
Some Remarks on Control Categories

Peter Selinger

Department of Mathematics and Statistics,

University of Ottawa,

Ottawa, Ontario K1N 6N5, Canada

June 8, 2003

Abstract

This paper is a collection of remarks on control categories, including answers

to some frequently asked questions. The paper is not self-contained and must be

read in conjunction with [3]. We clarify the definition of response categories, and

show that most of the conditions can be dropped. In particular, the requirement of

having finite sums can be dropped, leading to an interesting new CPS translation of

the λµ-calculus. We discuss the choice of left-to-right vs. right-to-left evaluation

in the call-by-value lambda calculus, an issue which is sometimes misunderstood

because it is a purely syntactical issue which is not reflected semantically. We

clarify the relationships between various alternative formulations of disjunction

types and conjunction types, which coincide in call-by-value but differ in call-by-

name. We prove that copyable and discardable maps are not always central, and

we characterize those control categories of the form RSet for which copyable and

discardable implies central. We prove that any control category with initial object

is a preorder.

1 Response categories and sums

The central construction of [3] is the construction of a control category from a category

with finite products and powers of the form RA, for a single, distinguished object R.

This construction is a categorical version of continuation passing style (CPS) semantics

of the lambda calculus. In [3], a category C with a distinguished object R is called a

response category if it satisfies the following conditions:

1. C has finite products.

2. Exponentials of the form RA exist, for any object A. This means that there is a

natural isomorphism of hom-sets (B,RA) ∼=A (B ×A,R).

3. C has finite coproducts (sums).

4. Sums and products distribute, i.e., the canonical morphism d : (A× C) + (B ×
C) → (A+B)× C is an isomorphism.

1

5. C satisfies the following mono requirement: the canonical morphism ∂A : A →

RRA

is monic for all A.

6. (Without loss of generality). Exponentials are chosen to be distinct, i.e, A 6= B

implies RA 6= RB .

This definition has occasionally been criticized for being too restrictive. Indeed,

of the six conditions, only the first two are strictly necessary. The sixth condition was

already stated in the paper to be without loss of generality. Condition 5 was never

used except in the uniqueness part of the Second Structure Theorem. Condition 4 can

be dropped, because its relevant consequence, R(A×C)+(B×C) ∼= R(A+B)×C , already

follows from the other conditions. Finally, condition 3 can be dropped at the cost of

slightly complicating the construction of a category of continuations (and thus also the

CPS semantics).

Recall that from a response category C, one defines a control category RC, called

the category of continuations of C, as follows: RC is the full subcategory of C con-

sisting of the objects of the form RA. The control category structure is defined on

objects as follows (well-definedness uses condition 6 above):

1 := R0,

RA ×RB := RA+B,

(RB)R
A

:= RB×RA

,

⊥ := R1,

RA
#RB := RA×B.

(1)

The morphism part of the control category structure is defined in the obvious way, and

the requisite equations are easily verified. One has the following pair of theorems,

proved in [3]:

Theorem 1.1 (Construction Theorem) Every response category gives rise to a con-

trol category via the above construction.

Theorem 1.2 (Structure Theorem) Every control category arises in this way.

These theorems correspond roughly to soundness and completeness of the control

category axioms with respect to the CPS interpretation.

The inclusion of conditions 1–5 in the original article was motivated by the de-

sire to give the strongest possible set of conditions which let the structure theorem go

through, rather than giving the weakest set of conditions required to prove the construc-

tion theorem. In other words, all the response categories which arise in the proof of

the structure theorem happen to satisfy conditions 1–5 (and, without loss of generality,

6). At the time of the publication of [3], I felt that it was important to narrow down the

class of response categories as much as possible, rather than giving the most general

class. In a certain sense, the uniqueness part of the second structure theorem [3, Thm

4.6] shows that the class of response categories defined by conditions 1–5 is indeed as

narrow as possible, because any category in this class will arise from the construction

in the proof of the Structure Theorem.

We will now show that the Construction Theorem can be adopted to the case with

only conditions 1 and 2.

2

1.1 Dropping condition 6

Condition 6 can be dropped by making a slight change to the definition of the category

RC: rather than taking the objects of RC to be the objects of C of the form RA,

one takes the objects of RC to be the objects of C, with a morphism A → B in

RC defined as a morphism RA → RB in C. This definition is formally cleaner,

but notationally messy, as one is now in the awkward position of defining the control

category operations on RC as:

1 := 0,
A×B := A+B,

BA := B ×RA,

⊥ := 1,
A#B := A×B,

where the operations on the left-hand side are control category operations in RC,

whereas the operations on the right-hand side are response category operations on C.

The situation can be slightly alleviated by one of two tricks: either, we write the left-

hand side operations differently from the right-hand side operations (e.g. by using

bold-face symbols × vs. ordinary symbols ×). Or else, we use a different notation for

an object A when considered as an object of RC than when considered as an object of

C. We could, for instance, write the object A as Ā or [A] when considered as an object

of RC.

We adopt the second solution, but we use a more mnemonic notation and write

R
A for the object A, when considered as an object of RC. It is understood that this

is a notation, rather than an operation, i.e., RA is a formal exponential, rather than an

actual exponential.

1.2 Dropping condition 5

Nothing much needs to be said about condition 5, since we already remarked that it

was never used except to show uniqueness of C.

1.3 Dropping condition 4

Condition 4 is interesting, because it is almost redundant, but not quite. In any cartesian-

closed category with sums, distibutivity holds simply because the functor (−)×C is a

left adjoint and thus preserves colimits. In symbols, this is calculated as follows:

((A× C) + (B × C), D)
∼=D (A× C,D)× (B × C,D)
∼=D (A,DC)× (B,DC)
∼=D (A+B,DC)
∼=D ((A+B)× C,D)

(2)

Since all the isomorphisms shown are natural in D, it follows that (A + B) × C ∼=
(A× C) + (B × C).

3

Interestingly, when one only has a single exponentiable object R, this argument

does not work, and in fact distributivity may fail. One can still write the above chain

of isomorphism, but with the fixed object R instead of arbitrary D. A counterexample

is any category with finite products and coproducts, if one takes R = 1 the terminal

object. Clearly, 1 is exponentiable as the definition 1A = 1 will work. However,

distributivity in general fails (e.g., the opposite of the category of sets).

However, the following condition, which might be called “distributivity in the ex-

ponent”, follows from axioms 1–3:

R(A×C)+(B×C) ∼= R(A+B)×C (3)

The proof is as follows. First note that if R is exponentiable, then so is RD, for any D.

Therefore, one can apply (2) to get

((A× C) + (B × C), RD) ∼=D ((A+B)× C,RD),

naturally in D. We also have the natural isomorphism (A,RB) ∼=A,B (B,RA), and

thus

(D,R(A×C)+(B×C)) ∼=D (D,R(A+B)×C).

Since this is natural in D, we have (3). By scutinizing the argument, one finds that

the isomorphism is indeed the same as the canonical morphism Rd : R(A+B)×C →
R(A×C)+(B×C). This suffices to ensure that RC is a control category.

1.4 Dropping condition 3

Sums are needed in a response category in order to have products in the category of

continuations, as was shown in equation (1). In the absense of sums, one can add them

freely. This works nicely categorically, but it is almost meaningless syntactically, as

the resulting CPS translation is not into the original target language (without sums),

but into a new target language obtained from the old language by “adding” sums - i.e.,

the target language is the same as if one had assumed sums in the first place. Actually,

this is not quite true, as sums are only needed at the top level. However, fortunately,

there is a direct CPS translation which works and which does not need sums.

The essential modification one must make to the definition of a category of contin-

uations is as follows: instead of considering the full subcategory of objects of the form

RA, we now define RC to be the full subcategory of C of objects of the form

RA1 × . . .×RAn ,

where n ≥ 0. (More formally, when using the convention under “dropping condi-

tion 6” above, we can define the objects to be tuples (A1, . . . , An), written as formal

expressions RA1 × . . .×R
An .)

In the case where C has sums, this definition coincides, up to equivalence of cate-

gories, with the old one, as every object of the form RA1 × . . . × RAn is isomorphic

to one of the form RA1+...+An in this case. However, the new definition also works in

the absense of sums.

4

First, let us observe that RC is cartesian-closed. Clearly, as a subcategory of C, it

is closed under finite products. Also, if A =
∏

i R
Ai and B =

∏
j R

Bj , then the object

BA :=
∏

j

RBj×
∏

i R
Ai

is an exponential in C, thus RC is closed under exponentiation. Next, we need to

define the premonoidal structure on RC:

⊥ := R1, (as before)

(
∏

iR
Ai)# (

∏
j R

Bj) :=
∏

ij R
Ai×Bj .

Since the object
∏

ij R
Ai×Bj is isomorphic to

∏
i(
∏

j R
Bj)Ai in the category C, it

follows that the expression for # is functorial in its right argument, and similarly for

the left argument. Thus, we have a binoidal structure.

Consider an exponentiable object S in C, two indexing sets I = 1, . . . , n and

J = 1, . . . ,m, and two objects
∏

i S
Ai and

∏
j S

Bj . Consider a map σ : J → I , and

a tuple f = (f1, . . . , fm) such that fj : Bj → Aσ(j) is a morphism in C. Then define

S(σ,f) :
∏

i S
Ai →

∏
j S

Bj to be the morphism whose jth component is the canonical

projection
∏

i S
Ai → SAσ(j) , followed by Sfj : SAσ(j) → SBj . Then it is easy to see

that the morphism S(σ,f) is natural in exponentiable objects S. It follows immediately

that R(σ,f) is central with respect to the binoidal structure on RC.

The other properties of symmetric premonoidal structures are now easily checked,

for instance, the associativity and unit maps are all of the form R(σ,f), for suitable

(σ, f). Codiagonals are given by ∇ = R(σ,f) :
∏

ij R
Ai×Aj →

∏
k R

Ak , where

σ = ∆ : I → I × I and fi = ∆ : Ai → Ai ×Ai are all diagonal maps. Weakly initial

morphisms are defined analogously. One checks that central maps of the form R(σ,f)

are indeed focal.

Distributivity holds trivially by the definition of #, and the distributivity map, as

well as the cartesian projections, are clearly focal. To prove that RC is a control cate-

gory, it remains to be seen that the exponential strength

s : BA
C → (B # C)A

is a natural and coherent isomorphism. In the category RC, let A =
∏

i R
Ai , B =∏

j R
Bj , and C =

∏
k R

Ck . The map s takes the form

s :
∏

jk

RBj×
∏

i R
Ai×Ck →

∏

jk

RBj×Ck×
∏

i R
Ai
,

and coherence and naturality follow easily. Thus, we have the following theorem:

Theorem 1.3 (New Construction Theorem) Let C be a “new” response category in

the sense that it only satisfies conditions 1 and 2. Then RC, as defined in this subsec-

tion, is a control category.

5

1.5 Sum-free CPS translation

Note that the proof of the New Construction Theorem can be regarded as an “indexed

version” of the proof given in [3]. The more complex definition of RC added only

notational complexity, but no essential complexity, to the construction. In fact, the

proof becomes somewhat simpler since distributivity follows more easily than in the

case with sums.

It is now a natural question whether the new construction of control categories

gives rise to a new CPS translation of the disjunctive λµ-calculus into a target lambda

calculus without sums. As one would expect, this is indeed the case, and we now spell

out the CPS translation.

In the usual CPS translation with sums, a computation is represented by a term of

type RA, i.e., as a function from continuations to results. In the new translation, a

computation is going to be represented by a term of type RA1 × . . .×RAn , for n ≥ 0,

i.e., by a tuple of functions from continuations to results. Consequently, the type of

a continuation is no longer a simple type like A, but rather a tuple of types, such as

〈A1, . . . , An〉.
We introduce some notation for manipulating tuples and indices. In general, the

elements of a tuple 〈Ai〉i∈I need not be indexed by the natural numbers, but we allow

an arbitrary finite index set I . On index sets I and J , we have the operations of disjoint

union I + J = {in1i | i ∈ I} ∪ {in2j | j ∈ J} and cartesian product I × J = {〈i, j〉 |
i ∈ I, j ∈ J}. We occasionally identify a finite index set with an initial segment

{1, . . . , n} of the natural numbers. This identification is arbitrary, but fixed for each

index set I .

If A = 〈Ai〉i∈I is a tuple, then we write Ai for its ith component, and we write

Ind(A) for its index set I . In particular, | Ind(A)| is the length of the tuple. We write

〈〉 for the empty tuple. If A = 〈Ai〉i∈I and B = 〈Bj〉j∈J are tuples, we define

their concatenation A @ B to be the tuple C = 〈Ck〉k∈I+J , where C in1i = Ai and

C in2j = Bj . If C is a type and B is a tuple of types, we write C ⊗ B for the tuple

〈C ×Bj〉j∈J . If A and B are tuples of types, we define their pairwise product A⊗B

to be the tuple 〈Ai ×Bj〉〈i,j〉∈I×J .

If σ is a function, we write σ[x 7→ y] for a new function which maps x to y and

otherwise behaves like σ.

Definition 1.4 (Call-by-name sum-free CPS translation) We begin as usual by as-

suming that the target calculus has a type constant σ̃ for each type constant σ of the

λµ-calculus. To each type A of the λµ-calculus, we inductively associate KA and CA,

where KA is a tuple of types, and CA is a type of the target language. KA is called the

type tuple of continuations and CA is called the type of computations. We write Ki
A

6

xi
σ = λkK

i
A .(πix̃)k where x : A

〈M,N〉in1i
σ = λkK

in1i

A∧B .M i
σk where M : A, N : B

〈M,N〉in2j
σ = λkK

in2j

A∧B .N j
σk where M : A, N : B

π1M
i
σ = λkK

i
A .M in1i

σ k where M : A ∧B

π2M
j
σ = λkK

j

B .M in2j
σ k where M : A ∧B

MN i
σ = λkK

i
B .M i

σ〈Nσ, k〉 where M : A → B, N : A

λxA.M i
σ = λ〈x̃, c〉K

i
A→B .M i

σc where M : B

[α]M1
σ = λkK

1
⊥ .M

σ(α)
σ α̃ where M : A

µαA.M i
σ = λα̃Ki

A .M1
σ[α7→i]∗ where M : ⊥

[α, β]M 1
σ = λkK

1
⊥ .M

〈σ(α),σ(β)〉
σ 〈α̃, β̃〉 where M : A ∨B

µ(αA, βB).M
〈i,j〉
σ = λ〈α̃, β̃〉K

〈i,j〉
A∨B .M1

σ[α7→i,β 7→j]∗ where M : ⊥

Table 1: The sum-free CPS translation of the call-by-name λµ-calculus

for the ith component of the tuple KA.

Kσ = 〈σ̃〉, where σ is a type constant,

K⊤ = 〈〉,
KA∧B = KA @KB,

KA→B = CA ⊗KB,

K⊥ = 〈1〉,
KA∨B = KA ⊗KB,

CA = (K1
A → R)× . . .× (Kn

A → R), where KA = 〈K1
A, . . . ,K

n
A〉.

We further assume that for each variable x and name α of the λµ-calculus, we are given

a variable x̃ or α̃ of the target calculus. Let ∆ = α1:A1, . . . , αm:Am be a control

context. A choice function for ∆ is a function σ from the set of names {α1, . . . , αm}
to indices such that σ(αi) ∈ Ind(KAi

), for all i.

The call-by-name sum-free CPS translation Mσ of a typed term Γ ⊢ M : A | ∆ is

defined relative to a choice function σ for ∆. By definition, Mσ is an I-tuple of terms,

where I = Ind(KA). The translation is defined in Table 1. As before, we write M i
σ

for the ith component of Mσ , and it is understood that this is an operation of the meta-

language. However, when we write Nσ without the superscript, as in the right-hand

side of the clause for MN i
σ , then we mean the literal tuple 〈N1

σ, . . . , N
n
σ〉 of the target

language.

The CPS translation respects typing in the following sense:

x1:B1, . . . , xn:Bn ⊢ M : A | α1:A1, . . . , αm:Am

x̃1:CB1 , . . . , x̃n:CBn
, α̃1:K

σ(α1)
A1

, . . . , α̃m:K
σ(αm)
Am

⊢ Mσ : CA

.

Remarks: Note that there is no rule for the unit term ∗ : 1. This is because

Ind(K1) = ∅ and thus ∗σ = 〈〉 is, by definition, the empty tuple. Also note that

7

the rules for pairing are equivalent (modulo administrative β-reductions) to a simple

concatenation:

〈M,N〉σ = Mσ @Nσ

Similarly, the rules for projection amount to taking a certain sub-tuple.

1.6 Discussion of the CPS transform

We have succeeded in removing sum types from the target language of the Hofmann-

Streicher call-by-name CPS transform. This, however, comes at the price of introduc-

ing a lot of indices in the meta-language, as the sums, with their associated injections

and case distinctions, are pushed into the meta-language (distributing over some other

types along the way).

One the one hand, this is interesting. It means that a lot of the analysis which goes

into case distinctions can actually be done at compile-time, rather than at run-time.

However, if the translation is implemented carelessly, this can lead to an exponential

blow-up in code size. For instance, in the rule for application MNσ , the term Nσ is

replicated many times on the right-hand side, once for every index i. Also, the fact

that the translation of code depends on a choice function σ means that, potentially,

an exponential amount of code needs to be generated, as there are many such σ to

consider. It therefore seems that the sum-free CPS translation is not very useful in

practice, at least not in the worst case. However, note that the translation of a closed

term does not depend on σ, and in principle, only a small number of values of σ need

to be encountered during the recursive translation of a term.

It remains to be seen whether the sum-free CPS translation can be useful in special

cases. Many real-world programs probably do not contain a large number of simul-

taneous control variables of product types, and thus the above-mentioned exponential

blowup may not occur in the average case. Also, it would be interesting to know

whether the indexing technique can be used, even if the target language has sum types,

to do certain compile-time optimizations.

From a pure lambda calculus point of view, sum types are somewhat undesirable

and traditionally do not occur in low-level target languages, and one might therefore

be glad to be rid of them. However, in practice, the lambda calculus is only used as

an intermediate abstraction on the way towards a more low-level implementation, for

instance, Krivine’s abstract machine. And in terms of Krivine’s abstract machine, sum

types have a perfectly natural and efficient realization via symbolic tags on the program

stack (see e.g. [4]). Removing sum types does not seem to lead to a useful improvement

of the abstract machine; in fact, it appears to degrade it. In effect, we are using the type

of a program to predict statically how many symbolic tags would be contained in the

current stack, and we then store the actual tag information in the instruction pointer,

rather than on the stack. One would assume that this leads to a massive duplication

of code and no noticeable improvement in performance in general. However, it is still

possible that the method can give rise to some interesting static optimizations in special

cases.

Another point to note is that the “sum-free” CPS translation will not work once

recursive types are introduced into the language. Sums just can’t be distributed to the

8

“top level” meaningfully in a recursive type such as L = 1 + (N × L).

2 Left-to-right vs. right-to-left evaluation

In Section 7 of “Control Categories and Duality” [3], we define call-by-value evalu-

ation in such a way that in an application MN or a pair 〈M,N〉, the left term M is

evaluated before the right term N . We also point out that “the opposite choice would

have been equally plausible”.

This point is often misunderstood. Some readers get the impression that one ends

up with a fundamentally different lambda calculus if one changes the evaluation order

from left-to-right to right-to-left, and ask why this apparent asymmetry is not reflected

in the categorical semantics. One author even goes as far as claiming that we over-

looked this issue [2, Sec. 5.2].

In truth, the call-by-value calculus with right-to-left evaluation is isomorphic to that

with left-to-right evaluation. Suppose, for instance, that 〈M,N〉l represents the left-

to-right pairing operation, and 〈M,N〉r represents the right-to-left pairing operation.

Then each is definable in terms of the other:

〈M,N〉l = let x = M in let y = N in 〈x, y〉r
〈M,N〉r = let y = N in let x = M in 〈x, y〉l

As each operator is definable in terms of the other, the question which of the two

is included in the syntax, and which one is derived, becomes merely a question of

syntactic choice. As there is no semantic difference between the two calculi, there is

no resulting asymmetry in the definition of co-control categories.

In fact, it would even be possible to have a syntactically symmetric calculus by

requiring, for instance, that only pairs of the form 〈V,W 〉 are allowed, where V and

W are values. In this case, the distinction between left-to-right and right-to-left pairing

disappears, whereas the general pairing is still definable as

〈M,N〉 = let x = M in let y = N in 〈x, y〉 or

〈M,N〉 = let y = N in let x = M in 〈x, y〉,
(4)

forcing the programmer to specify the evaluation order each time.

This also explains why this apparent “asymmetry” between the left-to-right and

right-to-left evaluation orders has no counterpart in the call-by-name calculus. The

dual of a pair of variables 〈x, y〉 is a term of the form λκ.[x, y]κ. However, while

the syntax allows us to replace term variables x, y by arbitrary terms M,N , the same

is not true for control variables. There are no “control terms”, so the [x, y] notation

only applies to variables. Thus, while we can write 〈M,N〉, forcing us to specify an

evaluation order, we cannot write λκ.[M,N]κ. Instead, we are forced to to write either

λκ.M(µx.N(µy.[x, y]κ)) or

λκ.N(µy.M(µx.[x, y]κ)),
(5)

thus specifying the evaluation order explicitly.

9

The fact that the two variants in (4) are not equivalent in call-by-value is of course

due to the fact that pairing defines a premonoidal structure (not a monoidal structure)

in call-by-value. Dually, the fact that the two variants in (5) do not coincide in call-by-

name is due to the fact that disjunction defines a premonoidal structure there. This is

captured in the semantics.

However, the fact that we have a special syntax for one of the two terms in (4),

but no special syntax for one of the two terms in (5), is a syntactic artifact and has no

semantic meaning.

3 On disjunction types

This section is an edited version of my response to a question by Phil Wadler in early

2003.

3.1 Traditional vs. unified disjunction types

As pointed out in [3], disjunction types can be formulated in two possible ways: the

“intuitionistic” (traditional) sum type A+ B, which is defined via left and right injec-

tions and case distinctions:

M ::= . . . inl M inr N case L of inl x ⇒ M | inr y ⇒ N,

and the “classical” (unified) disjunction type A ∨B, which is defined as:

M ::= . . . µ(αA, βB).M [α, β]M

The traditional syntax is characterized by the fact that there are separate constructors

for left and right injections, whereas the unified syntax uses a single constructor. As

reported in [3], the two disjunction types are strictly different in call-by-name, but they

coincide in call-by-value.

The reason for this is easiest to see in the categorical semantics: in call-by-value,

both the “traditional” sum type and the “unified” sum type define a categorical co-

product in a co-control category. Since coproducts are unique up to isomorphism, this

implies that the types A+B and A ∨B are isomorphic in call-by-value.

Syntactically, this means that for every term M of type A + B there is a term M ′

of type A ∨B, and for every term N of type A ∨B there is a term N ′ of type A+B,

such that M ′′ = M and N ′′ = N (modulo the laws of call-by-value equivalence).

Specifically, we have

M ′ = µ(α, β).case M of inl x ⇒ [α]x | inr y ⇒ [β]y
N ′ = µγ.[γ]inl µα.[γ]inr µβ.[α, β]N

Then M ′′ =v M and N ′′ =v N holds in call-by-value. An interesting point is that this

works for any terms M,N , and not just for values.

On the other hand, in call-by-name, one does not have M ′′ = M as above. As a

matter of fact, there can be no isomorphism between A+B and A∨B in call-by-name,

which is a consequence of [3, Cor. 3.8].

10

In fact, in call-by-name, the “traditional” type A + B is provably isomorphic to

¬¬(A∨B), or equivalently, to ¬((¬A)× (¬B)) (this of course only works in classical

logic, i.e., in the presence of continuations). Specifically, for any terms M : A+B and

N : ¬((¬A) × (¬B)), we define

M ′ = λp.case M of inl x ⇒ (π1p)x | inr y ⇒ (π2p)y
N ′ = µγ.N(λx.[γ]inl x, λy.[γ]inr y)

Then the equations M ′′ =n M and N ′′ =n N hold under the call-by-name laws.

3.2 Traditional vs. unified product types

As Phil Wadler pointed out, one can also formulate conjunction in two ways. There is

the traditional formulation, with separate deconstructors:

M ::= . . . π1L π2L (M,N).

There is also the “unified” formulation, with a single deconstructor:

M ::= . . . case L of 〈x, y〉 ⇒ M 〈M,N〉.

The situation is similar to that of disjunction. Again, the two formulations agree in call-

by-value. However, in call-by-name, the situation is trickier. The syntax alone does not

uniquely determine the kind of product type we are describing. There are (at least) two

possible semantic interpretations of the “unified” syntax (corresponding to different

operational semantics, different CPS-translations, different equational theories etc.).

To simplify the discussion, let us use different notations for the two possible prod-

uct types. Let us write A ⊗ B for the type which is found e.g. in Haskell. We will

continue to use the following syntax with angled brackets for denoting operations on

this type:

M ::= . . . case L of 〈x, y〉 ⇒ M 〈M,N〉.

The intended meaning of “case L of 〈x, y〉 ⇒ M” is: evaluate L to something of the

form 〈L1, L2〉, then bind x to L1 and y to L2 and continue with M .

For the second semantics of the “unified” product type, let us write A×B, and let

us use round brackets, so that

M ::= . . . case L of (x, y) ⇒ M (M,N)

Here, the meaning of “case L of (x, y) ⇒ M” is: bind x to (π1L) and y to (π2L), then

evaluate M . Unlike with the type A ⊗ B, we do not evaluate L at all until we need

the value of x or y. Thus, this “pattern matching” is really just an abbreviation for the

following term in the traditional syntax: (λx.λy.M)(π1L)(π2L). Conversely, the tra-

ditional destructors π1L and π2L can be defined as π1L = (case L of (x, y) ⇒ x) and

π2L = (case L of (x, y) ⇒ y). It follows that the second semantics of the “unified”

formulation is fact equivalent to the “traditional” formulation.

Let us refer to the type A × B, with pairing (M,N), as the “traditional” product

type and to A⊗B with pairing 〈M,N〉 as the “unified” type, despite the fact that they

can both be written in the unified syntax.

11

It can be argued that the type A × B is “more” call-by-name (or demand-driven)

than the type A ⊗ B, in the sense that nothing gets evaluated at all until there is a

demand for the variable x or y. The type A ⊗ B (and its case construct) introduces

some amount of “data-driven” computation (i.e., we evaluate L to 〈L1, L2〉 although

this may not be needed in the subsequent computation).

There is an interesting relationship between the types A×B and A⊗B. Namely,

there is a type isomorphism

A⊗B ∼= ¬¬(A ×B).

Indeed, for M : ¬¬(A ×B) and N : A⊗B, define

M ′ = µγ.M(λp.[γ]〈π1p, π2p〉) : A⊗B

N ′ = λk.case N of 〈x, y〉 ⇒ k(x, y) : ¬¬(A ×B).

Then one can verify that M ′′ =n M and N ′′ =n N under the call-by-name laws.

It is worth noting that, when writing isomorphisms such as the above, extreme care

must be taken; there are many ways of writing terms of the correct types which do not

yield an isomorphism. For instance, the following alternative definition for M ′ does

not work:

M ′ = 〈µα.M(λp.[α]π1p), µβ.M(λp.[β]π2p)〉

And neither does this alternative definition work for N ′:

N ′ = λk.k(case N of 〈x, y〉 ⇒ (x, y)).

Also note that we do not have an isomorphism between A ⊗ B and A × B: while

one can find maps going both ways, they are not mutually inverse. For instance, for

M : A×B and N : A⊗B, one naively defines:

M ′ = case M of (x, y) ⇒ 〈x, y〉
N ′ = case N of 〈x, y〉 ⇒ (x, y)

Then we have M ′′ =n M , but we do not have N ′′ =n N . The reason for this is that

M = (π1M,π2M) holds for the type A×B, but the corresponding law does not hold

for the type A⊗B. Thus, there is no isomorphism between the types A×B and A⊗B.

Also note that the call-by-name CPS translations for the types A × B and A ⊗ B

are different. We have:

KA×B = KA +KB

KA⊗B = (CA × CB) → R

(M,N) = λk.case k of inl k1 ⇒ Mk1 | inr k2 ⇒ Nk2
case M of (x, y) ⇒ N = λk.let x = λc.M(inl c) in let y = λd.M(inr d) in Nk

〈M,N〉 = λk.k〈M,N〉
case M of 〈x, y〉 ⇒ N = λk.M(λp.let x = π1p in let y = π2p in Nk)

From the CPS translation, we can also see that CA⊗B = ¬¬(CA ×CB) and CA×B
∼=

CA×CB , so the isomorphism between A⊗B and ¬¬(A×B) also holds with respect

to the CPS translation.

12

3.3 Disjunctions, conjunctions, and duality

We found that there are two possible formulations of conjunction and disjunction, the

“traditional” and “unified” formulations. Also, we found that in call-by-value, the two

formulations coincide, whereas in call-by-name, they are different. This is somewhat

surprising, as one would have expected, by duality, that if conjunctions coincide in

call-by-value, then disjunctions coincide in call-by-name, and vice versa. Let us exam-

ine this situation closer. To summarize, in call-by-name, we have the following type

isomorphisms (with unified types shown on the left, and traditional ones on the right):

A⊗B ∼= ¬¬(A ×B)
(¬¬A) ∨ (¬¬B) ∼= A+B

This suggests that in call-by-name, one should take A × B as the primitive product

type, A ∨ B as the primitive disjunction type, and one should treat the types A ⊗ B

and A+B as derived. Whether or not one provides syntactic sugar for the constructors

and deconstructors of the derived types A⊗ B and A+B is a matter of taste, but one

clearly needs to provide a syntax for the primitive types A×B and A ∨B. Thus, one

ends up with the traditional notation for products, and the unified notation for sums.

It is interesting to note that some real-world call-by-name languages, such as Haskell,

provide neither of the primitive types A × B or A ∨ B; rather, they provide only the

derived types A⊗B and A+B.

Regarding duality, we can remark that the dual of the primitive call-by-name types

A × B and A ∨ B are the call-by-value types A + B and A × B, respectively. The

question remains what happens to the duals of the derived call-by-name types A ⊗ B

and A +B. By duality and the above type isomorphism, we know that the dual of the

type A⊗B is ¬¬(A+B), and the dual of the type A+B is (¬¬A)× (¬¬B). These

types of course exist in call-by-value, but they are usually not given a special name or

a special syntax.

The best explanation for this phenomenon is that the duality between call-by-name

and call-by-value is a semantic duality, not a syntactic one. Note that, if 〈|M |〉 and LNM

are the duality translations, we do not claim that 〈|LNM|〉 = N and L〈|M |〉M = M literally,

but only up to type isomorphism and the respective equational theories. Thus, we do

not claim that every syntactic construct has an exact equivalent in the dual. Rather, we

claim that every syntactic construct is expressible in the dual. Whether or not the dual

of a particular concept is considered important enough to be given a special syntax in

the dual language is a matter of taste and programming style.

3.4 Type isomorphism

Maybe one of the most interesting contributions of category theory to the semantics

of programming languages is the emphasis that it puts on type isomorphisms. A type

isomorphism between types A and B is more than just a translation from A to B and

one from B to A. One requires that the two translations are mutually inverse, up the

the equational theory of the language.

Type isomorphisms capture quite a bit of information about the implementation of

a type. Intuitively, if two types are isomorphic, the compiler will probably implement

13

them in the same way. Or at least it may try to do so.

4 Focus and center

This section is an edited and expanded version of an email to Carsten Führmann in

1999.

In a control category, the center and focus coincide. In other words, every cen-

tral map is copyable and discardable. This proved in Lemmas 3.2 and 3.12 in [3],

but the proof that centrality implies copyability already appears, for ⊗¬-categories, in

Thielecke’s thesis [5].

One may ask whether the converse holds, i.e., whether every copyable and discard-

able map is central. This is not the case, as the following counterexample shows.

Let R = {0, 1, 2, 3} and consider the category RSet, i.e. the category of continua-

tions made from Set with response object R. Consider the following map f : R2 →
R1:

f 0 1 2 3
0 0 0 2 2
1 1 1 3 3
2 0 0 2 2
3 1 1 3 3

The table shows f(a, b) in the ath row and bth column. Notice that f has the two

following properties, for all a, b, c, d ∈ R.

f(a, a) = a,

f(f(a, b), f(c, d)) = f(a, d).

To check the second property quickly, notice that f(a, b) = (a& 1 | b& 2), where “&”

and “|” denote bitwise “and” and “or”, respectively.

The first property is equivalent to discardability, and the second one to copyability

of f . However, f is not central, e.g. consider g : R1 → R1 with g(0) = 0, g(1) = 2,

g(2) = 1, g(3) = 3. Then f(g(1), g(2)) = 0 6= 3 = g(f(1, 2)). This implies that f is

not central.

This example may be somewhat puzzling, until one realizes that it is a special case

of the following construction. The following may also be the key to finding a syntactic

programming language example.

Consider a cartesian-closed category C with two distinguished objects S and T .

Notice that for any object A,

(S × T)A ∼= SA × TA.

Now consider the continuation category with response object S × T . If u, v : A → B

14

are any two maps, then we can define a new map f : (S×T)B → (S×T)A as follows:

(S × T)B

∼=
��

f // (S × T)A

∼=
��

SB × TB Su×Tv

// SA × TA

Then f is copyable and discardable, because Su and T v are copyable and discardable

in SC and TC, respectively, and copyability and discardability work “componentwise”

in (S×T)C. On the other hand, unless u = v, f is not in general of the form (S×T)w,

and thus not in general central.

As a special case, it follows that in the control category RSet, there are copyable

and discardable maps which are not central, if the cardinality of R is composite, i.e.,

if R is infinite or |R| = nm for n,m ≥ 2. Interestingly, the converse also holds: if

the cardinality of R is a prime number (or 0 or 1), then copyability and discardability

implies centrality in RSet. In case |R| = 0 or |R| = 1, the category RSet is a preorder

and there is nothing to show (all maps are central).

Theorem 4.1 Let R be a set of finite cardinality p, where p is a prime number. Let

⋆ : R2 → R be a binary operation satisfying

1. a ⋆ a = a,

2. (a ⋆ b) ⋆ (c ⋆ d) = a ⋆ d,

for all a, b, c, d ∈ R. Then ⋆ is a projection, i.e., either a ⋆ b = a for all a, b ∈ R, or

a ⋆ b = b for all a, b ∈ R.

Proof. The crucial observation is that for all a, b, x, y ∈ R,

a ⋆ x = a ⋆ y ⇒ b ⋆ x = b ⋆ y.

Because, if a⋆x = a⋆y, then we have b⋆x = (b⋆x)⋆(a⋆x) = (b⋆x)⋆(a⋆y) = b⋆y.

It follows that we can define an equivalence relation on R by setting x ∼ y if for some

a ∈ R, a ⋆ x = a ⋆ y. Note that for all a, x ∈ R, a ⋆ (a ⋆ x) = (a ⋆ a) ⋆ (a ⋆ x) = a ⋆ x,

thus a ⋆ x ∼ x.

Next, we claim that each equivalence class [x]∼ has equal cardinality. We define

φyx : [x]∼ → [y]∼ for every x, y ∈ R by φyx(z) = z ⋆ y. We claim that φxy is

a bijection with inverse φyx. Namely, for any z ∈ [x]∼, we have φxy(φyx(z)) =
(z ⋆ y) ⋆ x = (z ⋆ y) ⋆ (x ⋆ x) = z ⋆ x = z ⋆ z = z. Thus, the equivalence relation

∼ partitions R into sets of equal cardinality. Since |R| = p is prime, it follows that

the cardinality of the equivalence classes is either 1 or p. If the cardinality is 1, then

a ⋆ x ∼ x implies a ⋆ x = x, for all a, x; in this case, ⋆ is the second projection. Else,

the cardinality is p, hence a = a ⋆ a = a ⋆ y for all a, y, i.e., ⋆ is the first projection. ✷

15

Corollary 4.2 Let R be a finite set of prime cardinality, I any set, and let f : RI → R

such that

RI
f // R

R

∆

OO

id

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

and RI
f // R

(RI)I

∇

OO

fI

// RI ,

f

OO

where ∆(a)(i) = a and ∇(g)(i) = g(i)(i). Then there exists i ∈ I such that f(~a) =
ai, for all ~a = (ai)ı∈I .

Proof. We think of f as an I-ary operation on R. We say that f depends on an index

i ∈ I if there exist elements ~a,~b ∈ RI such that aj = bj for all j 6= i, but f(~a) 6= f(~b).
Clearly, by the first diagram, f is not a constant function and thus depends on at least

one i. Let S = {i ∈ I | f depends on i}. We show that S is a singleton by showing

that for any partition of I into two subsets I = I1
.
∪ I2, S ⊆ I1 or S ⊆ I2. Namely,

given such a partition, define ⋆ : R2 → R by a ⋆ b = f(~c), where ci = a if i ∈ I1
and ci = b if i ∈ I2. The commutative diagrams ensure that ⋆ satisfies the conditions

of Theorem 4.1, thus it is independent of one of its arguments. This proves that S is a

singleton, say S = {i}. The first diagram ensures that f is the projection onto its ith

argument. ✷

Corollary 4.3 Let R be a finite set of prime cardinality. Then in the control category

RSet, all copyable discardable morphisms are central.

Proof. Suppose f : RI → RJ is discardable and copyable. For each j ∈ J , define

fj : RI → R by fj(~a) = f(~a)(j). Since f is discardable and copyable, fj satisfies

the hypotheses of Corollary 4.2. Thus, fj is a projection onto some component ij . It

follows that f = Rφ, where φ(j) = ij . Thus f is central. ✷

5 Control categories and coproducts

Many questions about control categories are of the form “does there exists a non-trivial

control category with property X”. Here, non-trivial means that the category is not a

preorder. One such question, posed by Masahito Hasegawa, is whether there exists a

non-trivial “local” control category, i.e., one whose slices are control categories. I do

not know the answer to this question.

Hasegawa also asked whether there exists a non-trivial control category with finite

coproducts. We already know from [3, Cor. 3.8] that A # B cannot be a coprod-

uct. However, the question is whether coproducts can exist in addition to the control

category structure.

The answer is no, due to the following theorem:

Theorem 5.1 Any control category with initial object is a preorder.

16

Proof. Recall that 0 × A ∼= 0 and 00 ∼= 1 in any cartesian-closed category. Now

consider the projections π1 : 0×⊥ → 0 and π2 : 0×⊥ → ⊥. These maps are central;

moreover π1 is an isomorphism. It follows that the unique map 0 → ⊥ is central (this

map is π2 ◦ π−1
1). There is also a central map ⊥ → 0. Since the only central map

⊥ → ⊥ is the identity, it follows that 0 ∼= ⊥.

By Lemma 3.7 and Corollary 3.14 of [3], it follows that the category is a preorder:

suppose that f : 1 → C. By Corollary 3.14, there is a central morphism g : ⊥⊥ → C.

But ⊥⊥ ∼= 00 ∼= 1, hence there is a central h : 1 → C. By Lemma 3.7, this implies

C ∼= 1. Thus, for all C, |(1, C)| ≤ 1. This implies |(A,B)| = |(1, BA)| ≤ 1, hence

the category is a preorder. ✷

It immediately follows that the category of sets is not a control category, nor is any

presheaf category.

Hasegawa pointed out that the first part of the proof can be simplified because in

any cartesian-closed category, the initial object is strict, i.e., if there exists f : A → 0,

then A is initial [1]. Since i : ⊥ → 0 always exists, ⊥ is automatically initial.

References

[1] J. Lambek and P. J. Scott. An Introduction to Higher Order Categorical Logic.

Cambridge Studies in Advanced Mathematics 7. Cambridge University Press, New

York, 1986.

[2] I. Ogata. A proof theoretical account of continuation passing style. In Proceedings

of CSL’02, Springer LNCS 2471, pages 490–505, 2002.

[3] P. Selinger. Control categories and duality: on the categorical semantics of the

lambda-mu calculus. Mathematical Structures in Computer Science, 11(2), 2001.

[4] P. Selinger. From continuation passing style to Krivine’s abstract machine.

Preprint. Available from http://quasar.mathstat.uottawa.ca/˜selinger/papers.html,

2003.

[5] H. Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis,

University of Edinburgh, 1997.

17

