ACSC/STAT 4703, Actuarial Models II

FALL 2022
Toby Kenney
Homework Sheet 1
Due: Tuesday 27th September: 17:30

Basic Questions

1. Aggregate payments have a compound distribution. The frequency distribution is negative binomial with $r=3$ and $\beta=0.5$. The severity distribution is gamma with shape $\alpha=2.3$ and scale $\theta=400$. Use a gamma approximation to aggregate payments to estimate the probability that aggregate payments are more than 4,000 .
2. Loss amounts follow a gamma distribution with shape $\alpha=1.3$ and scale $\theta=1500$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.930
1	0.024
2	0.015
3	0.031

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above $\$ 5,000$. Calculate the expected payment for this excess-of-loss reinsurance.
3. Claim frequency follows a negative binomial distribution with $r=4.8$ and $\beta=1.2$. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.24
2	0.30
3	0.26
4 or more	0.20

Use the recursive method to calculate the exact probability that aggregate claims are at least $\$ 4,000$.
4. Use an arithmetic distribution $(h=1)$ to approximate a Pareto distribution distribution with shape $\alpha=3.5$ and scale $\theta=6.6$.
(a) Using the method of rounding, calculate the mean of the arithmetic approximation. [You can evaluate this numerically: use 5,000 terms in the sum.]
(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 3.5.

Standard Questions

5. An insurance company models loss frequency as negative binomial with $r=3$ and unknown β, and loss severity as gamma with shape $\alpha=0.6$ and scale $\theta=2400$. There is a per-loss deductable of $\$ 500$ for the policy.
A reinsurance company models aggregate losses using a Pareto distribution with parameters fitted using the method of moments. Using this model, they calculate the cost of stop-loss reinsurance with attachment point $\$ 10,000$ and loading of 20% as $\$ 4,000$. What is the value of β ?
[You should get an equation for β, which can easily be solved by a gridsearch (calculating a large number of values to find the correct one).]
(b)
6. The number of claims an insurance company receives follows a negative binomial distribution with $r=68$ and $\beta=1.6$. Claim severity follows a negative binomial distribution with $r=7.2$ and $\beta=12$. Calculate the probability that aggregate losses exceed $\$ 12,000$.
(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate 15,000 terms of the recurrence for f_{s}.]
(b) Using a suitable convolution.
