ACSC/STAT 4703, Actuarial Models II

FALL 2023

Toby Kenney

Homework Sheet 1

Due: Thursday 21st September: 14:30

Basic Questions

- 1. An insurance company models losses as following a Pareto distribution with $\alpha = 3.5$ and $\theta = 2000$. The fixed expenses are \$200 per claim, and variable expenses are 14% of loss amount. What is the density function of the distribution of the total cost to the insurance company for a random loss?
- 2. An insurer is modelling losses using a generalised regression model. Under their model, the losses X_i for a given policyholder should follow an inverse gamma distribution with shape $\alpha = 3$ and scale θ_i estimated by the regression model. To assess the model, they record the square $(X_i \frac{\theta_i}{2})^2$. What is the density function for the distribution of this statistic.
- 3. An insurance company has the following data on its policies:

Policy limit	Losses Limited to					
	50,000	100,000	200,000	500,000	1,000,000	
50,000	$8,\!131,\!429$					
100,000	$10,\!833,\!728$	$15,\!096,\!434$				
200,000	15,763,797	$22,\!145,\!370$	25440902			
500,000	$30,\!126,\!054$	$46,\!654,\!553$	58336196	72339459		
1,000,000	$20,\!899,\!468$	$29,\!641,\!835$	41482022	44513950	42764662	

Use this data to calculate the ILF from \$50,000 to \$1,000,000 using

(a) The direct ILF estimate.

- (b) The incremental method.
- 4. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 100,000. It has the following data on a set of 4,407 claims from policies with limit \$1,000,000.

Losses Limited to	100,000	500,000	1,000,000
Total claimed	\$950,249	1,318,024	\$1,451,334

Calculate the ILF from \$100,000 to \$1,000,000.

Standard Questions

- 5. An insurer divides losses into two parts: property and medical. It models the property losses as following an exponential distribution with mean Θ , and the medical losses as following an exponential distribution with mean 2Θ , where Θ varies between individuals, following an inverse exponential distribution with $\theta = 500$ and $\alpha = 3$. What is the probability that a random claim exceeds \$50,000?
- 6. An insurance company's premiums include a risk charge proportional to the square of the expected claim. This results in a 20% loading for it's policies with limit \$500,000. A reinsurer offers reinsurance of \$500,000 over \$500,000 for a loading of 45%. The insurer calculates that this buying this reinsurance would not affect its premium (i.e. the premium with limit \$500,000 plus the reinsurance premium is equal to the premium with limit \$1,000,000). What is the ILF from \$500,000 to \$1,000,000? (It is not 1.)