# ACSC/STAT 4703, Actuarial Models II 

## FALL 2022

Toby Kenney
Homework Sheet 4

## Model Solutions

1. An insurance company sells health insurance. It estimates that the standard deviation of the aggregate annual claim is \$32 and the mean is $\$ 195$. (a) How many years history are needed for an individual or group to be assigned full credibility? (Use $r=0.1, p=0.9$.)

The coefficient of variation for aggregate annual claim is $\frac{32}{195}$. For the average of $n$ years of aggregate claims, the coefficient of variation is $\frac{32}{195 \sqrt{n}}$. Using $r=0.1$ and $p=0.9$, the standard for full credibility is obtained by solving:

$$
\begin{aligned}
P\left(\left|\frac{\bar{X}-\mu}{\mu}\right|<0.1\right) & >0.9 \\
2 \Phi\left(\frac{0.1 \times 195 \sqrt{n}}{32}\right)-1 & >0.9 \\
\frac{0.1 \times 195 \sqrt{n}}{32} & >1.644854 \\
n & >\left(\frac{32 \times 1.644854}{0.1 \times 195}\right)^{2} \\
& =7.28593755072
\end{aligned}
$$

so 8 years are needed.
The standard net premium for this policy is $\$ 195$. An individual has claimed a total of $\$ 133$ in the last 4 years.
(b) What is the net Credibility premium for this individual, using limited fluctuation credibility?

The credibility of 4 years of experience is $Z=\sqrt{\frac{4}{7.28593755072}}=0.740947220848$.
The premium for this individual is therefore $0.740947220848 \times \frac{133}{4}+0.259052779152 \times$ $195=\$ 75.15$.
2. A fire insurance company classifies companies as high, medium or low risk. Annual claims from high risk companies follow a Pareto distribution
with $\alpha=4.7$ and $\theta=12000$. Annual claims from medium risk companies follow a Weibull distribution with $\tau=0.6$ and $\theta=1500$. Annual claims from low risk companies follow a gamma distribution with $\alpha=0.7$ and $\theta=2000$. $15 \%$ of companies are high risk, $60 \%$ are medium risk and $25 \%$ are low risk.
(a) Calculate the expectation and variance of the aggregate annual claims from a randomly chosen company.

- For a high-risk company, the expected claim is $\frac{12000}{3.7}=3243.24324324$. The variance is $\frac{12000^{2} \times 4.7}{3.7^{2} \times 2.7}=18310202.094$
- For a medium-risk company, the expected claim is $1500 \Gamma\left(1+\frac{1}{0.6}\right)=$ 2256.863. The variance is $1500^{2}\left(\Gamma\left(1+\frac{2}{0.6}\right)-\Gamma\left(1+\frac{1}{0.6}\right)^{2}\right)=15742757$
- For a low-risk company, the expected claim is $2000 \times 0.7=1400$. The variance is $2000^{2} \times 0.7=2800000$.

The overall expected claim amount is

$$
0.15 \times 3243.24324324+0.6 \times 2256.863+0.25 \times 1400=2190.60428649
$$

The expected squared claim amount is
$0.15 \times\left(3243.24324324^{2}+18310202.094\right)+0.6 \times\left(2256.863^{2}+15742757\right)+0.25 \times\left(1400^{2}+2800000\right)=18016036.8848$
The variance of the claim amount is therefore $18016036.8848-2190.60428649^{2}=$ 13217289.7448.
(b) Given that a company's annual claims over the past 3 years are \$700, \$1,440 and \$320, what are the expectation and variance of the company's claims next year?

- The likelihood of these claims for a high-risk company is

$$
\alpha^{3} \frac{\theta^{3 \alpha}}{(\theta+700)^{\alpha+1}(\theta+1440)^{\alpha+1}(\theta+320)^{\alpha+1}}=4.7^{3} \frac{12000^{14.1}}{(12000+700)^{5.7}(12000+1440)^{5.7}(12000+320)^{5.7}}
$$

- The likelihood of these claims for a medium-risk company is
$0.6^{3} \frac{700^{-0.4} \times 1440^{-0.4} \times 320^{-0.4}}{1500^{3 \times 0.6}} e^{-\frac{700^{0.6}+1440^{0.6}+320^{0.6}}{1500^{0.6}}}=2.20532452945 \times 10^{-11}$
- The likelihood of these claims for a low-risk company is

$$
\frac{700^{-0.3} 1440^{-0.3} 320^{-0.3}}{2000^{3 \times 0.7} \Gamma(0.7)^{3}} e^{-\frac{700+1440+320}{2000}}=4.377156 \times 10^{-11}
$$

The posterior probabilites are therefore:
$\frac{0.15 \times 1.96205450319 \times 10^{-11}}{0.15 \times 1.96205450319 \times 10^{-11}+0.6 \times 2.20532452945 \times 10^{-11}+0.25 \times 4.377156 \times 10^{-11}}$
$\frac{0.6 \times 2.20532452945 \times 10^{-11}}{0.15 \times 1.96205450319 \times 10^{-11}+0.6 \times 2.20532452945 \times 10^{-11}+0.25 \times 4.377156 \times 10^{-11}}$
and
$\frac{0.25 \times 4.377156 \times 10^{-11}}{0.15 \times 1.96205450319 \times 10^{-11}+0.6 \times 2.20532452945 \times 10^{-11}+0.25 \times 4.377156 \times 10^{-11}}$
which gives
$0.108529041709,0.487941099394$ and 0.403529858897 , respectively.
This means that the expected aggregate claim is
$0.108529041709 \times 3243.24324324+0.487941099394 \times 2256.863+0.403529858897 \times 1400=2018.14409708$
The expected squared aggregate claim is
$0.108529041709 \times\left(3243.24324324^{2}+18310202.094\right)+0.487941099394 \times\left(2256.863^{2}+15742757\right)+0.403529858897 \times\left(1400^{2}+2800000\right)=1521639$

The variance of aggregate claims is

$$
15216399.5799-2018.14409708^{2}=11143493.9833
$$

## Standard Questions

3. A home insurance company sets the standard for full credibility as 622 house-years. The book estimates are 0.07 claims per house-year for claim frequency and \$4,321 per claim for claim severity.
The company changes the standard to 540 house-years for frequency and 86 claims for severity. For one policyholder with 11 person-years of history, this change results in the annual premium reducing from $\$ 510$ to $\$ 449.11$. How many claims did this policyholder make during the last 11 years?

With the standard set as 622 house years, the credibility of this policyholder's experience is $Z=\sqrt{\frac{11}{622}}=0.132984538424$. Therefore, in order
for the premium to be $\$ 510$, the policyholder's average annual aggregate loss $\bar{X}$ must satisfy

$$
\begin{aligned}
Z \bar{X}+0.07 \times 4321(1-Z) & =510 \\
0.132984538424 \bar{X} & =247.753833337 \\
\bar{X} & =\$ 1863.02735847
\end{aligned}
$$

Let the number of claims made be $n$. The credibility of this policyholder's experience for claim frequency is $\sqrt{\frac{11}{540}}=0.14272480643$, so the credibility estimate for this policyholder's claim frequency is
$0.14272480643 \frac{n}{11}+0.85727519357 \times 0.07=0.0129749824027 n+0.0600092635499$
This policyholder's average claim severity is $\frac{1863.02735847 \times 11}{n}=\frac{20493.3009432}{n}$, and the credibility of this policyholder's severity is $\sqrt{\frac{n}{86}}$. This means that the credibility estimate for claim severity is

$$
\sqrt{\frac{n}{86}} \frac{20493.3009432}{n}+\left(1-\sqrt{\frac{n}{86}}\right) 4321
$$

Therefore the credibility premium for this policyholder is

$$
\begin{aligned}
(0.0129749824027 n+0.0600092635499)\left(\sqrt{\frac{n}{86}} \frac{20493.3009432}{n}+4321\left(1-\sqrt{\frac{n}{86}}\right)\right) & =449.11 \\
132.611439419 n^{-\frac{1}{2}}-189.809972201+0.7117169329 n^{\frac{1}{2}}+56.0648989621 n-6.04563353445 n^{\frac{3}{2}} & =0
\end{aligned}
$$

By inspection, we see that $n=2$ satisfies this equation.
4. An automobile insurer classifies drivers as "low-risk" and "high-risk". It estimates that $85 \%$ of drivers are low-risk. Annual claims from low-risk drivers are modelled as following a Weibull distribution with $\tau=0.6$ and $\theta=385$ [mean 579.2616, variance 1037098]. Annual claims from high-risk drivers have mean $\$ 1205$ and variance 1,830,400.
It uses a Bayesian premium for each driver. For a particular driver with one year's experience, the net premium when modelling claims for highrisk drivers as following a gamma distribution (with $\alpha=0.7932829$ and $\theta=1519.004$ to match the given mean and variance) is $\$ 100$ more than when modelling claims for high-risk drivers as following an inverse gamma distribution (with $\alpha=2.7932829$ and $\theta=2160.906$ to match the given mean and variance). What were this driver's aggregate claims for the year?

Let $p_{g}$ be the posterior probability that this driver is high-risk using the gamma distribution, and let $p_{i}$ be the posterior probability that the driver is high-risk using the inverse-gamma distribution. The Bayesian premiums are $1205 p_{g}+579.2616\left(1-p_{g}\right)=625.7384 p_{g}+579.2616$ for the Gamma distribution and $625.7384 p_{i}+579.2616$ for the inverse Gamma distribution. Since the difference between these premiums is $\$ 100$, it follows that $625.7384\left(p_{g}-p_{i}\right)=100$, so $p_{g}-p_{i}=0.159811192665$.
Let $L_{g}, L_{i}$ and $L_{w}$ be the likelihood of the drivers aggregate claims under the gamma, inverse gamma and Weibull distributions respectively. We have $p_{g}=\frac{0.15 L_{g}}{0.15 L_{g}+0.85 L_{w}}$ and $p_{i}=\frac{0.15 L_{i}}{0.15 L_{i}+0.85 L_{w}}$, so we have

$$
\begin{aligned}
\frac{0.15 L_{g}}{0.15 L_{g}+0.85 L_{w}}-\frac{0.15 L_{i}}{0.15 L_{i}+0.85 L_{w}} & =0.159811192665 \\
0.15 L_{g}\left(0.15 L_{i}+0.85 L_{w}\right)-0.15 L_{i}\left(0.15 L_{g}+0.85 L_{w}\right) & =0.159811192665\left(0.15 L_{i}+0.85 L_{w}\right)\left(0.15 L_{g}+0.85 L_{w}\right) \\
0.1275 L_{w}\left(L_{g}-L_{i}\right) & =0.159811192665\left(0.15 L_{i}+0.85 L_{w}\right)\left(0.15 L_{g}+0.85 L_{w}\right) \\
0.1275 L_{w}\left(L_{g}-L_{i}\right) & =0.0203759270648 L_{w}\left(L_{g}+L_{i}\right)+0.00359575183496 L_{i} L_{g}+0.1154635867 L_{w}^{2} \\
0.107124072935 L_{w} L_{g}-0.147875927065 L_{w} L_{i} & =0.00359575183496 L_{i} L_{g}+0.1154635867 L_{w}^{2}
\end{aligned}
$$

If the aggregate claims are $X$, then we have

$$
\begin{aligned}
L_{g} & =\frac{X^{-0.2067171} e^{-\frac{X}{1519.004}}}{1519.004^{0.7932829} \Gamma(0.7932829)}=\frac{X^{-0.2067171} e^{-\frac{X}{1519.004}}}{391.5189} \\
L_{i} & =\frac{2160.906^{2.7932829} X^{-3.7932829} e^{-\frac{2160.906}{X}}}{\Gamma(2.7932829)}=1237736048 X^{-2.7932829} e^{-\frac{2160.906}{X}} \\
L_{w} & =\frac{0.6}{3850.6} X^{-0.4} e^{-\left(\frac{X}{385}\right)^{0.6}}=0.0168606693902 X^{-0.4} e^{-\left(\frac{X}{385}\right)^{0.6}}
\end{aligned}
$$

Substituting these into (1) and performing a grid-search

```
x<-seq_len (50000)/50
Lg<-x^{-0.2067171}*exp(-x/1519.004)/391.5189
Li<-1237736048*x^(-2.7932829)*exp (-2160.906/x )
Lw<-0.0168606693902*x^(-0.4)*\operatorname{exp}(-(x/385)^(0.6))
plot (x,0.107124072935*Lw*Lg-0.147875927065*Lw*Li - 0.00359575183496*Li*Lg+0.1154635867*Lw^2,type='l')
sum(0.107124072935*Lw*Lg-0.147875927065*Lw*Li}-0.00359575183496*Li *Lg+0.1154635867*Lw^2>0)
x<-163.6+seq_len (10000)/100000
Lg<-x^{-0.2067171}*exp(-x/1519.004)/391.5189
Li<-1237736048*x^ (-2.7932829)*exp (-2160.906/x )
Lw<-0.0168606693902*x^(-0.4)*exp(-(x/385)^(0.6))
plot (x,0.107124072935*Lw*Lg-0.147875927065*Lw*Li - 0.00359575183496*Li*Lg+0.1154635867*Lw^2,type=`l')
sum(0.107124072935*Lw*Lg-0.147875927065*Lw*Li}-0.00359575183496*Li *Lg+0.1154635867*Lw^2>0)
(0.107124072935*Lw*Lg-0.147875927065*Lw*Li}-0.00359575183496*Li *Lg+0.1154635867*Lw ^2)[92 13]
(0.107124072935*Lw*Lg-0.147875927065*Lw*Li -0.00359575183496*Li *Lg+0.1154635867*Lw ^2)[9214]
x[9214]
```

gives $X=163.6921$.
5. An insurance company is pricing a professional liability insurance policy for a company. It has 5 years of past history for this company, and the annual claims from year $i$ are denoted $X_{i}$. It uses the formula $\hat{X}_{6}=$ $\alpha_{0}+\sum_{i=1}^{5} \alpha_{i} X_{i}$. It makes the following assumptions about the losses each year:

- The expected aggregate claims was $\$ 3052$ in Year 1 and has been increasing by 4\% inflation each year since then.
- The coefficient of variation for aggregate claims is 2.7 in each year.
- The correlation between losses in years $i$ and $j$ is $0.84\left(0.93^{|i-j|}\right)$ if $i, j \neq 3$ and $0.62\left(0.93^{|i-3|}\right)$ if $j=3$. The change in Year 3 is to cover parental leave for one of the consultants working for the company. $\left(\right.$ Recall $\left.\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}\right)$

Find a set of equations which can determine the values of $\alpha_{i}$ for $i=$ $0,1, \ldots, 5$. [You do not need to solve these equations.]

We use our standard equations:

$$
\begin{aligned}
\mathbb{E}\left(X_{6}\right) & =\alpha_{0}+\sum_{i=1}^{5} \alpha_{i} \mathbb{E}\left(X_{i}\right) \\
\operatorname{Cov}\left(X_{6}, X_{j}\right) & =\sum_{i=1}^{5} \alpha_{i} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

From the first condition, we have $\mathbb{E}\left(X_{i}\right)=3052(1.04)^{i-1}, \operatorname{Var}\left(X_{i}\right)=$ $\left(2.7 \times 3052(1.04)^{i-1}\right)^{2}=67904192.16 \times 1.04^{(2 i-2)}$, and

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)= \begin{cases}57039521.4144(0.93)^{|i-j|}(1.04)^{i+j-2} & \text { if } i, j \neq 3 \\ 42100599.1392(0.93)^{|i-3|}(1.04)^{i+1} & \text { if } j=3\end{cases}
$$

Substituting in the numbers given, these equations become:

$$
\begin{aligned}
& 3052(1.04)^{5}=\alpha_{0}+3052 \alpha_{1}+3052(1.04)^{1} \alpha_{2}+3052(1.04)^{2} \alpha_{3}+3052(1.04)^{3} \alpha_{4}+3052(1.04)^{4} \alpha_{5} \\
& 57039521.4144(0.93)^{5}(1.04)^{5}=67904192.16 \alpha_{1}+57039521.4144(0.93)(1.04) \alpha_{2}+42100599.1392(0.93)^{2}(1.04)^{2} \alpha_{3} \\
& +57039521.4144(0.93)^{3}(1.04)^{3} \alpha_{4}+57039521.4144(0.93)^{4}(1.04)^{4} \alpha_{5} \\
& 57039521.4144(0.93)^{4}(1.04)^{6}=57039521.4144(0.93)(1.04) \alpha_{1}+67904192.16(1.04)^{2} \alpha_{2}+42100599.1392(0.93)(1.04)^{3} \alpha_{3} \\
& +57039521.4144(0.93)^{2}(1.04)^{4} \alpha_{4}+57039521.4144(0.93)^{3}(1.04)^{5} \alpha_{5} \\
& 42100599.1392(0.93)^{3}(1.04)^{7}=42100599.1392(0.93)^{2}(1.04)^{2} \alpha_{1}+42100599.1392(0.93)(1.04)^{3} \alpha_{2}+67904192.16(1.04)^{4} \alpha_{3} \\
& +42100599.1392(0.93)(1.04)^{5} \alpha_{4}+42100599.1392(0.93)^{2}(1.04)^{6} \alpha_{5} \\
& 57039521.4144(0.93)^{2}(1.04)^{8}=57039521.4144(0.93)^{3}(1.04)^{3} \alpha_{1}+57039521.4144(0.93)^{2}(1.04)^{4} \alpha_{2}+42100599.1392(0.93)(1.04)^{5} \alpha_{3} \\
& +67904192.16(1.04)^{6} \alpha_{4}+57039521.4144(0.93)(1.04)^{6} \alpha_{5} \\
& 57039521.4144(0.93)(1.04)^{9}=57039521.4144(0.93)^{4}(1.04)^{4} \alpha_{1}+57039521.4144(0.93)^{3}(1.04)^{5} \alpha_{2}+42100599.1392(0.93)^{2}(1.04)^{6} \alpha_{3} \\
& +57039521.4144(0.93)(1.04)^{7} \alpha_{4}+67904192.16(1.04)^{8} \alpha_{5}
\end{aligned}
$$

