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Homework Sheet 2

Model Solutions

Basic Questions

1. An insurance company has the following portfolio of liability insurance
policies:

Type of product Number Probability mean claim standard deviation
of claim (millions) (millions)

Electrical 2,800 0.00125 $1.3 $33.1
Health 4,300 0.00374 $2.2 $21.6
Other 3,700 0.00072 $0.8 $24.5

They model aggregate losses using a Pareto distribution. Calculate the
cost of reinsuring losses above $10,000,000, if there is a 30% loading on
the reinsurance premium.

We calculate the mean and variance of the aggregate loss:

Type of product E(N) Var(N) mean aggregate loss var aggregate loss
of claim (millions) (trillions)

Electrical 3.500 3.495625 4.55 3840.542606253840.4760625
Health 16.082 16.02185332 35.3804 7580.763690077578.14370069
Other 2.664 2.66208192 2.1312 1600.769732431600.75868429
Total 42.0616 13022.0760287

Using a Pareto approximation, the method of moments gives the following
parameters (with θ in millions):

θ

α− 1
= 42.0616

θ2α

(α− 1)2(α− 2)
= 13022.076028713019.3784475

α− 2

α
=

42.06162

13022.0760287
= 0.135859919007

α =
2

1− 0.135859919007
= 2.31443957292

θ = 42.0616× 1.31443957292 = 55.2874315403
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The expected reinsurance payment in millions is therefore

∫ ∞
10

(
55.2874315403

55.2874315403 + x

)2.31443957292

dx =

∫ ∞
10+55.2874315403

55.28743154032.31443957292u−2.31443957292 du

= 55.28743154032.31443957292
[
−u
−1.31443957292

1.31443957292

]∞
65.2874315403

=
55.28743154032.31443957292

1.31443957292(65.2874315403)1.31443957292

= 33.8048557108

With a 30% loading The premium is therefore 33, 804, 855.7108 × 1.3 =
$43, 946, 312.42.

2. An insurance company is modelling claim data as following a Weibull dis-
tribution with τ = 0.4. It collects the following sample of claims:

0.1 0.2 0.2 0.4 0.4 0.8 0.8 1.1 1.5 1.5 1.8 2.5 3.2

3.3 3.4 4.1 4.8 5.1 10.7 20.1 25.3 26.1 36.2 45.8 48.7

50.5 56.3 75.6 81.5 81.5 81.6 108.2 170.8 186.9 345.9

356.0 412.7 523.1 1439.0 1998.8

X<- c( 0.1, 0.2, 0.2, 0.4, 0.4, 0.8, 0.8, 1.1, 1.5, 1.5

1.8, 2.5, 3.2, 3.3, 3.4, 4.1, 4.8, 5.1, 10.7, 20.1

25.3, 26.1, 36.2, 45.8, 48.7, 50.5, 56.3, 75.6, 81.5, 81.5

81.6,108.2,170.8,186.9,345.9,356.0,412.7,523.1,1439.0,1998.8)

The MLE for θ is 4.657714. Graphically compare this empirical distribu-
tion with the best Weibull distribution with τ = 0.4. Include the following
plots:

(a) Comparisons of F (x) and F ∗(x)

x<−(0:100000)/50 # The sample i s s l i g h t l y heavy−t a i l l e d . We could r e s t r i c t the range to exc lude a few observed po in t s .
theta <−4.657714
tau<−0.4
FnX<−rowMeans ( x%∗%t ( rep (1 ,40))> rep (1 ,100001)%∗% t (HW2Q2) )
p l o t (x ,FnX, type=’ l ’ , x lab=”x ” , ylab=”F( x )” )
FX<−1−exp(−(x/ theta )ˆ tau )
po in t s (x ,FX, type=’ l ’ , c o l=”red ”)
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(b) Comparisons of f(x) and f∗(x)

fx<−tau∗x ˆ( tau −1)/ theta ˆ tau∗exp(−(x/ theta )ˆ tau )

h i s t (HW2Q2, p r o b a b i l i t y=TRUE, breaks=c (0 , 1 , 5 , 50 , 200 ,2000) , xl im=c (0 , 200 ) )
#These breaks produce a f a i r l y smooth curve . Other c h o i c e s are p o s s i b l e .

# I ’ ve l i m i t e d the p l o t to 0−200 to b e t t e r show the r e s u l t s .
po in t s (x , fx , type=’ l ’ , c o l=”red ”)

Histogram of HW2Q2
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(c) A plot of D(x) against x.

p lo t (x ,FX−FnX, type=’ l ’ , x lab=”x ” , ylab=”D( x )”)
a b l i n e (h=0)
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(d) A p-p plot of F (x) against F ∗(x).

p lo t (FnX,FX, type=’ l ’ , x lab=expr e s s i on (F [ n ] ( x ) ) , y lab=”F∗( x )” , ylim=c ( 0 , 1 ) )
a b l i n e (0 , 1 )
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3. For the data in Question 2, calculate the following test statistics for the
goodness of fit of the Weibull distribution with τ = 0.4 and θ = 4.657714:

(a) The Kolmogorov-Smirnov test.
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X Fn(X−) Fn(X+) F ∗(X) −D(X−) D(X+)
0.1 0.000 0.025 0.1935753 0.19357535 −0.1781425
0.2 0.025 0.050 0.2471470 0.22214699 −0.1971470
0.2 0.050 0.075 0.2471470 0.19714699 −0.1721470
0.4 0.075 0.100 0.3124281 0.23742810 −0.2124281
0.4 0.100 0.125 0.3124281 0.21242810 −0.1874281
0.8 0.125 0.150 0.3899858 0.26498576 −0.2399858
0.8 0.150 0.175 0.3899858 0.23998576 −0.2149858
1.1 0.175 0.200 0.4296015 0.25460153 −0.2296015
1.5 0.200 0.225 0.4703696 0.27036958 −0.2453696
1.5 0.225 0.250 0.4703696 0.24536958 −0.2203696
1.8 0.250 0.275 0.4952336 0.24523360 −0.2202336
2.5 0.275 0.300 0.5414394 0.26643944 −0.2414394
3.2 0.300 0.325 0.5770830 0.27708296 −0.2520830
3.3 0.325 0.350 0.5815665 0.25656649 −0.2315665
3.4 0.350 0.375 0.5859230 0.23592296 −0.2109230
4.1 0.375 0.400 0.6133612 0.23836118 −0.2133612
4.8 0.400 0.425 0.6365484 0.23654842 −0.2115484
5.1 0.425 0.450 0.6454666 0.22046659 −0.1954666

10.7 0.450 0.475 0.7520955 0.30209546 −0.2770955
20.1 0.475 0.500 0.8338347 0.35883467 −0.3338347
25.3 0.500 0.525 0.8602348 0.36023481 −0.3352348
26.1 0.525 0.550 0.8636388 0.33863885 −0.3136388
36.2 0.550 0.575 0.8967896 0.34678955 −0.3217896
45.8 0.575 0.600 0.9175066 0.34250664 −0.3175066
48.7 0.600 0.625 0.9224684 0.32246835 −0.2974684
50.5 0.625 0.650 0.9253140 0.30031400 −0.2753140
56.3 0.650 0.675 0.9334486 0.28344864 −0.2584486
75.6 0.675 0.700 0.9525878 0.27758776 −0.2525878
81.5 0.700 0.725 0.9567998 0.25679985 −0.2317998
81.5 0.725 0.750 0.9567998 0.23179985 −0.2067998
81.6 0.750 0.775 0.9568664 0.20686639 −0.1818664

108.2 0.775 0.800 0.9703716 0.19537155 −0.1703716
170.8 0.800 0.825 0.9853603 0.18536033 −0.1603603
186.9 0.825 0.850 0.9874621 0.16246207 −0.1374621
345.9 0.850 0.875 0.9963080 0.14630800 −0.1213080
356.0 0.875 0.900 0.9965399 0.12153986 −0.09653986
412.7 0.900 0.925 0.9975497 0.09754965 −0.07254965
523.1 0.925 0.950 0.9986524 0.07365242 −0.04865242

1439.0 0.950 0.975 0.9999502 0.04995019 −0.02495019
1998.8 0.975 1.000 0.9999876 0.02498761 0.00001239

so the Kolmogorov-Smirnov statistic is 0.36023481

(b) The Anderson-Darling test.

The Anderson-Darling statisic is given by
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A2 = −n+ n

k∑
j=0

(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1)))

+ n

k∑
j=0

(Fn(yj))
2 (log(F ∗(yj+1))− log(F ∗(yj)))

We calculate this for our data set

Asq<−40∗(sum ( ( ( 4 0 : 1 ) / 4 0 ) ˆ 2∗ ( c (0 ,( −(HW2Q2[ 1 : 3 9 ] / theta )ˆ tau ) )
−(−(HW2Q2/ theta )ˆ tau )))+
sum ( ( ( 1 : 4 0 ) / 4 0 ) ˆ 2∗ ( c ( l og (1−exp(−(HW2Q2[ 2 : 4 0 ] / theta )ˆ tau )) ,0) − l og (1−exp(−(HW2Q2/ theta )ˆ tau )))) −1)

This gives the Anderson-Darling statistic as 17.37052

(c) The chi-square test, dividing into the intervals 0–1,1–5,5–50 and more
than 50.

We have the following table:

Interval O E (O−E)2

E

[0, 1) 7 40×
(
1− exp

(
−4.657714−0.4

))
= 16.6998423561 (7−16.6998423561)2

16.6998423561 = 5.63400179037

[1, 5) 10 40×
(

exp
(
−4.657714−0.4

)
− exp

(
−
(

5
4.657714

)0.4))
= 9.00232342856 (10−9.00232342856)2

9.00232342856 = 0.110566849669

[5, 50) 8 40×
(

exp
(
−
(

5
4.657714

)0.4)− exp
(
−
(

50
4.657714

)0.4))
= 11.2794472265 (8−11.2794472265)2

11.2794472265 = 0.953484146469

[50,∞) 15 40× exp
(
−
(

50
4.657714

)0.4)
= 3.0183869889 (15−3.0183869889)2

3.0183869889 = 47.5615124488

Total 54.2595652353

The Chi-squared statistic is 54.2595652353.

4. For the data in Question 2, perform a likelihood ratio test to determine
whether a Weibull distribution with fixed τ = 0.4, or a transformed gamma
distribution with α and τ freely estimated is a better fit for the data. [For
the transformed gamma distribution, the MLE is α = 0.0273, τ = 7.415
and θ = 2045.683.]

The log-likelihood is given by

40∑
i=1

log(τ) + τα(log(xi)− log(θ))−
(xi
θ

)τ
− log(xi)− log(Γ(α))

We calculate this for the two parameter values
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l l t r g <−f unc t i on ( alpha , theta , tau ,X){
40∗ l og ( tau )−40∗alpha ∗ tau∗ l og ( theta )+alpha ∗ tau∗sum( log (X))−sum ( (X/ theta )ˆ tau)−sum( log (X))−40∗ l og (gamma( alpha ) )
}

l lGene ra l<− l l t r g ( 0 . 02 7 3 , 20 4 5 . 6 83 , 7 . 4 15 ,HW2Q2)
l l a lpha1 tau0 4<− l l t r g ( 1 , 4 . 6 5 7 7 1 4 , 0 . 4 ,HW2Q2)

Gives the log-likelihoods −209.9763 and −225.3924 respectively. Thus
the log-likelihood ratio is 2(−209.9763− (−225.3924)) = 30.8322. This is
compared to a chi-squared distribution with two degrees of freedom, so
the critical value, at the 5% significance level, is 5.991465, so we reject
α = 1, τ = 0.4.

5. For the data in Question 2, use AIC and BIC to choose between a Weibull
distribution with τ = 0.4 for the data and a Pareto distribution. [The
MLE for the Pareto distribution is α = 0.4108, θ = 2.112.]

The log-likelihood for the Pareto distribution is

40∑
i=1

log(α) + α log(θ)− (α+ 1) log(θ + xi)

We substitute the MLE for α and θ to calculate the log-likelihood:

This gives the log-likelihood as -202.8737

The AIC for the Weibul with τ = 0.4 is −225.3924− 1 = −226.3924, and
the BIC is −225.3924− 1

2 log(40) = −227.236839727

For the Pareto distribution, the AIC is −202.8737 − 2 = −204.8737 and
the BIC is −202.8737 − log(40) = −206.562579454. Thus the Pareto
distribution is prefered by both AIC and BIC.

Standard Questions

6. An auto insurer divides insureds into three categories: new drivers; aver-
age drivers; and good drivers. The number of claims made by an individual
follows a negative binomial distribution with parameters r and β. The in-
surance company has the following portfolio of policies.

Category Number r β mean standard
insured of claim claim deviation

new driver 1,300 0.3 22.6 $639 $250,340
average driver 6,422 3.2 0.8 $1,430 $180,460
safe driver 1,105 0.9 1.8 $1,100 $105,660
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The insurance company models the aggregate losses as following an Pareto
distribution with the correct mean and variance. It charges a 10% loading
on its premiums. It wants to buy stop-loss reinsurance for its policies.
The reinsurance company uses the same Pareto distribution to model ag-
gregate losses and sets its premium at 125% of expected payments on the
policy. The insurer is willing to pay 30% of its total premiums towards
reinsurance. What attachment point can it set to achieve this?

We calculate the expectation and variance of aggregate claims

Category E(N) Var(N) E(S) Var(S)
(millions) (trillions)

new driver 8814.00 208010.400 5.632146 552.459333913
average driver 16440.32 29592.576 23.5096576 535.4528776
safe driver 1790.10 5012.280 1.969110 19.9908049864
Total 31.1109136 1107.9030165

Thus the total premium is 31.1109136× 1.1 = $34.22200496 million. The
insurer is therefore willing to pay 34.22200496 × 0.3 = $10.266601488
million in reinsurance premiums. Setting the aggregate mean and variance
as the mean and variance of a Pareto distribution gives

θ

α− 1
= 31.1109136

αθ

(α− 1)2(α− 2)
= 1107.9030165

α− 2

α
=

31.11091362

1107.9030165
= 0.873622447644

α =
2

1− 0.873622447644
= 15.8255953112

θ = 14.8255953112× 31.1109136 = 461.237814795

For reinsurance with attachment point a, the expected payment is

∫ ∞
a

(
θ

θ + x

)α
dx =

∫ ∞
a+θ

θαu−α dx

= θα
[
u1−α

(1− α)

]∞
a+θ

= θα
(a+ θ)1−α

(α− 1)

Thus we need to solve
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1.25θα
(a+ θ)1−α

(α− 1)
= 10.266601488

(a+ θ)1−α =
(α− 1)10.266601488

1.25θα

=
14.8255953112× 10.266601488

1.25× 461.23781479515.8255953112

= 8.4592397211× 10−41

a+ 461.237814795 = (8.4592397211× 10−41)−
1

14.8255953112 = 504.58954931

a = 43.351734515

Thus attachment point is $43,351,734.515.

7. An insurance company collects a sample of 900 past claims, and attempts
to fit a distribution to the claims. Based on experience with other claims,
the company believes that an inverse Pareto distribution with τ = 3.1
and θ = 35 may be appropriate to model these claims. It constructs the
following plot of D(x) = Fn(x) − F ∗(x) to compare the sample to this
distribution:
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(a) How many data points in the sample were more than 100,000?

From the graph, we read D(100000) ≈ −0.0125.
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We have that F ∗(100000) =
(
100000
100035

)3.1
= 0.998915778025, so Fn(100000) =

F ∗(100000) + D(100000) ≈ 0.998915778025 − 0.0125 = 0.986415778025,
so there are 900 ∗ (1− 0.986415778025) = 12 samples larger than 100,000.
[In fact, there are 13 samples larger than 100,000 in the data set.]

(b) Which of the following statements best describes the fit of the inverse
Pareto distribution to the data:

(i) The inverse Pareto distribution assigns too much probability to high
values and too little probability to low values.

(ii) The inverse Pareto distribution assigns too much probability to low
values and too little probability to high values.

(iii) The inverse Pareto distribution assigns too much probability to tail
values and too little probability to central values.

(iv) The inverse Pareto distribution assigns too much probability to central
values and too little probability to tail values.

Justify your answer.

We see that D(x) is positive for small values of x and negative for larger
values of X. This means that F ∗(x) < Fn(x) for small x, and F ∗(x) >
Fn(x) for large x. Thus the model assigns too little probability to both
small values and large values, so (iv) is the best description of the fit.

(c) Which of the following plots is the p-p plot of this model on this data?
Justify your answer.
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(i) (ii) (iii)
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Since F ∗(x) > Fn(x) for smaller values of x and F ∗(x) < Fn(x) for larger
values, we expect the plot to lie above the line y = x for small values of x
and below for larger values of x. Only (i) shows this pattern, so (i) must
be the correct plot.
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