# ACSC/STAT 4703, Actuarial Models II 

## Fall 2015

Toby Kenney
Homework Sheet 6
Model Solutions

## Basic Questions

1. An insurance company sells car insurance. It estimates that the standard deviation of the aggregate annual claim for an individual is \$1,326 and the mean is \$1,102.
(a) How many years history are needed for an individual or group to be assigned full credibility? (Use $r=0.05, p=0.95$.)
We want to determine the number $N$, so that after $N$ years, the $95 \%$ confidence interval for this individual's average aggregate annual claim has width $2 \times 0.05 \times 1102$. That is, we need to solve

$$
\begin{aligned}
1.96 \frac{1326}{\sqrt{N}} & =0.05 \times 1102 \\
N & =\left(\frac{1326 \times 1.96}{55.10}\right)^{2}=2224.826
\end{aligned}
$$

The standard premium for this policy is \$1,102. An individual has no claims in the last 10 years.
(b) What is the Credibility premium for this individual, using limited fluctuation credibility?
We have that the individual's credibility is $Z=\sqrt{\frac{10}{2224.826}}=0.06704278$, so the credibility premium is $0 \times 0.06704278+1102 \times(1-0.06704278)=$ $\$ 1,028.12$.
2. A health insurance company classifies individuals as healthy or unhealthy. Annual claims from healthy individuals follow a Gamma distribution with shape $\alpha=0.25$ and scale $\theta=1044$. Annual claims from unhealthy individuals follow a Gamma distribution with shape $\alpha=0.5$ and scale $\theta=1370$. 80\% of individuals are healthy individuals.
(a) Calculate the expectation and variance of the aggregate annual claims from a randomly chosen individual.
The expected aggregate annual claims from a healthy individual is $0.25 \times$ $1044=261$, and the variance is $0.25 \times 1044^{2}=272484$. The expected
aggregate annual claims from an unhealthy individual is $0.5 \times 1370=685$, and the variance is $0.5 \times 1370^{2}=938450$.
The expected aggregate annual claims from a random individual is therefore $0.8 \times 261+0.2 \times 685=\$ 345.80$. The variance is $0.8 \times 272484+0.2 \times$ $938450+0.8 \times 0.2 \times(685-261)^{2}=434441.36$.
(b) Given that an individual's total claims over the past 2 years are $\$ 396$, what are the expectation and variance of the individual's total claims next year?
For a healthy individual, the aggregate claims over 2 years follows a Gamma distribution with $\alpha=0.5$ and $\theta=1044$, which means the likelihood of aggregate claims being 396 is $\frac{396^{-0.5} 1044^{-0.5} e^{-\frac{396}{1044}}}{\Gamma(0.5)}=0.0006004749$. For an unhealthy individual, the aggregate claims over 2 years follows a Gamma distribution with $\alpha=1$ and $\theta=1370$, which means the likelihood of aggregate claims being 396 is $\frac{1370^{-1} e^{-\frac{396}{1370}}}{\Gamma(1)}=0.0005466963$.
The posterior probability that the individual is healthy is therefore $\frac{0.8 \times 0.0006004749}{0.8 \times 0.0006004749+0.2 \times 0.0005466963}=$ 0.814591 .

The expected aggregate claims next year are therefore $0.814591 \times 261+$ $0.185409 \times 685=\$ 339.61$. The expected variance is $0.814591 \times 272484+$ $0.185409 \times 938450+0.814591 \times 0.185409 \times(685-261)^{2}=423112.11$.
3. The number of claims made by an individual in a year follows a Poisson distribution with mean $\Lambda$, where the value of $\Lambda$ follows a Gamma distribution with $\alpha=2.3$ and $\theta=0.07$. Given that an individual has made 6 claims in the past 2 years, what is the expected number of claims made in the next year?
The probability of making 6 claims in 2 years is proportional to $e^{-2 \lambda} \lambda^{6}$, so the posterior density of $\lambda$ is proportional to $\lambda^{1.3} e^{-\frac{\lambda}{0.07}} \lambda^{6} e^{-2 \lambda}=\lambda^{7.3} e^{\frac{-}{\left(\frac{1}{2+\frac{1}{0.07}}\right)}}$, so the posterior distribution is a gamma distribution with $\alpha=8.3$ and $\theta=\frac{1}{2+\frac{1}{0.07}}=\frac{0.07}{1.14}=0.06140351$. The expected number of claims next year is the posterior mean of $\lambda$, which is $8.3 \times 0.06140351=0.5096491$.

## Standard Questions

4. For a certain insurance policy, the book premium is based on average claim frequency of 0.5 claims per year, and average claim severity of $\$ 3,040$. A particular group has made 60 claims from 187 policies in the last year. The average claim severity is $\$ 3,914$. Estimate the credibility premium for this group using limited fluctuation credibility if the standard for full credibility is:
(a) 203 claims for claim frequency, 700 claims for severity.

The credibility estimate for claim frequency uses $Z=\sqrt{\frac{60}{203}}=0.5436603$, so the average claim frequency is $(1-0.5436603) \times 0.5+0.5436603 \times \frac{60}{187}=$ 0.4026063 . The credibility estimate for claim severity uses $Z=\sqrt{\frac{60}{700}}=$ 0.29277 , so the credibility estimate for claim severity is $0.29277 \times 3914+$ $(1-0.29277) \times 3040=\$ 3,295.88$. The credibility premium is therefore $0.4026063 \times 3295.88=\$ 1,326.94$.
(b) 406 years for claim frequency, 700 claims for severity.

As in part (a), the credibility estimate for average severity is 3295.88. However, the credibility estimate for frequency now uses $Z=\sqrt{\frac{187}{406}}=$ 0.6786686 , so the average claim frequency is $0.6786686 \times \frac{60}{187}+(1-0.6786686) \times$ $0.5=0.3784203$, so the credibility premium is $0.3784203 \times 3295.88=$ \$1, 247.23.
(c) 523 years for aggregate claims.

The average aggregate claims is $\frac{60 \times 3914}{187}=1255.829$. The book value for expected aggregate claims is $0.5 \times 3040=1520$. The credibility is $Z=\sqrt{\frac{187}{523}}=0.597957$, so the credibility premium is $0.597957 \times 1255.829+$ $(1-0.597957) \times 1520=\$ 1,362.04$.
5. A group insurance policy covers 168 individuals. The insurance company reviews the last 3 years of aggregate claims for each insured. For individual $i$, the aggregate claims in year $j$ are denoted $X_{i j}$. We have the following:

$$
\begin{aligned}
\mathbb{E}\left(X_{i j}\right) & =\mu \\
\operatorname{Var}\left(X_{i j}\right) & =\sigma^{2} \\
\operatorname{Cov}\left(X_{i j}, X_{k l}\right) & = \begin{cases}\rho & \text { if } i=k, j \neq l \\
\tau & \text { if } i \neq k, j=l \\
\zeta & \text { if } i \neq k, j \neq l\end{cases}
\end{aligned}
$$

Calculate the credibility estimate for $X_{i, 4}$.
Let the estimate of $X_{i, 4}$ be $\hat{X}=Z_{0} \mu+\sum_{j, k} Z_{j k} X_{j k}$. We will calculate the $Z_{j k}$ to minimise the mean squared error of $\hat{X}$. That is, we want to minimise $\mathbb{E}\left(\left(\hat{X}-X_{i, 4}\right)^{2}\right)=\mathbb{E}\left(\hat{X}^{2}+X_{i, 4}^{2}-2 \hat{X} X_{i, 4}\right)$. By subtracting $\mu$ from all terms, this becomes $\mathbb{E}\left((\hat{X}-\mu)^{2}+\left(X_{i, 4}-\mu\right)^{2}-2(\hat{X}-\mu)\left(X_{i, 4}-\mu\right)\right)$, which is $\operatorname{Var}(\hat{X})+\operatorname{Var}\left(X_{i, 4}\right)-2 \operatorname{Cov}\left(\hat{X}, X_{i, 4}\right)$. Expanding these terms, we know that $\operatorname{Var}\left(X_{i, 4}\right)=\sigma^{2}$, while $\operatorname{Cov}\left(\hat{X}, X_{i, 4}\right)=\sum_{j, k} Z_{j k} \operatorname{Cov}\left(X_{j k}, X_{i, 4}\right)=$ $\sum_{k} Z_{i k} \rho+\sum_{j \neq i, k} Z_{j k} \zeta$. Finally

$$
\begin{aligned}
\operatorname{Var}(\hat{X}) & =\sum_{j, k, l, m} Z_{j k} Z_{l m} \operatorname{Cov}\left(X_{j k}, X_{l m}\right) \\
& =\sum_{j, k} Z_{j k}^{2} \sigma^{2}+\sum_{j, k, m} Z_{j k} Z_{j m} \rho+\sum_{j, k, l} Z_{j, k} Z_{l, k} \tau+\sum_{j \neq l, k \neq m} Z_{j, k} Z_{l, m} \zeta
\end{aligned}
$$

We therefore need to choose $Z_{j, k}$ to minimise

$$
\begin{aligned}
\sum_{j, k} Z_{j k}^{2} \sigma^{2} & +\sum_{j, k \neq m} Z_{j k} Z_{j m} \rho+\sum_{j \neq l, k} Z_{j, k} Z_{l, k} \tau+\sum_{j \neq l, k \neq m} Z_{j, k} Z_{l, m} \zeta \\
& -\left(\sum_{k} Z_{i k} \rho+\sum_{j \neq i, k} Z_{j k} \zeta\right)
\end{aligned}
$$

Differentiating with respect to $Z_{j k}$ gives in the cases $j=i$ and $j \neq i$ respectively, gives:

$$
\begin{aligned}
& 2 Z_{i k} \sigma^{2}+\sum_{m \neq k} Z_{i m} \rho+\sum_{l \neq i} Z_{l k} \tau+\sum_{l \neq i, m \neq k} Z_{l m} \zeta=\rho \\
& 2 Z_{j k} \sigma^{2}+\sum_{m \neq k} Z_{j m} \rho+\sum_{l \neq j} Z_{l k} \tau+\sum_{l \neq i, m \neq k} Z_{l m} \zeta=\zeta
\end{aligned}
$$

By symmetry, we expect $Z_{i k}$ to be the same for all $k=1,2,3$. We can confirm this from the first equation. We also expect $Z_{j k}$ to be the same for all $j \neq i$. Letting $Z_{i k}=a$ and $Z_{j k}=b$, our equations become:

$$
\begin{aligned}
\left(2 \sigma^{2}+2 \rho\right) a+167 b \tau+167 \times 2 b \zeta & =\rho \\
2 b \sigma^{2}+2 b \rho+166 b \tau+a \tau+166 \times 2 b \zeta+2 a \zeta & =\zeta \\
\left(2 \sigma^{2}+2 \rho\right) a+167(\tau+2 \zeta) b & =\rho \\
\left(2 \sigma^{2}+2 \rho+166 \tau+332 \zeta\right) b+(\tau+2 \zeta) a & =\zeta \\
167(\tau+2 \zeta)^{2} b-\left(2 \sigma^{2}+2 \rho\right)\left(2 \sigma^{2}+2 \rho+166 \tau+332 \zeta\right) b & =\rho(\tau+2 \zeta)-\zeta\left(2 \sigma^{2}+2 \rho\right) \\
b & =\frac{\rho(\tau+2 \zeta)-\zeta\left(2 \sigma^{2}+2 \rho\right)}{(\tau+2 \zeta)^{2}-\left(2 \sigma^{2}+2 \rho\right)\left(2 \sigma^{2}+2 \rho+166 \tau+332 \zeta\right)} \\
\left(\left(2 \sigma^{2}+2 \rho\right)-(\tau+2 \zeta)\right)(a-b) & =\rho-\zeta \\
a & =b+\frac{\rho-\zeta}{\left(\left(2 \sigma^{2}+2 \rho\right)-(\tau+2 \zeta)\right)}
\end{aligned}
$$

