# ACSC/STAT 4703, Actuarial Models II 

FALL 2023
Toby Kenney
Homework Sheet 3
Model Solutions

## Basic Questions

1. Loss amounts follow a gamma distribution with shape $\alpha=2.4$ and scale $\theta=500$. The distribution of the number of losses is given in the following table:

| Number of Losses | Probability |
| :--- | :--- |
| 0 | 0.880 |
| 1 | 0.074 |
| 2 | 0.035 |
| 3 | 0.011 |

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above \$2,000. Calculate the expected payment for this excess-of-loss reinsurance.

If there are $n$ claims, then the total losses follow a gamma distribution with shape $\alpha=2.4 n$ and $\theta=500$. The expected payment on the excess of loss distribution in this case is therefore given by:

$$
\begin{aligned}
\mathbb{E}\left((X-2000)_{+}\right) & =\frac{500}{\Gamma(2.4 n)} \int_{\frac{2000}{500}}^{\infty}\left(x-\frac{2000}{500}\right) x^{2.4 n-1} e^{-x} d x \\
= & \frac{500}{\Gamma(2.4 n)}\left(\int_{4}^{\infty} x^{2.4 n} e^{-x} d x-4 \int_{4}^{\infty} x^{2.4 n-1} e^{-x} d x\right) \\
& =500(2.4 n \text { pgamma }(4, \text { shape }=2.4 \mathrm{n}+1, \text { lower.tail=FALSE }) \\
& \quad-4 \text { pgamma }(4, \text { shape }=2.4 \mathrm{n}, \text { lower.tail=FALSE }))
\end{aligned}
$$

This gives the following table

| $n$ | $P(N=n)$ | $\mathbb{E}\left((S-2000)_{+} \mid N=n\right)$ | $\mathbb{E}\left((S-2000)_{+} I_{N=n}\right)$ |
| :--- | ---: | ---: | ---: |
| 0 | 0.930 | 0.00000 | 0.000000 |
| 1 | 0.074 | 91.92007 | 6.802085 |
| 2 | 0.035 | 635.21248 | 22.232437 |
| 3 | 0.011 | 1635.47244 | 17.990197 |

So the total expected payment is $6.802085+22.232437+17.990197=$ $\$ 47.02$.
2. Loss frequency follows a binomial distribution with $n=17$ and $p=0.36$. Loss severity (in thousands) has the following distribution:

| Severity | Probability |
| :--- | :--- |
| 0 | 0.31 |
| 1 | 0.23 |
| 2 | 0.11 |
| 3 | 0.18 |
| 4 or more | 0.17 |

Use the recursive method to calculate the exact probability that aggregate claims are at least \$4,000.

Recall that for the binomial distribution, $a=-\frac{p}{1-p}=-\frac{0.36}{0.64}=-\frac{9}{16}$ and $b=\frac{(n+1) p}{1-p}=\frac{18 \times 0.36}{0.64}=\frac{81}{8}$. We compute $f_{S}(0)=P_{S}(0)=P_{N}\left(P_{X}(0)\right)=$ $\left(1-0.36+0.36 f_{X}(0)\right)^{17}=(1-0.36+0.36 \times 0.31)^{17}=0.007794264046$
The recurrence formula is
$f(x)=\frac{\sum_{k=1}^{x}\left(-\frac{9}{16}+\frac{153 k}{16 x}\right) f_{X}(k) f(x-k)}{1+\frac{9}{16} \times 0.31}=\frac{\sum_{k=1}^{x} \frac{9}{16}\left(\frac{17 k}{x}-1\right) f_{X}(k) f(x-k)}{1.174375}$
Applying this gives:

$$
\begin{aligned}
& f(1)=\frac{\frac{9}{16}(18-1) \times 0.23 \times 0.007794264046}{1.174375}=0.0145971342086 \\
& f(2)=\frac{\frac{9}{16}\left(\left(\frac{18}{2}-1\right) \times 0.23 \times 0.0145971342086+(18-1) \times 0.11 \times 0.007794264046\right)}{1.174375}=0.0198459822453 \\
& f(3)=\frac{\frac{9}{16}\left(\left(\frac{18}{3}-1\right) \times 0.23 \times 0.0198459822453+\left(\frac{36}{3}-1\right) \times 0.11 \times 0.0145971342086+(18-1) \times 0.18 \times 0.007794264046\right)}{1.174375}=0.0308
\end{aligned}
$$

The probability that aggregate claims are at least $\$ 4,000$ is therefore

$$
\begin{aligned}
& 1-f(0)-f(1)-f(2)-f(3) \\
= & 1-0.007794264046-0.0145971342086-0.0198459822453-0.0308154731026 \\
= & 0.926947146397
\end{aligned}
$$

3. Use an arithmetic distribution $(h=1)$ to approximate a Gamma distribution distribution with shape $\alpha=3$ and scale $\theta=\frac{5}{12}$.
(a) Using the method of rounding, calculate the mean of the arithmetic approximation. [You can evaluate this numerically: use 5,000 terms in the sum.]

Using the method of rounding, we set

$$
\begin{aligned}
p_{0} & =P\left(X<\frac{1}{2}\right) \\
& =\int_{0}^{1.2} \frac{x^{2} e^{-x}}{2} d x \\
& =\frac{1}{2}\left(\left[-x^{2} e^{-x}\right]_{0}^{1.2}+\int_{0}^{1.2} 2 x e^{-x} d x\right) \\
& =\frac{1}{2}\left(-1.44 e^{-1.2}+\left[-2 x e^{-x}\right]_{0}^{1.2}+\int_{0}^{1.2} 2 e^{-x} d x\right) \\
& =\frac{1}{2}\left(-1.44 e^{-1.2}-2.4 e^{-1.2}+2.4\left(1-e^{-1.2}\right)\right) \\
& =\frac{1}{2}\left(2.4-6.24 e^{-1.2}\right) \\
& =0.260274058835
\end{aligned}
$$

and

$$
p_{n}=P\left(n-\frac{1}{2} \leqslant X<n+\frac{1}{2}\right)
$$

so $S_{a}(n)=S_{x}\left(n-\frac{1}{2}\right)$ and

$$
\mathbb{E}\left(X_{a}\right)=\sum_{n=1}^{\infty} S_{X}\left(n-\frac{1}{2}\right)
$$

We have

$$
\begin{aligned}
S_{a}(n) & =P\left(n-\frac{1}{2} \leqslant X\right) \\
& =\int_{2.4 n-1.2}^{\infty} \frac{x^{2} e^{-x}}{2} d x \\
& =\frac{1}{2}\left(\left[-x^{2} e^{-x}\right]_{2.4 n-1.2}^{\infty}+\int_{2.4 n-1.2}^{\infty} 2 x e^{-x} d x\right) \\
& =\frac{1}{2}\left((2.4 n-1.2)^{2} e^{-(2.4 n-1.2)}+\left[-2 x e^{-x}\right]_{2.4 n-1.2}^{\infty}+\int_{2.4 n-1.2}^{\infty} 2 e^{-x} d x\right) \\
& =\frac{1}{2}\left((2.4 n-1.2)^{2} e^{-(2.4 n-1.2)}+(4.8 n-2.4) e^{-(2.4 n-1.2)}+2.4\left(e^{-(2.4 n-1.2)}\right)\right. \\
& =\left(2.88 n^{2}-0.48 n+0.52\right) e^{-(2.4 n-1.2)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbb{E}\left(X_{a}\right) & =\sum_{n=1}^{\infty}\left(2.88 n^{2}-0.48 n+0.52\right) e^{-(2.4 n-1.2)} \\
& =e^{1.2}\left(2.88 \sum_{n=1}^{\infty} n^{2} e^{-2.4 n}-0.48 \sum_{n=1}^{\infty} n^{2} e^{-2.4 n}+0.52 \sum_{n=1}^{\infty} e^{-2.4 n}\right)
\end{aligned}
$$

From geometric series, we have $\sum_{n=1}^{\infty} e^{-c n}=\frac{e^{-c}}{1-e^{-c}}$, and we can calculate

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n e^{-c n}=\sum_{n=1}^{\infty}((n-1)+1) e^{-c n} \\
&=\sum_{m=0}^{\infty} m e^{-c(m+1)}+\sum_{n=1}^{\infty}+\sum_{n=1}^{\infty} e^{-c n} \\
&=e^{-c} \sum_{m=0}^{\infty} m e^{-c m}+\frac{e^{-c}}{1-e^{-c}} \\
&\left(1-e^{-c}\right) \sum_{n=0}^{\infty} n e^{-c n}=\frac{e^{-c}}{1-e^{-c}} \\
& \sum_{n=0}^{\infty} n e^{-c n}=\frac{e^{-c}}{\left(1-e^{-c}\right)^{2}} \\
& \sum_{n=1}^{\infty} n^{2} e^{-c n}=\sum_{n=1}^{\infty}\left((n-1)^{2}+2 n-1\right) e^{-c n} \\
&=\sum_{m=0}^{\infty} m^{2} e^{-c(m+1)}+\sum_{n=1}^{\infty} 2 n e^{-c n}-\sum_{n=1}^{\infty} e^{-c n} \\
&=e^{-c} \sum_{m=0}^{\infty} m^{2} e^{-c m}+\frac{2 e^{-c}}{\left(1-e^{-c}\right)^{2}}-\frac{e^{-c}}{1-e^{-c}} \\
& \sum_{m=0}^{\infty} n^{2} e^{-c n}=\frac{e^{-c}+e^{-2 c}}{\left(1-e^{-c}\right)^{3}} \\
&\left(1-e^{-c}\right) \sum_{m=0}^{\infty} n^{2} e^{-c n}=\frac{e^{-c}+e^{-2 c}}{\left(1-e^{-c}\right)} \\
& m_{m}^{\infty}
\end{aligned}
$$

Thus,
$\mathbb{E}\left(X_{a}\right)=e^{1.2}\left(2.88 \frac{e^{-2.4}+e^{-4.8}}{\left(1-e^{-2.4}\right)^{3}}-0.48 \frac{e^{-2.4}}{\left(1-e^{-2.4}\right)^{2}}+\frac{0.52 e^{-2.4}}{1-e^{-2.4}}\right)=1.25589406451$
(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 6.5.

We have

$$
1-\left(p_{0}+p_{1}+p_{2}+p_{3}+p_{4}+p_{5}+p_{6, l}\right)=S_{X}(6)=\frac{1}{2} \int_{6 \times 2.4}^{\infty} x^{2} e^{-x} d x=e^{-14.4}\left(1+14.4+\frac{14.4^{2}}{2}\right)=0.0000663740451726
$$

and
$8.03583961878 e-6$

$$
\begin{aligned}
p_{6, u}+p_{7, l} & =\frac{1}{2}\left(\int_{6 \times 2.4}^{\infty} x^{2} e^{-x} d x-\int_{7 \times 2.4}^{\infty} x^{2} e^{-x} d x\right) \\
& =0.0000663740451726-e^{-16.8}\left(1+16.8+\frac{16.8^{2}}{2}\right) \\
& =0.0000583382055538 \\
6 p_{6, u}+7 p_{7, l} & =\frac{1}{2} \int_{14.4}^{16.8} \frac{5}{12} x^{3} e^{-x} \frac{d}{d x} \\
& =1.25\left(e^{-14.4}\left(1+14.4+\frac{14.4^{2}}{2}+\frac{14.4^{3}}{6}\right)-e^{-16.8}\left(1+16.8+\frac{16.8^{2}}{2}+\frac{16.8^{3}}{6}\right)\right) \\
& =0.000887312924604
\end{aligned}
$$

So
$p_{6, u}=7 \times 0.0000583382055538-0.000369713718585=0.000038653720292$

Thus, $P\left(X_{a}>6.5\right)=0.0000663740451726-0.000038653720292=0.0000277203248806$.

## Standard Questions

4. The number of claims an insurance company receives follows a compound Poisson distribution with $\lambda=2548$ for the primary distribution and $\lambda=$ 0.7 for the secondary distribution. Claim severity follows a negative binomial distribution with $r=0.2$ and $\beta=12$. Calculate the probability that aggregate losses exceed \$6,000.
(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate 15,000 terms of the recurrence for $f_{s}$.]

We compute the intermediate distribution $A$ by the usual recurrence, noting that $f_{A}(0)=P_{A}(0)=e^{0.7\left(f_{X}(0)-1\right)}=e^{0.7\left(13^{-0.2}-1\right)}=0.755097800436$
and the recurrence is

$$
f_{A}(x)=\sum_{k=1}^{x} 0.7 \frac{k}{x} f_{X}(k) f_{A}(n-k)
$$

We therefore compute the distribution of $A$ using the usual recurrence:

```
fx<-choose(seq_len (40000) - 0.8, seq_len (40000))*(12/13)^ seq_len (40000) / 13^0.2
### Since f_X(0) is not used in the recurrence, I have started the
### vector fx at f_X(1). This makes the indices slightly easier.
sum(fx)+1/13^0.2 # check we have enough terms
fA<-rep (exp (0.7* (13^(-0.2)-1)),40000)
for(i in seq_len(39999)){
    fA[i+1]<-0.7/i i sum(seq_len(i)*fx[seq_len(i)]*fA[i:1])
    ##Note that fA[i+1]=f_A(i), as this vector includes 0.
}
sum(fA) # check we have enough terms.
```

The mean and variance of $A$ are given by the standard formulae:

$$
\begin{aligned}
\mathbb{E}(A) & =0.7 \times 0.2 \times 12=1.68 \\
\operatorname{Var}(A) & =0.7 \times 0.2 \times 12 \times 13+0.7 \times(0.2 \times 12)^{2}=25.872
\end{aligned}
$$

For the distribution of $S$, the recurrence is

$$
f_{S}(x)=\sum_{k=1}^{x} 2548 \frac{k}{x} f_{X}(k) f_{A}(n-k)
$$

$f_{S}(0)$ is too small to start at zero. Therefore, we start the recurrence 6 standard deviations below the mean. The mean and standard deviation are given by

$$
\begin{aligned}
\mathbb{E}(S) & =2548 \times 1.68=4280.64 \\
\operatorname{Var}(A) & =2548 \times 25.872+2548 \times 1.68^{2}=73113.3312
\end{aligned}
$$

so 6 standard deviations below the mean is $4280.64-6 \sqrt{73113.3312}=$ 2658.27138492 , so we start the recurrence from $f_{S}(2658)=0$ and $f_{S}(2659)=$ 1

```
fS<-rep (0,50000)
fS[2659]<-1 # Since we are truncating 0, we can let fS[1]=f_S (1)
for(i in seq_len(30000)){
    fS [2659+i]<-2548/(2659+i)*sum(seq_len (i)*fA[seq_len (i)+1]*fS[2658+(i : 1 )] )
}
fS[32600] # check we have enough terms - this should be negligible.
fS<-fS/sum(fS) # rescale.
sum(fS [6001:32659]) #answer to question.
```

This gives the probability that $S>6000$ as $4.03251 \times 10^{-09}$.
(b) Using a suitable convolution.

We can use the same code to get the distribution of $f_{A}$. Now we express $S$ as a sum $S_{1}+\cdots+S_{8}$, where $S_{i}$ has a compound distribution with secondary distribution $A$, and primary distribution Poisson with mean 318.5. We compute the distribution of $S_{i}$ using the standard recurrence

$$
f_{S_{i}}(x)=\sum_{k=1}^{x} 318.5 \frac{k}{x} f_{A}(k) f_{S_{i}}(n-k)
$$

with $f_{S_{i}}(0)=e^{318.5\left(f_{A}(0)-1\right)}=e^{318.5 \times(0.755097800436-1)}=1.33181490293 \times$ $10^{-34}$

```
fSi<-rep (exp (318.5*(fA[1] - 1)),10001)
for(i in seq_len(10000)){ #10000 should be enough points
    fSi[i+1]<-318.5/i*sum(seq_len(i)*fA[seq_len(i)+1]*fSi[i:1])
}
sum(fSi8) # check that we have enough points
ConvolveSelf<-function(n){
    convolution<-vector("numeric", 2* length(n))
    for(i in 1:(length(n))){
        convolution [i]<-Sum(n[1:i]*n[i:1])
    }
    for(i in 1:(length(n))){
        convolution [2*length(n)+1-i]<-sum(n[length(n)+1-(1:i)]*n[length(n)+1-(i:1)])
    }
    return(convolution)
}
### Convolve 8 times
fSi2<-ConvolveSelf(fSi)
fSi4<-ConvolveSelf(fSi2)
fSi8<-ConvolveSelf(fSi4)
sum(fSi8[6002:80000]) # gives the same answer as (a)
### Compare results in (a) and (b)
max(abs(fSi8 [seq_len (35000)+1] -fS[seq_len(35000)]))
```

This gives the probability that $S>6000$ as $4.106023 \times 10^{-09}$.
[The maximum difference in estimated probabilies between these two methods is $1.812565 \times 10^{-12}$.]

