ACSC/STAT 4703, Actuarial Models II Fall 2020

Toby Kenney Homework Sheet 3 Due: Friday 14th February: 13:30 PM

Basic Questions

- 1. A homeowner's house is valued at \$430,000, but is insured at \$220,000. The insurer requires 70% coverage for full insurance. The home sustains \$9,300 from fire. The policy has a deductible of \$5,000, which decreases linearly to zero when the total cost of the loss is \$15,000. How much does the insurance company reimburse?
- 2. An insurance company has three types of coverages for businesses with different expected loss ratios, and has the following data on recent claims:

Policy Type	Policy	Earned	Expected	Losses paid
	Year	Premiums	Loss Ratio	to date
Workers'	2017	\$3,000,000	0.74	\$2,300,000
compensation	2018	\$3,600,000	0.75	\$1,100,000
insurance	2019	\$4,100,000	0.73	\$200,000
	2017	\$1,100,000	0.75	\$680,000
Fire insurance	2018	\$920,000	0.74	\$645,000
	2019	\$1,080,000	0.77	\$680,000
Liability	2017	\$2,400,000	0.72	\$480,000
ingunanaa	2018	\$2,700,000	0.73	\$740,000
insurance	2019	\$2,900,000	0.71	\$190,000

Calculate the loss reserves at the end of 2019.

3. The following table shows the paid losses on claims from one line of business of an insurance company over the past 6 years.

			Development year					
Accident year	Earned premiums	0	1	2	3	4	5	
2014	4979	549	1182	730	508	312	339	
2015	5333	605	1210	737	693	176		
2016	5431	731	1027	778	551			
2017	5555	579	1314	681				
2018	5461	807	1060					
2019	5719	727						

Assume that all payments on claims arising from accidents in 2014 have now been settled. Estimate the future payments arising each year from open claims arising from accidents in each calendar year using

(a) The loss development triangle method

- (b) The Bornhuetter-Ferguson method with expected loss ratio 0.73.
- 4. An actuary is reviewing the following claims data:

No	. of	closed	claim	IS			То	tal pai cla	id loss aims (l	es on 000's)	closed	
Acc.		Devel	lopme	nt Yea	ır	Ult.	Acc.		Develo	opmen	t Year	•
Year	0	1	2	3	4		Year	0	1	2	3	4
2015	662	$1,\!150$	$1,\!435$	$1,\!544$	$1,\!697$	2035	2015	1,446	2,950	$5,\!287$	6,530	7,241
2016	691	1,207	$1,\!444$	1,736		2070	2016	1,536	3,616	$5,\!361$	6,902	
2017	819	1,314	$1,\!455$			2105	2017	2,075	3,833	5,328		
2018	777	1,263				2140	2018	$1,\!636$	4,067			
2019	761					2175	2019	2,069				

(a) Calculate tables of percentage of claims closed and cumulative average losses.

(b) Adjust the total loss table to use the current disposal rate.

(c) Use the chain ladder method to estimate claim development based on the adjusted numbers. Compare this to the chain ladder method on aggregate payments on closed claims.

Standard Questions

5. The number of claims on an insurance policy follows a Poisson distribution with mean 0.04. For each claim, there is the following distribution of years to settlement and final claim amount:

Years to	Probability	Final	Claim amount
settlement	5	Mean Sta	andard Deviation
0	0.15	700	300
1	0.25	800	350
2	0.35	1,200	600
3	0.1	1,700	1,200
4	0.1	$2,\!600$	4,200
5	0.05	$3,\!400$	6,500

(a) Calculate the expected loss development ratio.

(b) The number of policies sold in the past 5 years is given by

Year Pol	licies Sold
2015	3,531
2016	4,055
2017	4,621
2018	4,802
2019	5,110

Using a normal approximation for aggregate losses, estimate the 95th percentile of the total payments made in 2020 for these policies.