ACSC/STAT 4703, Actuarial Models II

Fall 2020
Toby Kenney
Homework Sheet 1
Model Solutions

Basic Questions

1. Aggregate payments have a compund distribution. The frequency distribution is negative binomial with $r=2$ and $\beta=1.9$. The severity distribution is a gamma distribution with $\alpha=0.7$ and $\theta=18000$. Use a Pareto approximation to aggregate payments to estimate the probability that aggregate payments are more than \$350,000.
The frequency distribution has mean $2 \times 1.9=3.8$, and variance $2 \times 1.9 \times$ $2.9=11.02$. The severity distribution has mean $0.7 \times 18000=12,600$ and variance $0.7 \times 18000^{2}=226,800,000$. The mean of the aggregate loss distribution is therefore $3.8 \times 12600=47,880$ and the variance is $3.8 \times 226800000+11.02 \times 12600^{2}=2611375200$.

The Pareto distribution with this variance has

$$
\begin{aligned}
\frac{\theta}{\alpha-1} & =47880 \\
\frac{\theta^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} & =2611375200 \\
\frac{\alpha}{\alpha-2} & =\frac{2611375200}{47880^{2}} \\
& =1.13909774436 \\
0.13909774436 & =2 \times 1.13909774436 \\
\alpha & =2 \times 1.13909774436 / 0.13909774436 \\
& =16.3783783785 \\
\theta & =47880 \times 15.3783783785 \\
& =736316.756763
\end{aligned}
$$

Therefore the probability that the aggregate payment exceeds $\$ 350,000$ is $\left(\frac{1}{1+\frac{35000}{736316.756763}}\right)^{16.3783783785}=0.00171327$.
2. Loss amounts follow a Pareto distribution with $\alpha=4$ and $\theta=120,000$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.47
1	0.11
2	0.27
3	0.15

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above \$200,000. Calculate the expected payment for this excess-of-loss reinsurance.
For one loss, the expected reinsurance payment is given by

$$
\begin{aligned}
\mathbb{E}\left((X-200000)_{+}\right) & =\int_{200000}^{\infty}\left(\frac{1}{1+\frac{x}{120000}}\right)^{4} d x \\
& =120000 \int_{\frac{200000}{120000}+1}^{\infty} u^{-4} d u \\
& =120000\left[-\frac{u^{-3}}{3}\right]_{\frac{5}{3}+1}^{\infty} \\
& =40000\left(\frac{3+5}{3}\right)^{-3} \\
& =40000\left(\frac{3}{8}\right)^{3} \\
& =2109.375
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left((X-a)_{+}\right) & =\int_{a}^{\infty}\left(\frac{1}{1+\frac{x}{\theta}}\right)^{\alpha} d x \\
& =\theta \int_{\frac{a}{\theta}+1}^{\infty} u^{-\alpha} d u \\
& =\theta\left[-\frac{u^{-3}}{3}\right]_{\frac{5}{3}+1}^{\infty} \\
& =\frac{\theta}{\alpha-1}\left(\frac{\theta+a}{\theta}\right)^{1-\alpha} \\
& =\frac{\theta}{\alpha-1}\left(\frac{\theta}{\theta+a}\right)^{\alpha-1} \\
& =\frac{\theta^{\alpha}}{(\alpha-1)(\theta+a)^{\alpha-1}}
\end{aligned}
$$

For two losses, the expected reinsurance payment is given by

$$
\begin{aligned}
& \mathbb{E}\left((X+Y-200000)_{+}\right) \\
& =\mathbb{E}\left(\mathbb{E}\left((Y-(200000-X))_{+} \mid X\right)\right) \\
& =\mathbb{E}_{X<200000}\left(\int_{200000-X}^{\infty}\left(\frac{1}{1+\frac{y}{120000}}\right)^{4} d y\right)+\mathbb{E}_{X \geqslant 200000}(X-200000+\mathbb{E}(y)) \\
& =120000 \mathbb{E}_{X<200000}\left(\left.\int_{\frac{8}{3}-\frac{X}{120000}}^{\infty} u^{-4} d u \right\rvert\, X\right)+2109.375+40000 P(X>200000) \\
& =40000 \mathbb{E}_{X<200000}\left(\left(\frac{8}{3}-\frac{X}{120000}\right)^{-3}\right)+2109.375+40000\left(\frac{120000}{120000+200000}\right)^{4} \\
& =40000 \int_{0}^{200000}\left(\left(\frac{8}{3}-\frac{X}{120000}\right)^{-3}\left(\frac{4 \times 120000^{4}}{(120000+x)^{5}}\right)\right) d x+2109.375+40000\left(\frac{120000}{120000+200000}\right)^{4} \\
& =40000 \int_{0}^{200000} \frac{4 \times 120000^{7}}{(320000-x)^{3}(120000+x)^{5}} d x+2109.375+40000\left(\frac{120000}{120000+200000}\right)^{4}
\end{aligned}
$$

It is possible to solve this analytically using partial fractions

$$
\begin{aligned}
& \mathbb{E}\left((X+Y-a)_{+}\right) \\
= & \mathbb{E}\left(\mathbb{E}\left((Y-(a-X))_{+} \mid X\right)\right) \\
= & \mathbb{E}_{X<a}\left(\int_{a-X}^{\infty}\left(\frac{1}{1+\frac{y}{\theta}}\right)^{\alpha} d y\right)+\mathbb{E}_{X \geqslant a}(X-a+\mathbb{E}(y)) \\
= & \theta \mathbb{E}_{X<a}\left(\left.\int_{\frac{a+\theta}{\theta}-\frac{X}{\theta}}^{\infty} u^{-\alpha} d u \right\rvert\, X\right)+\mathbb{E}\left((X-a)_{+}\right)+\left(\frac{a}{\theta+a}\right)^{\alpha} \frac{\theta}{\alpha-1} \\
= & \frac{\theta}{\alpha-1} \mathbb{E}_{X<a}\left(\left(\frac{\theta}{\theta+a-X}\right)^{\alpha-1}\right)+\frac{\theta^{\alpha}}{(\alpha-1)(\theta+a)^{\alpha-1}}+\left(\frac{a}{\theta+a}\right)^{\alpha} \frac{\theta}{\alpha-1} \\
= & \frac{\theta}{\alpha-1} \int_{0}^{a}\left(\left(\frac{\theta}{\theta+a-x}\right)^{\alpha-1}\left(\frac{\alpha \times \theta^{\alpha}}{(\theta+x)^{\alpha+1}}\right)\right) d x+\frac{\theta^{\alpha}(\theta+a)+\theta a^{\alpha}}{(\alpha-1)(\theta+a)^{\alpha}} \\
= & \frac{\alpha \theta^{2 \alpha}}{\alpha-1} \int_{0}^{a} \frac{1}{(\theta+a-x)^{\alpha-1}(\theta+x)^{\alpha+1}} d x+\frac{\theta^{\alpha}(\theta+a)+\theta a^{\alpha}}{(\alpha-1)(\theta+a)^{\alpha}}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \frac{1}{(a-x)^{3}(b+x)^{5}} \\
&= \frac{1}{(a+b)}\left(\frac{1}{(a-x)^{3}(b+x)^{4}}+\frac{1}{(a-x)^{2}(b+x)^{5}}\right) \\
&= \ldots \\
&= \frac{(a+b)^{-5}}{(a-x)^{3}}+\frac{(a+b)^{-5}}{(a-x)^{2}}\left(\frac{1}{(b+x)}+\frac{a+b}{(b+x)^{2}}+\frac{(a+b)^{2}}{(b+x)^{3}}+\frac{(a+b)^{3}}{(b+x)^{4}}+\frac{(a+b)^{4}}{(b+x)^{5}}\right) \\
&= \frac{(a+b)^{-5}}{(a-x)^{3}}+\frac{5(a+b)^{-6}}{(a-x)^{2}}+\frac{(a+b)^{-6}}{a-x}\left(\frac{5}{(b+x)}+\frac{4(a+b)}{(b+x)^{2}}+\frac{3(a+b)^{2}}{(b+x)^{3}}+\frac{2(a+b)^{3}}{(b+x)^{4}}+\frac{(a+b)^{4}}{(b+x)^{5}}\right) \\
&= \frac{(a+b)^{-5}}{(a-x)^{3}}+\frac{5(a+b)^{-6}}{(a-x)^{2}}+\frac{15(a+b)^{-7}}{a-x}+\frac{15(a+b)^{-7}}{(b+x)}+\frac{10(a+b)^{-6}}{(b+x)^{2}}+\frac{6(a+b)^{-5}}{(b+x)^{3}}+\frac{3(a+b)^{-4}}{(b+x)^{4}} \\
& \quad+\frac{(a+b)^{-3}}{(b+x)^{5}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{0}^{c} \frac{1}{(a-x)^{3}(b+x)} d x \\
&= \sum_{n=1}^{3}\binom{7-n}{4} \int_{0}^{c} \frac{(a+b)^{n-8}}{(a-x)^{n}} d x+\sum_{n=1}^{5}\binom{7-n}{2} \int_{0}^{c} \frac{(a+b)^{n-8}}{(b+x)^{n}} d x \\
&= \sum_{n=2}^{3}\binom{7-n}{4}\left[\frac{(a+b)^{n-8}}{(n-1)(a-x)^{n-1}}\right]_{0}^{c}+\sum_{n=2}^{5}\binom{7-n}{2}\left[-\frac{(a+b)^{n-8}}{(n-1)(b+x)^{n-1}}\right]_{0}^{c} \\
& \quad+15(a+b)^{-7}(\log (a)-\log (a-c))+15(a+b)^{-7}(\log (b+c)-\log (b)) \\
&= \sum_{n=2}^{3}\binom{7-n}{4} \frac{(a+b)^{n-8}}{(n-1)}\left((a-c)^{1-n}-a^{1-n}\right)+\sum_{n=2}^{5}\binom{7-n}{2} \frac{(a+b)^{n-8}}{(n-1)}\left(b^{1-n}-(b+c)^{1-n}\right) \\
& \quad+15(a+b)^{-7} \log \left(\frac{a(b+c)}{b(a-c)}\right) \\
&= \sum_{n=2}^{5} \frac{(a+b)^{n-8}}{(n-1)}\left(\binom{7-n}{4}\left((a-c)^{1-n}-a^{1-n}\right)+\binom{7-n}{2}\left(b^{1-n}-(b+c)^{1-n}\right)\right)+15(a+b)^{-7} \log \left(\frac{a(}{b(}\right.
\end{aligned}
$$

Plugging this into our formula gives

$$
\begin{aligned}
& \int_{0}^{a} \frac{1}{(\theta+a-x)^{3}(\theta+x)^{5}} d x \\
&=\left.\sum_{n=2}^{5} \frac{(2 \theta+a)^{n-8}}{(n-1)}\left(\binom{7-n}{4}\left(\theta^{1-n}-(\theta+a)^{1-n}\right)+\binom{7-n}{2}\left(\theta^{1-n}-(\theta+a)^{1-n}\right)\right)+15(2 \theta+a)^{-7} \log \binom{7-n}{4}+\binom{7-n}{2}\right)\left(\theta^{1-n}-(\theta+a)^{1-n}\right)+15(2 \theta+a)^{-7} \log \left(\frac{(\theta+a)^{2}}{\theta^{2}}\right) \\
&=\sum_{n=2}^{5} \frac{(2 \theta+a)^{n-8}}{(n-1)}\left(\left(\begin{array}{c}
7-n \\
\mathbb{E}\left((X+Y-a)_{+}\right) \\
= \\
\\
\\
\quad \frac{4 \theta^{8}}{3}\left(\sum_{n=2}^{5} \frac{(2 \theta+a)^{n-8}}{(n-1)}\left(\binom{7-n}{4}+\binom{7-n}{2}\right)\left(\theta^{1-n}-(\theta+a)^{1-n}\right)+15(2 \theta+a)^{-7} \log \left(\frac{(\theta+a)^{2}}{\theta^{2}}\right)\right) \\
\quad \\
\quad \frac{4 \theta^{8}}{3(2 \theta+a)^{7}}\left(30 \log \left(\frac{\theta+a}{\theta}\right)+15\left(\frac{2 \theta+a}{\theta}-\frac{2 \theta+a}{\theta+a}\right)+\frac{7}{2}\left(\frac{(2 \theta+a)^{2}}{\theta^{2}}-\frac{(2 \theta+a)^{2}}{(\theta+a)^{2}}\right)\right. \\
\\
\left.\quad+\left(\frac{(2 \theta+a)^{3}}{\theta^{3}}-\frac{(2 \theta+a)^{3}}{(\theta+a)^{3}}\right)+\frac{1}{4}\left(\frac{(2 \theta+a)^{4}}{\theta^{4}}-\frac{(2 \theta+a)^{4}}{(\theta+a)^{4}}\right)\right)+\frac{\theta^{4}(\theta+a)+\theta a^{4}}{3(\theta+a)^{4}}
\end{array}\right.\right.
\end{aligned}
$$

For 3 losses, the expected payment is given by

$$
\begin{aligned}
\mathbb{E}\left((X+Y+Z-a)_{+}\right) & \left.=\mathbb{E}\left(\mathbb{E}(X+Y-(a-Z))_{+}\right) \mid Z\right) \\
& =\int_{0}^{a} \frac{4 \theta^{4}}{(\theta+t)^{5}} \mathbb{E}\left((X+Y-(a-t))_{+}\right) d t+P(Z>a) \mathbb{E}(X+Y)+\mathbb{E}\left((Z-a)_{+}\right)
\end{aligned}
$$

We numerically integrate this to get the expected payment

```
    #Crude numerical integration, h=1.
    #Could use trapezium rule or Simpson's rule for more accuracy.
ft<-4*theta^4/(theta + (0:199999))^5
a<-200000:1
#Simplify algebra
c<-(2*theta+a)/theta
d<-(2*theta+a)/(theta+a)
EXYa<-4*theta^ 8/3/(2*theta+a)^ }7*(30*\operatorname{log}((theta+a)/theta ) + 15*(c-d)#
+3.5*(c^2-d^2)+\mp@subsup{c}{}{\wedge}3-\mp@subsup{d}{}{\wedge}3+(c^4-d^4)/4)#
+(theta^ 4*(theta+a)+theta*a^4)/3/(theta+a)^4
sum}(\textrm{ft}*\textrm{EXYa})+2109.375+(theta/(theta +200000))^ 4* 2* theta / / %
```

This allows us to calculate the following table:

Number of Losses	Probability	Conditional Expected reinsurance payment	Expected reinsurance payment
0	0.47	0	0
1	0.11	2109.375	232.031
2	0.27	11718.52	3164.000
3	0.15	16904.735	2535.710

Thus the total expected payment on the excess-of-loss reinsurance is $232.031+$ $3164.000+2535.710=\$ 5,931.74$.
3. An insurance company models loss frequency as binomial with $n=88$, $p=0.11$, and loss severity as exponential with $\theta=20,000$. Calculate the expected aggregate payments if there is a policy limit of $\$ 80,000$ and a deductible of $\$ 15,000$ applied to each claim.
With a policy limit of $\$ 80,000$ and a deductible of $\$ 15,000$, the expected payment per loss is $20000\left(e^{-\frac{15000}{20000}}-e^{-\frac{95000}{20000}}\right)=9274.29715076$. The expected number of losses is $88 \times 0.11=9.68$. The expected aggregate payment is therefore $9.68 \times 9274.29715076=\$ 89,775.20$.
4. Claim frequency follows a negative binomial distribution with $r=2$ and $\beta=$ 4.1. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.4
2	0.39
3	0.14
4	0.05
5 or more	0.02

Use the recursive method to calculate the exact probability that aggregate claims are at least 5.
Since the negative binomial distribution is from the $(a, b, 0)$ class with $a=\frac{\beta}{1+\beta}=\frac{4.1}{5.1}=0.803921568627$ and $b=\frac{(r-1) \beta}{1+\beta}=0.803921568627$ and the severity distribution is zero-truncated, the recursive formula gives
$f_{S}(n)=\sum_{i=1}^{n}\left(a+\frac{b i}{n}\right) f_{S}(n-i) f_{X}(i)=\sum_{i=1}^{n} 0.803921568627\left(1+\frac{i}{n}\right) f_{S}(n-i) f_{X}(i)$
Since the severity distribution is zero-truncated, the probability that aggregate losses are zero is the probability that there are no losses, which is $f_{S}(0)=\left(\frac{1}{1+\beta}\right)^{r}=\frac{1}{5.1^{2}}=0.0384467512495$. Applying the recurrence
relation gives

$$
\begin{aligned}
& f_{S}(1)= 0.80392 \times 2 \times 0.038447 \times 0.4=0.0247265380585 \\
& f_{S}(2)= 0.80392\left(\frac{3}{2} \times 0.024727 \times 0.4+2 \times 0.038447 \times 0.39\right)=0.0360352929646 \\
& f_{S}(3)= 0.80392\left(\frac{4}{3} \times 0.036035 \times 0.4+\frac{5}{3} \times 0.024727 \times 0.39+2 \times 0.038447 \times 0.14\right)=0.0370255428058 \\
& f_{S}(4)=0.80392\left(\frac{5}{4} \times 0.037026 \times 0.4+\frac{3}{2} \times 0.036035 \times 0.39+\frac{7}{4} \times 0.024727 \times 0.14\right. \\
&\quad+2 \times 0.038447 \times 0.05)=0.0397909781215
\end{aligned}
$$

Therefore, the probability that the aggregate loss is at least 5 is $1-$ $0.0397909781215-0.0370255428058-0.0360352929646-0.0247265380585-$ $0.0384467512495=0.823974896801$.
5. Use an arithmetic distribution $(h=1)$ to approximate a Pareto distribution with $\alpha=4$ and $\theta=60$.
(a) Using the method of rounding, calculate the mean of the arithmetic approximation. [You can evaluate this numerically: use 10,000 terms in the sum.]
Let X be the Pareto distribution and let Y be the arithmetic approximation. We have that

$$
P(Y \geqslant i)=P\left(X \geqslant i-\frac{1}{2}\right)=\left(\frac{1}{1+\frac{i-\frac{1}{2}}{60}}\right)^{4}
$$

The mean of the arithmetic approximation is therefore given by

$$
\sum_{i=1}^{\infty}\left(\frac{120}{119+2 i}\right)^{4}
$$

Numerically, we evaluate this as 19.99722 .
(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 18.5.
We have that $P(0 \leqslant Y \leqslant 17.5)=P(0 \leqslant X \leqslant 17.5)=1-\left(\frac{60}{77.5}\right)^{4}=$ 0.640748829751 . We need to calculate $P(Y=18)$. We have that

$$
\begin{aligned}
p_{18}+p_{19} & =P(17.5<Y<19.5)=\left(\frac{60}{77.5}\right)^{4}-\left(\frac{60}{79.5}\right)^{4} \\
& =0.034809605787 \\
18 p_{18}+19 p_{19} & =\int_{17.5}^{19.5} x \frac{\alpha \theta^{\alpha}}{(\theta+x)^{\alpha+1}} d x \\
& =4 \times 60^{4} \int_{77.5}^{79.5}(u-60) u^{-5} d x \\
& =4 \times 60^{4}\left[15 u^{-4}-\frac{u^{-3}}{3}\right]_{77.5}^{79.5} \\
& =4 \times 60^{4}\left(\frac{15}{79.5^{4}}-\frac{15}{77.5^{4}}+\frac{1}{3 \times 77.5^{3}}-\frac{1}{3 \times 79.5^{3}}\right) \\
& =0.643238745556 \\
p_{18} & =19 \times 0.034809605787-0.643238745556 \\
& =0.018143764397
\end{aligned}
$$

So the probability that $Y>18.5$ is $0.359251170249-0.018143764397=$ 0.341107405852 .

Standard Questions

6. The number of claims an insurance company receives follows a negative binomial distribution with $r=64$ and $\beta=37$. Claim severity follows a negative binomial distribution with $r=14$ and $\beta=1.4$. Calculate the probability that aggregate losses exceed \$32,000.
(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate the recurrence up to $f_{s}(60,000)$.]
The frequency distribution is from the ($a, b, 0$) class with $a=\frac{\beta}{\beta+1}=\frac{37}{38}$ and $b=\frac{(r-1) \beta}{\beta+1}=\frac{2331}{38}$. The recurrence is
$f_{s}(n)=\frac{\sum_{i=1}^{n} \frac{37}{38}\left(1+\frac{63 i}{n}\right) f_{X}(i) f_{S}(n-i)}{1-\frac{37}{38} \times \frac{1}{2.4^{14}}}=\frac{\sum_{i=1}^{n}\left(1+\frac{63 i}{n}\right) f_{X}(i) f_{S}(n-i)}{\frac{38}{37}-\frac{1}{2.4^{14}}}$
The mean of the aggregate loss distribution is $64 \times 37 \times 14 \times 1.4=$ 46412.8 and the variance is $64 \times 37 \times 14 \times 1.4 \times 2.4+64 \times 37 \times 38 \times$ $(14 \times 1.4)^{2}=34679644.16$ so 6 standard deviations below the mean is $46412.8-6 \sqrt{34679644.16}=11079.1448004$. We will therefore start the recurrence at $n=11079$.
```
maxf<-100000
f<-rep (0,maxf)
start<-11079
f[start]<-1
#Calculate severity distribution once, not inside the loop.
fX<-choose(((1:maxf) +13,13)*(7/12)^(1:maxf )*(5/12)^14
#the denominator in the recurrence is also constant.
denominator <-(38/37-1/2.4^14)
for(i in seq_len(maxf-start)){
    x<-i+start
    f[x]=\operatorname{sum}((1+63*(1:i)/x)*f[x-(1:i)]*fX[1:i])/denominator
    #Vector operations are faster in R than loops
}
```

We then standardise f by dividing by its sum and evaluate the probability:
$\mathrm{f}<-\mathrm{f} / \operatorname{sum}(\mathrm{f})$
$\operatorname{sum}(\mathrm{f}[32001: \operatorname{maxf}])$
This gives the value $P(X>32000)=0.9966465$.
(b) Using a suitable convolution.

This distribution is given as a sum of 8 i.i.d. random variables whose distribution is an aggregate loss distribution with frequency following a negative binomial distribution with $r=8$ and $\beta=37$ and severity following a negative binomial distribution with $r=14$ and $\beta=1$.4. For this aggregate loss distibution, we calculate $f(0)=P_{S}(0)=P_{F}\left(P_{X}(0)\right)=$ $P_{F}\left(f_{X}(0)\right)=\left(1+\beta-\beta f_{X}(0)\right)^{-r}=\left(1+37-\frac{37}{2.4^{14}}\right)^{-8}$. The recurrence is given by
$f_{s}(n)=\frac{\sum_{i=1}^{n} \frac{37}{38}\left(1+\frac{7 i}{n}\right) f_{X}(i) f_{S}(n-i)}{1-\frac{37}{38} \times \frac{1}{2.4^{14}}}=\frac{\sum_{i=1}^{n}\left(1+\frac{7 i}{n}\right) f_{X}(i) f_{S}(n-i)}{\frac{38}{37}-\frac{1}{2.4^{14}}}$
We use this to compute the distribution of this reduced loss

```
    \(\mathrm{g}<-\mathrm{rep}(0,20001)\)
\(\mathrm{g}[1]=\left(1+37-37 /\left(2.4^{\wedge} 14\right)\right)^{\wedge}(-8)\)
\(\mathrm{fX}<-\operatorname{choose}((1: 50000)+13,13) *(7 / 12)^{\wedge}(1: 50000) *(5 / 12)^{\wedge} 14\)
for \((x\) in 2:20001)\{
    \(y<-\) seq-len \((x-1)\)
    temp<-sum \(((1+7 * y /(x-1)) * f X[y] * g[x-y])\)
    \(\mathrm{g}[\mathrm{x}]<-\operatorname{temp} /\left(38 / 37-2.4^{\wedge}(-14)\right)\)
\}
```

Having computed $f_{S}(x)$ for $x=0, \ldots, 20000$, we convolve this with itself 3 times to get the aggregate loss distribution

```
    ConvolveSelf<-function(n){
    l<-length(n)
    convolution<-vector("numeric",2*l)
    for(i in seq_len(l)){
        convolution[i]<-sum(n[1:i]*n[i:1])
    }
    for(i in 1:(length(n))){
        convolution [2*l+1-i]<-sum(n[l+1-(1:i)]*n[l+1-(i:1)])
    }
    return(convolution)
}
g2<-ConvolveSelf(g)
g4<-ConvolveSelf(g2)
g8<-ConvolveSelf(g4)
1-sum(g8[1:32001])
```

This gives the probability value 0.9966465 .

