ACSC/STAT 3703, Actuarial Models I

WINTER 2023
Toby Kenney
Homework Sheet 5
Due: Wednesday 15th March: 11:30
Note: This homework assignment is only valid for WINTER 2023. If you find this homework in a different term, please contact me to find the correct homework sheet.

Basic Questions

1. A distribution of a random loss X has density function

$$
f_{X}(x)= \begin{cases}\frac{C e^{-\frac{x}{5}}}{(x+1)(x+2)} & \text { if } x>0 \\ 0 & \text { if } x \leqslant 0\end{cases}
$$

for some constant C. After two years, there has been 15% inflation, so the loss distribution is now the distribution of $1.15 X$. What is the density function for this distribution?
2. Calculate the distribution of X^{6} when X follows a Pareto distribution with $\alpha=3$ and $\theta=13$.
3. Let T be the time until a claim is processed. The moment generating function of T is $M_{T}(t)=\frac{192}{(3-t)(4-t)^{3}}$. Inflation is at an annual rate of 5%. What is the variance of the random variable 1.05^{T} ?
4. X is a mixture of 3 distributions:

- With probability $0.3, X$ follows a gamma distribution with $\alpha=0.3$ and $\theta=20$.
- With probability $0.6, X$ follows a Pareto distribution with $\alpha=5$ and $\theta=60$.
- With probability $0.1, X$ follows a Weibull distribution with $\theta=20$ and $\tau=4$.

The moments of these distributions are given in the following table:

	Distribution 1	Distribution 2	Distribution 3
Probability	0.3	0.6	0.1
μ	6	15	18.12805
μ_{2}	120	75	25.86457
μ_{3}	4800	2250	-11.47475
μ_{4}	331200	253125	1838.22388
μ_{2}^{\prime}	156	300	354.49077
μ_{3}^{\prime}	7176	9000	7352.50021
μ_{4}^{\prime}	473616	540000	160000.00000

(a) What is the coefficient of variation of X ?
(b) [bonus] What is the kurtosis of X ?
5. For a particular claim, the insurance company has observed the following claim sizes:

$$
\begin{array}{llllllllll}
1.1 & 1.9 & 3.0 & 7.3 & 10.9 & 12.8 & 14.8 & 15.0 & 25.6 & 39.2
\end{array}
$$

Using a kernel smoothing model with a Gaussian kernel with variance 4, calculate the probability that the next claim size is between 14 and 24 .

Standard Questions

6. An insurance company models the claims of an individual (in dollars) as following a Pareto distribution with $\theta=1000$ and α varying between individuals. For a random individual, α is assumed to follow a Gamma distribution with shape α and scale θ.
From the insurer's data, 5% of claims exceed $\$ 700$ and 1% of claims exceed $\$ 5,500$. Which of the following values of α would achieve this, and what is the corresponding value of θ ? Justify your answer.
(i) $\alpha=3.48762$.
(ii) $\alpha=7.42930$.
(iii) $\alpha=11.09824$.
(iv) $\alpha=18.14619$.
7. The time until failure of a product has hazard rate $\lambda(t)=2(1-a)+\frac{t^{2}}{16}$ where a is a measure of the quality of the product, and is modelled as following a distribution with density $f_{A}(a)=7.5 a^{2}-4.5 a+0.75$ for $0 \leqslant$ $a \leqslant 1$. The product has a two-year waranty. What is the probability that it will be replaced under this waranty?
8. An insurance company models claims as following a log-normal distribution with $\mu=4$ and $\sigma^{2}=3$. They want to transform the claims by raising to a power in order to make the kurtosis of the distribution equal to 6 . What power should they use? [You may need to use numerical methods to solve the necessary equations.]
