ACSC/STAT 4720, Life Contingencies II Fall 2016

Toby Kenney Homework Sheet 5 Model Solutions

Basic Questions

1. An insurance company sells a 5-year annual life insurance policy to a life aged 29, for whom the lifetable below is appropriate.

x	l_x	d_x
29	10000.00	0.88
30	9999.12	0.95
31	9998.17	1.03
32	9997.15	1.11
33	9996.04	1.21
34	9994.83	1.31

The annual gross premium is \$152. Initial expenses are \$90 plus 25% of the first premium. The death benefits are \$1,200,000. Renewal costs are 3% of each subsequent premium. The interest rate is i = 0.03

(a) Calculate the expected net cash-flows associated with this policy (assuming no reserve). [This is the profit vector for the policy.]

t	Premium	Expenses	Interest	Expected Death	Net Cash
	$(at \ t - 1)$			Benefits	Flow
0		128.00			-128.00
1	152	0.00	4.5600	105.6000	50.96
2	152	4.56	4.4232	114.0100	37.85
3	152	4.56	4.4232	123.6226	28.24
4	152	4.56	4.4232	133.2381	18.63
5	152	4.56	4.4232	145.2577	6.61

(b) Which of the following is the internal rate of return of the policy:

The profit signiture is

t	P(in force)	\Pr_t	Π_t
0	1.000000	-128.00	-128.00
1	1.000000	50.960000	50.96000
2	0.999912	37.853167	37.84984
3	0.999817	28.240577	28.23541
4	0.999714	18.625094	18.61977
5	0.999603	6.605533	6.60291

(i) i = 0.041241

The NPV is

$$\begin{aligned} &50.96(1.041241)^{-1} + 37.85(1.041241)^{-2} + 28.24(1.041241)^{-3} + 18.62(1.041241)^{-4} + 6.60(1.041241)^{-5} - 128 \\ &= 2.099425 \end{aligned}$$

so (ii) i = 0.049045 is the internal rate of return.

2. An insurance company sells a 5-year annual life insurance policy to a life aged 44, for whom the lifetable below is appropriate.

x	l_x	d_x
44	10000.00	7.25
45	9992.75	8.01
46	9984.74	8.85
47	9975.89	9.78
48	9966.11	10.81
49	9955.30	11.95

The annual gross premium is \$720. Initial expenses are \$130 plus 20% of the first premium. The death benefits are \$720,000. Renewal costs are 4% of each subsequent premium. The interest rate is i = 0.03. Gross reserves are calculated on the basis i = 0.02, with mortality following the table.

(a) Calculate the reserves.

The expected present value of future benefits and future premiums in each year are given below:

Year	EPV future benefits	EPV premiums	Reserve
1	3022.02	3317.86	0.00
2	2562.32	2681.14	0.00
3	2038.06	2031.37	6.69
4	1441.93	1368.18	73.74
5	765.65	691.20	74.45

(b) Calculate the profit signature.

We first calculate the profit vector

t	Reserves	Premium	Expenses	Interest	Expected Death	Change in	Net Cash
		$(at \ t - 1)$			Benefits	Reserves	Flow
0			274.00				-274.00
1	0.00	720	0.00	21.60	522.00	0.00	219.60
2	0.00	720	28.80	20.74	577.14	6.69	128.10
3	6.69	720	28.80	20.94	638.17	67.05	6.91
4	73.74	720	28.80	22.95	705.86	0.71	7.58
5	74.45	720	28.80	22.97	780.97	-74.45	7.66

The profit signature is then calculated as

t	P(in force)	\Pr_t	Π_t
0	1.000000	-274.00	-274.00
1	1.000000	219.60	219.60
2	0.999275	128.10	128.01
3	0.998474	6.91	6.90
4	0.997589	7.58	7.56
5	0.996611	7.66	7.63

(c) Calculate the profit margin at a risk discount rate of i = 0.06.

At a risk discount rate of i = 0.06, the NPV is

$$219.60(1.06)^{-1} + 128.01(1.06)^{-2} + 6.90(1.06)^{-3} + 7.56(1.06)^{-4} + 7.63(1.06)^{-5} - 274 = \$64.58$$

The NPV of premiums received is

 $720 \left(1.000000 + 0.999275 (1.06)^{-1} + 0.998474 (1.06)^{-2} + 0.997589 (1.06)^{-3} + 0.996611 (1.06)^{-4}\right) = 3210.02$

so the profit margin is $\frac{64.58}{3210.02} = 2.012\%$.

3. For the policy in Question 2:

(a) Calculate the reserves and profit signature for a general premium. [You may assume that P is such that the reserves are zero in Years 1 and 2.]

For a premium P, the expected present value of future benefits and future premiums in each year are given below:

Year	EPV future benefits	EPV premiums (less expenses)	Reserve
1	3022.02	4.612330P	0
2	2562.32	3.728080P	0
3	2036.58	2.823656P	2036.58 - 2.823656P
4	1439.72	1.901089P	1439.72 - 1.901089P
5	763.81	0.960000P	763.81 - 0.960000P

We assume that 721.26 < P < 757.31 so that the first three reserves are zero.

Now we calculate the profit vector

\overline{t}	Premium	Expenses	Interest	Exp. Death	Change in	Net Cash
	$(at \ t - 1)$	I · · · · ·		Benefits	Reserves	Flow
0	130 + 0.2P					-(130+0.2P)
1	P	0.00	0.03P	522.00	0.00	1.03P - 522.00
2	P	0.04P	0.0292P	577.14	2036.58 - 2.823656P	3.812856P - 2613.72
3	P	0.04P	61.09 - 0.05590968P	637.71	0.922567P - 596.86	20.24 - 0.018577P
4	P	0.04P	43.19 - 0.028233P	704.78	0.941089P - 675.91	14.32 - 0.009322P
5	P	0.04P	22.91	779.08	0.960000P - 763.81	7.64

The profit signature is then calculated as

t	P(in force)	\Pr_t	Π_t
0	1.000000	-274.00	-274.00
1	1.000000	1.03P - 522.00	1.03000000P - 522.00
2	0.999275	3.812856P - 2613.72	3.810092P - 2611.83
3	0.999199	20.24 - 0.018577P	20.22 - 0.018562P
4	0.999115	14.32 - 0.009322P	14.31 - 0.00931375P
5	0.999022	7.63	7.62

(b) Calculate the premium that gives an internal rate of return of i = 0.10.

At i = 0.10, the NPV is

$$(1.03P - 522.00)(1.1)^{-1} + (3.810092P - 2611.83)(1.1)^{-2} + (20.22 - 0.018562P)(1.1)^{-3} + (14.31 - 0.00931375P)(1.1)^{-4} + (7.62)(1.1)^{-4$$

Setting this to zero gives

$$4.064893P = 2877.39$$

 $P = \$707.86$

4. For a 5-year term insurance policy sold to a life aged 44, and actuary performs the following profit test without reserves:

Year	Premium	Expenses	Interest	Expected Death Benefits	Pr_t
0		1500			-1500
1	5900	0	177.00	4216.80	1860.20
2	5900	80	174.60	4806.66	1187.94
3	5900	80	174.60	5478.02	516.58
4	5900	80	174.60	6243.89	-249.29
5	5900	80	174.60	7117.12	-1122.52

Calculate the reserves needed to ensure that all cash flows are non-negative.

In order for the Year 5 cash flows to be non-negative, the reserve has to be $1122.52(1.03)^{-1} = 1089.82$. The probability of paying this reserve to a policy in force at the start of Year 4 is $\frac{9326.11}{9524.35} = 0.9791859812$, so the expected reserve payment at the end of Year 4 is $0.9762762824 \times 1089.82 = 1067.14$. Adding this to the current Year 4 cash flows makes the net cash flow at end of Year 4 -1316.43. The reserve needed to cover this

is $1316.43(1.03)^{-1} = 1278.09$. The expected reserve payment at the end of Year 3 is $1278.09\frac{9524.35}{9701.49} = 1254.75$. This makes the net-cash flow at end of Year 3 516.58 - 1254.75 = -738.17. To cover this, the Year 3 reserve needs to be $738.17\frac{9701.49}{9859.44} = 726.35$. With this reserve payment, the Year 2 cash-flow is still positive, so no reserves are needed in Years 1 or 2. In summary the reserves are:

Year	Reserve
1	0.00
2	0.00
3	726.35
4	1278.09
5	1089.82

Standard Questions

5. A couple purchase a 5-year last survivor insurance policy. Annual Premiums of \$49,830 are payable while both are alive. If one life is dead, there are no premiums or benefits. If both lives die within the 5-year period, a benefit of \$1,000,000 is payable. The husband is 74 and the wife is 81. Their lifetables are given below. Assume both lives are independent.

x	l_x	d_x	\overline{x}	l_x
14	10000.00	591.85	81	10000.00
5	9408.15	628.62	82	8886.19
6	8779.53	662.27	83	7771.76
7	8117.26	691.27	84	6674.31
78	7425.99	713.96	85	5613.10
79	6712.03	728.54	86	4608.18

Initial expenses are \$3,000, and renewal expenses are \$80 at the start of each subsequent year while both are alive, and \$60 at the start of each year while only one is alive. The interest rate is i = 0.04. Use a profit test without reserves to determine the NPV of this policy at a risk discount rate of i = 0.10.

t	Premium	Expenses	Interest	Expected Death	Net Cash
	$(at \ t - 1)$			Benefits	Flow
0		3000.00			-3000.00
1	49830	0	1993.20	6592.08	45231.12
2	49830	80	1990.00	8379.56	43360.44
3	49830	80	1990.00	10651.95	41088.05
4	49830	80	1990.00	13540.45	38199.55
5	49830	80	1990.00	17212.67	34527.33

We first perform the profit test in the both alive state

Then in the husband alive wife dead state

t	Premium	Expenses	Interest	Expected Death	Net Cash
	$(at \ t - 1)$			Benefits	Flow
0		3000.00			-3000.00
1	0	0	0	59185.00	-59185.00
2	0	60	-2.40	66816.54	-66878.94
3	0	60	-2.40	75433.42	-75495.82
4	0	60	-2.40	85160.51	-85222.91
5	0	60	-2.40	96143.41	-96205.81

Then in the wife alive husband dead state

-	t	Premium	Expenses	Interest	Expected Death	Net Cash			
		$(at \ t - 1)$			Benefits	Flow			
	0		3000.00			-3000.00			
	1	0	0	0	111381.00	-111381.00			
	2	0	60	-2.40	125411.45	-125473.85			
	3	0	60	-2.40	141209.97	-141272.37			
	4	0	60	-2.40	158999.21	-159061.61			
	5	0	60	-2.40	179031.19	-179093.59			

Now we calculate the profit signature:

Year	P(Both)	P(Husband $)$	P(Wife)	NCF(Both)	NCF(Husband)	NCF(Wife)	Π_t
0	1	0	0	-3000			-3000
1	1.000000	0.000000	0.000000	45231.12	-59185.00	-111381.00	45231.12
2	0.836026	0.104789	0.052593	43360.44	-66878.94	-125473.85	22643.25
3	0.682324	0.195629	0.094852	41088.05	-75495.82	-141272.37	-133.78
4	0.541771	0.269955	0.125660	38199.55	-85222.91	-159061.61	-22298.60
5	0.416828	0.325771	0.144482	34527.33	-96205.81	-179093.59	-42824.83

The NPV at a risk discount rate i = 0.1 is therefore

 $45231.12(1.1)^{-1} + 22643.25(1.1)^{-2} - 133.78(1.1)^{-3} - 22298.60(1.1)^{-4} - 42824.83(1.1)^{-5} - 3000 = \$14,911.03$