## ACSC/STAT 3740, Predictive Analytics

# WINTER 2023

# Toby Kenney

#### Homework Sheet 3

### Due: Thursday 9th March: 11:30

Note: This homework assignment is only valid for WINTER 2023. If you find this homework in a different term, please contact me to find the correct homework sheet.

### **Standard Questions**

1. A music streaming company is building a recommendation system to suggest songs to its readers. It has collected the following data in the file HW3Q1.txt.

| Variable         | Meaning                                                                          |
|------------------|----------------------------------------------------------------------------------|
| genre            | The genre (type of music) of the song                                            |
| artist           | The identifier of the artist.                                                    |
| rating           | The songs average user rating (scale $1-5$ )                                     |
| same.artist      | A measure of how much the user listens to songs by the artist. (scale $0-5$ )    |
| same.genre       | A measure of how much the user listens to songs from this genre (scale 0–5)      |
| friend.listen    | The number of the users "friends" that listen to the song                        |
| friend.recommend | The average of the recommendation scores for the song give by the user's friends |
| listen           | Whether the user listens to the recommended song.                                |

(a) Fit a logistic regression model to predict whether the user will listen to the recommended song.

(b) The predictor friend.listen is skewed and heavy tailed. Try a log transformation and a sqare root transformation of this variable. Fit models including all combinations of these transformations.

2. The file HW3Q2.txt contains data from a study on the effect of exercise on the risk of heart disease in men. The variables included are

| Variable            | Meaning                                                                  |
|---------------------|--------------------------------------------------------------------------|
| age                 | The age of the patient                                                   |
| ave.weekly.exercise | The number of hours per week spent exercising.                           |
| weekly.cals         | The number of calories consumed weekly.                                  |
| percent.fat         | The percentage of the patient's diet that consists of fats.              |
| percent.fibre       | The percentage of the patient's diet that consists of fibre.             |
| fam.hist            | Whether the patient has family history of heart disease.                 |
| BMI                 | The patient's BMI.                                                       |
| SBP                 | The patients systolic blood pressure.                                    |
| heart.5.year        | Whether the patient develops heart disease within the following 5 years. |

Fit a decision tree to predict whether an individual will develop heart disease in the next 5 years.

3. The file HW3Q3.txt contains daily new influenza infections counts in a particular country.

(a) log-transform the counts and fit a seasonal trend using the function  $\sin(2\pi t)$  and  $\cos(2\pi t)$  where t is the time in years.

(b) After subtracting the seasonal trend, fit an ARMA model to the residuals, using AIC to determine the best choices for p and q.

(c) Fit a GARCH model to model the variance.

(d) Based on this model, what is the probability that there are fewer than 15000 flu cases in the first four months of 2023? [You can use the ugarchboot function to run a simulation to estimate this.]

4. A reinsurance company has collected the following data on earthquakes in the file HW3Q4.txt.

| Variable      | Meaning                                                                |
|---------------|------------------------------------------------------------------------|
| magnitude     | The magnitude of the earthquake on the Ricter scale                    |
| population    | The population of the affected city or region                          |
| distance      | The distance of the epicentre from the affected area                   |
| depth         | The depth of the epicentre                                             |
| year          | The year of the earthquake                                             |
| years.since.5 | The number of years since a magnitude 5 earthquake hit the same region |
| country.gdp   | The annual per-capita gdp of the affected country                      |
| damage        | The total damage caused by the earthquake                              |

Fit generalised linear models to predict the probability that an earthquake will cause damage, and for an earthquake which does cause damage, to predict the total damage, using a gamma response variable and a log-link function.

Use these models to predict the total damage for the earthquakes in the file HW3Q4\_test.txt.

5. A scientist has collected the following data on the effect of organic farming on butterfly populations. The data are in the file HW3Q5.txt.

| Variable          | Meaning                                                                |
|-------------------|------------------------------------------------------------------------|
| total.agriculture | The proportion of the habitat that is used for agriculture.            |
| main.crop         | The most grown crop in the region.                                     |
| percent.organic   | The proportion of agricultural land that uses organic farming methods. |
| ave.summer.temp   | The average temperature during the summer months (° $C$ ).             |
| ave.winter.temp   | The average temperature during the winter months ( $^{\circ}C$ ).      |
| rainfall          | The average total annual rainfall.                                     |
| year              | The year.                                                              |
| butterflies       | The number of butterflies caught in the region.                        |

(a) Fit a decision tree to predict number of butterflies from the other variables. Choose an appropriate transformation for the response variable, and make any necessary adjustments to the data.

(b) Fit a random forest model to predict number of butterflies from the other variables. Test this model on the dataset in the file  $HW3Q4\_test.txt$ .