currying one get&l ;5 4. O

Proof of Lemma 3.6 (p is natural id, B, dinatural in centralC). Clearly, the family of maps

Ay (07?14/) wx (CA")

(C3BYY x (CBA) L R (BAx A)
is natural in4, A’, B, and central’. Moreover,
CRBAxA) 25 0cnB

is dinatural inA and natural inB and centralC'. Thus, it follows tha€ 4 ¢ is dinatural inA
and natural inB and central’, and thug is natural inA and B and dinatural in central'.

LemmaA.l. e : BA x A — Bis discardable.
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Proof. The axioms say that, and~, are discardable, and thgta = (ig)®4. From these
two facts, it follows that ga, 4 = (ig)°4 x i4. Now one has

(iB)°Axia

1 BAx A

o u>l l

Lx AZE

Clearly, the counterclockwise arrowiig. O

LemmaA.2. Letssy g.c,p and wsy g ¢,p be the maps

ssupop = ACTBP S (A3 BP)C 2L, (43 B)D)C,
Wsipep = (A% B)xCx D2 ((Ax )R B) x D% (Ax C) R (B x D).

Then the (double) uncurry of ssis

ss. = (AC®BD)x( x D ACELCL (4C o« 0% (BP x D)
D), A% (BP x D) A% A% B.
Proof. Consider

sxCxD CxCcxD

(AR BP)yx C x D—=

lwde

(A% BP)C x € x D =Z(AB B)P)C x C x D

leXD leXD

(e3BP)xD §xD
_—

(A° xC)®BP)yx D (A% BP)x D (A% B)P x D
le” le” l
(AC % C) % (BP x D) ——~o A% (BP x D) ——23° . 4 p.

The top left square commutes by definitionsofhe top right square commutes by naturality of
e. The bottom left square commutes by naturalitywaf; 5 - in discardabled, and becauseis
discardable by Lemma A.1. The bottom right square commutes by definit®h of Ll

Lemma A.3. The following two diagrams commute:

(BB B) x (CX A)

(BB B) x (C 3 A) x (C3 A)

lwd’ l—x(wd”;c‘ﬁ’wd’)
CR (B3 B) x A) (BRB) x (CBC B (Ax A))
lC%’( BBB)xA) lwd’

CW((B%’B)XAXA) — CBCB((BRB)x Ax A)
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(BB®B)x (CBA)x (CBA)—=>(Bx (CBA))F(Bx(CHA) (CA).
l —x (wd”;C7%wd") lwd’ Zwd’
(BR®B)Xx(CBCRB(AxA)) CB®(BxA)BCRB(BxA)
lwd’ lfﬁ’(ﬂ?*
CRCB(BRB)x Ax A) L 0RCR(BxA)F (B x A).
(CB3 B4 (C%B)4) xCA
(Pp) x = &
) . L (BA®BA) xCA —xA (CB®BRCRB)CYH4%x0A
Proof. Two straightforward diagram chases from the definitions. O
—xA (CB®B)AR(CBB)4Y) x CAxCA —xA
(P3p)x — &\
(BA®BA) xCAxCA ws (C®BRCRBB)YAxCAxCA
Proof of Lemma 3.6 (p is centrall.et f : D — E. Consider the following cube: ws ((C® B)°4 x CA) 3 ((C % B)°4 x CA) ex—;e
BAx CA)® (BAxCA C®BRCR®B
(BRIDA——L  ~ (03B D)CIA ( )3 ) /
s ‘ W Fe)B—;—3(CTe)
/ / CB(BAXxA)BCR(BAx A) CAAB
BA 3D L (C 3 B)C7S'A xD (C%’B?ﬁ’f)cw“
(BB OB — CRCR®BRB
(C3B)CF A m—m
BAny (BREA — | — > (3 B3 E)C3A CRCOR(BA x A) ¥ (BA x A) vy
S
s C3¥B
BA @EL(C@B)C'@A@E

The top and bottom faces commute by Lemma 3.6(2). The left and right faces commute by

naturality ofs. The back face commutes by naturalitymfThus, the front commutes, which
shows thap is central. O

The two top squares commute trivially. The next square commutes by naturality asfd the
fact thatp is central. The next square commutes by Lemma A.2. The big triangle commutes by
definition and centrality op. The parallelogram commutes by naturalitycofClockwise, one

Proof of Lemma 3.6 (p is copyable).Consider the following diagram, wheféA abbreviates has the curry ofp % p); V, which can be seen with a few simple ccc manipulations. Along the
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counterclockwise arrow, we continue with the diagram

(BAB BA) x (C B A) x (C3 A)

(BA % BA) x (C R A) (BA x (C'3 A)) B (B x (CB A))
—x (wd”;C%Bwd")
wdl (BA® BA) x (CRC R (Ax A)) wdl ZBwd
C%((BA®BA) x A) wel C®(BAxA)RCA (B2 x A)
CB(—xA4) CRCR((BARB) x Ax A) -
C%®((BA% BA) x Ax A) C®C®(BAx A) % (B x A)
\Ww\s ‘V?X/
OB (s5¢—) C % (B2 x A) % (BA x A) BB —F-Te

—ReB—;—B—Be

CR (BB B)YA)A x A x A) . C®C3BAB
CRB(ex Ase C3BRB Vv
oy C3B.

The two top cells commute by Lemma A.3. The rest commutes by the fac¥tisatentral, and
by Lemma A.2. Along the counterclockwise arrow, we continue with the diagram

C% ((BA® BA) x A)

wd %(—XM
(BA%® BA) x (CR A) cR(ssx—) OB ((BARBA) x Ax A)
sSX— C%(((B®B)")4 x A)Cm N CR(ssx<—)
o —
(B® B)M)A x (C B A) = CR(((BR®B)MA x Ax A)
= C B (BB B)A*A x A) ~
V %(_XA> CZ(exAse)
(BB B)A*A x (C 3 A) CBVAxA) CR((BBB)A*4 x Ax A)
%
VAx— v C R (B x A) CR®BRB
W/ C%e /
BA X (C3 A) \C??B, v
p><\> /

(C 3 B)34 x (C3 A)

The three left squares commute by naturalityvdf. The bottom triangle commutes by definition
of p; everything else commutes by ccc operations. Finally, currying counterclockwise, we get

BAx B Y, BA L (c® B)OPA
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Thus, the last three diagrams show tf@af? p); V = V; p, and thus thap is copyable. O
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