ACSC/STAT 4703, Actuarial Models II

Fall 2020

Toby Kenney
Homework Sheet 4
Model Solutions

Basic Questions

1. An insurance company sells insurance. It estimates that the standard deviation of the aggregate annual claim is $\$ 4,521$ and the mean is $\$ 1,020$.
(a) How many years history are needed for an individual or group to be assigned full credibility? (Use $r=0.05, p=0.90$.)
The variance is and individual's mean aggregate claim over n years is $\frac{4521^{2}}{n}$. For an individual with average claims, the coefficient of variation is $\frac{7521}{1020 \sqrt{n}}$. We want the relative error to have absolute value less than 0.05 with probability 0.90 . That is, we want

$$
\begin{aligned}
\Phi\left(\frac{0.05 \times 1020 \sqrt{n}}{4521}\right) & =0.95 \\
\frac{0.05 \times 1020 \sqrt{n}}{4521} & =1.644854 \\
n & =\left(\frac{1.644854 \times 4521}{0.05 \times 1020}\right)^{2} \\
& =21260.9845777
\end{aligned}
$$

so 21,261 years are needed for full credibility.
The standard premium for this policy is $\$ 1,020$. A company has claimed a total of \$8,072 in the last 23 years.
(b) What is the Credibility premium for this company, using limited fluctuation credibility?

Using limited fluctuation credibility, the credibility of this company's experience is $Z=\sqrt{\frac{23}{21260.9845777}}=0.0328906329971$. Thus, the credibility premium is $0.0328906329971 \times \frac{8072}{23}+0.967109367003 \times 1020=\$ 997.99$.
2. A home insurance company classifies houses as high, medium or low risk. Annual claims from high risk houses follow a Gamma distribution with $\alpha=4$ and $\theta=5000$. Annual claims from medium risk houses follow a Gamma distribution with $\alpha=8$ and $\theta=1400$. Annual claims from low risk houses follow a Gamma with $\alpha=14$ and $\theta=600$. 15% of houses are high risk, 65% are medium risk and 20% are low risk.
(a) Calculate the expectation and variance of the aggregate annual claims from a randomly chosen house.

Risk	Probability	Expected Claims	Variance of claims
High	0.15	20,000	$100,000,000$
Medium	0.65	11,200	$15,680,000$
Low	0.20	8,400	$5,040,000$

Thus the overall expected claim is $20000 \times 0.15+11200 \times 0.65+8400 \times 0.2=$ $\$ 11,960$ and the variance is

$$
\begin{aligned}
& 100000000 \times 0.15+15680000 \times 0.65+5040000 \times 0.20 \\
& \quad+0.15(20000-11960)^{2}+0.65(11200-11960)^{2}+0.20(8400-11960)^{2} \\
& \quad=38806400
\end{aligned}
$$

(b) Given that a homeowner's annual claims over the past 4 years are $\$ 4,000, \$ 250$ and $\$ 1,100$, what are the expectation and variance of the homeowners‘ claims next year?

The likelihood of these claims for a high-risk home is

$$
\frac{4000^{3} e^{-\frac{4000}{5000}} 250^{3} e^{-\frac{250}{5000}} 1100^{3} e^{-\frac{1100}{5000}}}{5000^{12} \Gamma(4)^{3}}=8.65743334751 \times 10^{-21}
$$

For a medium risk home, the likelihood is

$$
\frac{4000^{7} e^{-\frac{4000}{1400}} 250^{7} e^{-\frac{250}{1400}} 1100^{7} e^{-\frac{1100}{1400}}}{1400^{24} \Gamma(8)^{3}}=1.03695280072 \times 10^{-25}
$$

For a low risk home, the likelihood is

$$
\frac{4000^{13} e^{-\frac{4000}{600}} 250^{13} e^{-\frac{250}{600}} 1100^{13} e^{-\frac{1100}{600}}}{600^{42} \Gamma(14)^{3}}=3.98522009444 \times 10^{-33}
$$

The overall likelihood of these claims is therefore

$$
3.985220 \times 10^{-33} \times 0.2+1.036953 \times 10^{-25} \times 0.65+8.657433 \times 10^{-21} \times 0.15=1.29868240406 \times 10^{-21}
$$

Therefore, the posterior probabilities of the three classes are

$$
\begin{aligned}
& \frac{8.65743334751 \times 10^{-21} \times 0.15}{1.29868240406 \times 10^{-21}}=0.999948099759 \\
& \frac{1.03695280072 \times 10^{-25} \times 0.65}{1.29868240406 \times 10^{-21}}=5.19002427661 \times 10^{-5} \\
& \frac{3.98522009444 \times 10^{-33} \times 0.2}{1.29868240406 \times 10^{-21}}=6.13732823665 \times 10^{-13}
\end{aligned}
$$

Thus the posterior mean and variance are
$20000 \times 0.999948099759+11200 \times 5.19002427661 \times 10^{-5}+8400 \times 6.13732823665 \times$
$10^{-13}=19999.5432779$ and the variance is

$$
\begin{aligned}
& 100000000 \times 0.999948+15680000 \times 5.190024 \times 10^{-5}+5040000 \times 6.137328 \times 10^{-13} \\
& +0.9999(20000-19999.5)^{2}+5.1900 \times 10^{-5}(11200-19999.5)^{2}+6.1373 \times 10^{-13}(8400-19999.5)^{2} \\
& =99999642.718
\end{aligned}
$$

Standard Questions

3. For a certain insurance policy, the book premium is based on average claim frequency of 4.9 claims per year, and average claim severity of \$4,200. The standard for full credibility is 50 policy years for claim frequency and 230 claims for severity. The insurance company wants to change the standard for full credibility to a single standard (in terms of policy years) for aggregate claims. A particular group has 100 claims for a total of \$282,000, in ${ }^{27}$ policy years of history. The insurance company wants the new standard to give the same premium for this group. What should the new standard $b e$?
In the current standard, the credibility for claim frequency is $Z=\sqrt{\frac{27}{50}}=$ 0.734846922835 and for severity is $\sqrt{\frac{100}{230}}=0.659380473396$. Therefore the credibility estimate for frequency is $0.734846922835 \times \frac{100}{27}+0.265153077165 \times$ $4.9=4.02090534787$ and for severity is $0.659380473396 \times 2820+0.340619526604 \times$ $4200=3290.05494672$. Therefore the current credibility premium is $4.02090534787 \times 3290.05494672=13228.9995301$. For credibility $Z=$ $\sqrt{\frac{27}{n_{0}}}$, the premium is $\frac{282000}{27} Z+4.9 \times 4200(1-Z)$. Setting this equal to
13228.9995301 gives

$$
\begin{aligned}
\frac{282000}{27} Z+4.9 \times 4200(1-Z) & =13228.9995301 \\
20580-10135.5555556 Z & =13228.9995301 \\
Z & =\frac{7351.0004699}{10135.5555556} \\
& =0.72526862781 \\
\sqrt{\frac{27}{n_{0}}} & =0.72526862781 \\
\frac{27}{n_{0}} & =0.526014582485 \\
n_{0} & =\frac{27}{0.526014582485} \\
& =51.3293754566
\end{aligned}
$$

So they should set the new standard for full credibility to 51.3293754566 policy years in order to get the same premium.
4. Aggregate claims for an individual are believed to follow a gamma distribution with $\alpha=0.8$ and Θ varying between individuals. For a randomly chosen individual, Θ follows an inverse gamma distribution with $\alpha=3$ and $\theta=2000$. The insurance company uses limited fluctuation credibility with $r=0.05$ and $p=0.95$ to determine an individual's premium. If an individual has 6 years of past history, for what value of total claims during these 6 years would the limited fluctuation credibility premium equal the fair premium (using the Bayesian method)?
For an individual with claims x_{1}, \ldots, x_{6}, the likelihood of these claims is

$$
\frac{\left(x_{1} \cdots x_{6}\right)^{\alpha-1} e^{-\frac{x_{1}+\cdots+x_{6}}{\theta}}}{\theta^{6 \alpha} \Gamma(\alpha)^{6}}=\left(\frac{\left(x_{1} \cdots x_{6}\right)^{\alpha-1}}{\Gamma(\alpha)^{6}}\right) \theta^{-6 \alpha} e^{-\frac{x_{1}+\cdots+x_{6}}{\theta}}
$$

The posterior distribution of θ is therefore given by

$$
f_{\Theta \mid X}(\theta)=\frac{\theta^{-4} e^{-\frac{2000}{\theta}} \theta^{-4.8} e^{-\frac{x_{1}+\cdots+x_{6}}{\theta}}}{\int_{0}^{\infty} \theta^{-8.8} e^{-\frac{2000}{\theta}} e^{-\frac{x_{1}+\cdots+x_{6}}{\theta}} d \theta}
$$

This is an inverse gamma distribution with $\alpha=7.8$ and $\theta=2000+x_{1}+$ $\cdots+x_{6}$. The marginal expected aggregate claims is $0.8 \mathbb{E}(\Theta)$. For this inverse gamma distribution, we have $\mathbb{E}(\Theta)=\frac{2000+x_{1}+\cdots+x_{6}}{7.8-1}$. Therefore the fair premium is $\frac{0.8}{6.8}\left(2000+x_{1}+\cdots+x_{6}\right)$.
For a particular individual, the coefficient of variation is

$$
\frac{\sqrt{\alpha \Theta^{2}}}{\alpha \Theta}=\alpha^{-\frac{1}{2}}=0.8^{-\frac{1}{2}}=1.11803398875
$$

Therefore, the standard for full credibility is obtained by solving

$$
\begin{aligned}
\frac{0.05 \sqrt{n_{0}}}{1.11803398875} & =1.959964 \\
n_{0} & =\frac{1.959964^{2}}{0.05^{2} \times 0.8} \\
& =1920.72944065
\end{aligned}
$$

The book premium is $0.8 \times \frac{2000}{3-1}=800$. Thus the credibility premium is $\sqrt{\frac{6}{1920.72944065}} \frac{x_{1}+\cdots+x_{6}}{6}+\left(1-\sqrt{\frac{6}{1920.72944065}}\right) 800$. Therefore, in order for the credibility premium to equal the fair premium, we must have

$$
\begin{aligned}
\sqrt{\frac{6}{1920.72944065}} \frac{x_{1}+\cdots+x_{6}}{6}+\left(1-\sqrt{\frac{6}{1920.72944065}}\right) 800 & =\frac{0.8}{6.8}\left(2000+x_{1}+\cdots+x_{6}\right) \\
0.108331878247\left(x_{1}+\cdots+x_{6}\right) & =519.993015586 \\
x_{1}+\cdots+x_{6} & =4800
\end{aligned}
$$

5. An insurance company has 4 years of past history on a marine insurance policy, denoted $X_{1}, X_{2}, X_{3}, X_{4}$. It uses a formula $\hat{X}_{5}=\alpha_{0}+\alpha_{1} X_{1}+$ $\alpha_{2} X_{2}+\alpha_{3} X_{3}+\alpha_{4} X_{4}$ to calculate the credibility premium in the fifth year. It has the following information on the policy:

- In Year 1, the expected aggregate claim was \$32,000.
- Expected aggregate claims increase by 4% per year.
- The coefficient of variation of the aggregate claims is 0.8 in every year.
- The correlation (recall $\left.\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}\right)$ between aggregate claims in years i and j is $e^{-\frac{|i-j|}{2}}$ for all $i \neq j$.

Find a set of equations which can determine the values of $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4}. [You do not need to solve these equations.]
We have $\mathbb{E}\left(X_{i}\right)=32000(1.04)^{i-1}$ and $\operatorname{Var}\left(X_{i}\right)=0.8^{2} \times 32000^{2}(1.04)^{2(i-1)}=$ $655360000(1.04)^{2(i-1)}$. Finally, for $i \neq j$ we get

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, X_{j}\right) & =e^{-\frac{|i-j|}{2}} \sqrt{655360000(1.04)^{2(i-1)} \times 655360000(1.04)^{2(j-1)}} \\
& =e^{-\frac{|i-j|}{2}} 655360000(1.04)^{i+j-2}
\end{aligned}
$$

Recall that the greatest accuracy credibility equations give us

$$
\begin{aligned}
\mathbb{E}\left(X_{5}\right) & =\alpha_{0}+\alpha_{1} \mathbb{E}\left(X_{1}\right)+\alpha_{2} \mathbb{E}\left(X_{2}\right)+\alpha_{3} \mathbb{E}\left(X_{3}\right)+\alpha_{4} \mathbb{E}\left(X_{4}\right) \\
\operatorname{Cov}\left(X_{5}, X_{i}\right) & =\alpha_{1} \operatorname{Cov}\left(X_{1}, X_{i}\right)+\alpha_{2} \operatorname{Cov}\left(X_{2}, X_{i}\right)+\alpha_{3} \operatorname{Cov}\left(X_{3}, X_{i}\right)+\alpha_{4} \operatorname{Cov}\left(X_{4}, X_{i}\right)
\end{aligned}
$$

Substituting the values we have gives

$$
\begin{aligned}
32000(1.04)^{4} & =\alpha_{0}+32000 \alpha_{1}+32000(1.04)^{1} \alpha_{2}+32000(1.04)^{2} \alpha_{3}+32000(1.04)^{3} \alpha_{4} \\
e^{-2} 25600^{2}(1.04)^{4} & =25600^{2} \alpha_{1}+e^{-0.5} 25600^{2}(1.04) \alpha_{2}+e^{-1} 25600^{2}(1.04)^{2} \alpha_{3}+e^{-1.5} 25600^{2}(1.04)^{3} \alpha_{4} \\
e^{-1.5} 25600^{2}(1.04)^{5} & =e^{-0.5} 25600^{2}(1.04) \alpha_{1}+25600^{2}(1.04)^{2} \alpha_{2}+e^{-0.5} 25600^{2}(1.04)^{3} \alpha_{3}+e^{-1} 25600^{2}(1.04)^{4} \alpha_{4} \\
e^{-1} 25600^{2}(1.04)^{6} & =e^{-1} 25600^{2}(1.04)^{2} \alpha_{1}+e^{-0.5} 25600^{2}(1.04)^{3} \alpha_{2}+25600^{2}(1.04)^{4} \alpha_{3}+e^{-0.5} 25600^{2}(1.04)^{5} \alpha_{4} \\
e^{-0.5} 25600^{2}(1.04)^{7} & =e^{-1.5} 25600^{2}(1.04)^{3} \alpha_{1}+e^{-1} 25600^{2}(1.04)^{4} \alpha_{2}+e^{-0.5} 25600^{2}(1.04)^{5} \alpha_{3}+25600^{2}(1.04)^{6} \alpha_{4}
\end{aligned}
$$

[We can simplify and solve these equations reasonably straightforwardly:

$$
\begin{aligned}
& 1=\frac{\alpha_{0}}{32000(1.04)^{4}}+(1.04)^{-4} \alpha_{1}+(1.04)^{-3} \alpha_{2}+(1.04)^{-2} \alpha_{3}+(1.04)^{-1} \alpha_{4} \\
& 1=e^{2}(1.04)^{-4} \alpha_{1}+e^{1.5}(1.04)^{-3} \alpha_{2}+e^{1}(1.04)^{-2} \alpha_{3}+e^{0.5}(1.04)^{-1} \alpha_{4} \\
& 1=e^{1}(1.04)^{-4} \alpha_{1}+e^{1.5}(1.04)^{-3} \alpha_{2}+e^{1}(1.04)^{-2} \alpha_{3}+e^{0.5}(1.04)^{-1} \alpha_{4} \\
& 1=(1.04)^{-4} \alpha_{1}+e^{0.5}(1.04)^{-3} \alpha_{2}+e^{1}(1.04)^{-2} \alpha_{3}+e^{0.5}(1.04)^{-1} \alpha_{4} \\
& 1=e^{-1}(1.04)^{-4} \alpha_{1}+e^{-0.5}(1.04)^{-3} \alpha_{2}+(1.04)^{-2} \alpha_{3}+e^{0.5}(1.04)^{-1} \alpha_{4}
\end{aligned}
$$

Letting $\beta_{i}=\alpha_{i}(1.04)^{i-5}$ and $\gamma_{i}=\beta_{i} e^{\frac{5-i}{2}}$ these become

$$
\begin{aligned}
& 1=\frac{\alpha_{0}(1.04)^{-4}}{32000}+\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4} \\
& 1=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4} \\
& 1=e^{-1} \gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4} \\
& 1=e^{-2} \gamma_{1}+e^{-1} \gamma_{2}+\gamma_{3}+\gamma_{4} \\
& 1=e^{-3} \gamma_{1}+e^{-2} \gamma_{2}+e^{-1} \gamma_{3}+\gamma_{4}
\end{aligned}
$$

which is easy to solve as $\gamma_{1}=\gamma_{2}=\gamma_{3}=0, \gamma_{4}=1$, so $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$, $\alpha_{4}=e^{-0.5}(1.04)$, and $\alpha_{0}=32000\left(1-e^{-0.5}\right)(1.04)^{5}$.
]

