ACSC/STAT 4720, Life Contingencies II
 Fall 2016
 Toby Kenney
 Homework Sheet 5
 Model Solutions

Basic Questions

1. An insurance company sells a 5-year annual life insurance policy to a life aged 29, for whom the lifetable below is appropriate.

x	l_{x}	d_{x}
29	10000.00	0.88
30	9999.12	0.95
31	9998.17	1.03
32	9997.15	1.11
33	9996.04	1.21
34	9994.83	1.31

The annual gross premium is $\$ 152$. Initial expenses are $\$ 90$ plus 25% of the first premium. The death benefits are $\$ 1,200,000$. Renewal costs are 3% of each subsequent premium. The interest rate is $i=0.03$
(a) Calculate the expected net cash-flows associated with this policy (assuming no reserve). [This is the profit vector for the policy.]

t	Premium $($ at $t-1)$		Expenses	Interest	Expected Death Benefits
0		128.00			Net Cash Flow
1	152	0.00	4.5600	105.6000	50.96
2	152	4.56	4.4232	114.0100	37.85
3	152	4.56	4.4232	123.6226	28.24
4	152	4.56	4.4232	133.2381	18.63
5	152	4.56	4.4232	145.2577	6.61

(b) Which of the following is the internal rate of return of the policy:

The profit signiture is

t	P (in force)	Pr_{t}	Π_{t}
0	1.000000	-128.00	-128.00
1	1.000000	50.960000	50.96000
2	0.999912	37.853167	37.84984
3	0.999817	28.240577	28.23541
4	0.999714	18.625094	18.61977
5	0.999603	6.605533	6.60291

(i) $i=0.041241$

The NPV is
$50.96(1.041241)^{-1}+37.85(1.041241)^{-2}+28.24(1.041241)^{-3}+18.62(1.041241)^{-4}+6.60(1.041241)^{-5}-128$ $=2.099425$
(ii) $i=0.049045$

The NPV is

$$
50.96(1.049045)^{-1}+37.85(1.049045)^{-2}+28.24(1.049045)^{-3}+18.62(1.049045)^{-4}+6.60(1.049045)^{-5}-128
$$

$$
=0.00002071
$$

(iii) $i=0.055031$

The NPV is

$$
50.96(1.055031)^{-1}+37.85(1.055031)^{-2}+28.24(1.055031)^{-3}+18.62(1.055031)^{-4}+6.60(1.055031)^{-5}-128
$$

$=-1.57049$
(iv) $i=0.061620$

The NPV is

$$
50.96(1.061620)^{-1}+37.85(1.061620)^{-2}+28.24(1.061620)^{-3}+18.62(1.061620)^{-4}+6.60(1.061620)^{-5}-128
$$

$$
=-3.260441
$$

so (ii) $i=0.049045$ is the internal rate of return.
2. An insurance company sells a 5-year annual life insurance policy to a life aged 44, for whom the lifetable below is appropriate.

x	l_{x}	d_{x}
44	10000.00	7.25
45	9992.75	8.01
46	9984.74	8.85
47	9975.89	9.78
48	9966.11	10.81
49	9955.30	11.95

The annual gross premium is \$720. Initial expenses are $\$ 130$ plus 20% of the first premium. The death benefits are $\$ 720,000$. Renewal costs are 4% of each subsequent premium. The interest rate is $i=0.03$. Gross reserves are calculated on the basis $i=0.02$, with mortality following the table.
(a) Calculate the reserves.

The expected present value of future benefits and future premiums in each year are given below:

Year	EPV future benefits	EPV premiums	Reserve
1	3022.02	3317.86	0.00
2	2562.32	2681.14	0.00
3	2038.06	2031.37	6.69
4	1441.93	1368.18	73.74
5	765.65	691.20	74.45

(b) Calculate the profit signature.

We first calculate the profit vector

t	Reserves	Premium (at $t-1)$	Expenses	Interest	Expected Death Benefits	Change in Reserves	Net Cash Flow
0			274.00				-274.00
1	0.00	720	0.00	21.60	522.00	0.00	219.60
2	0.00	720	28.80	20.74	577.14	6.69	128.10
3	6.69	720	28.80	20.94	638.17	67.05	6.91
4	73.74	720	28.80	22.95	705.86	0.71	7.58
5	74.45	720	28.80	22.97	780.97	-74.45	7.66

The profit signature is then calculated as

t	P (in force)	Pr_{t}	Π_{t}
0	1.000000	-274.00	-274.00
1	1.000000	219.60	219.60
2	0.999275	128.10	128.01
3	0.998474	6.91	6.90
4	0.997589	7.58	7.56
5	0.996611	7.66	7.63

(c) Calculate the profit margin at a risk discount rate of $i=0.06$.

At a risk discount rate of $i=0.06$, the NPV is

$$
219.60(1.06)^{-1}+128.01(1.06)^{-2}+6.90(1.06)^{-3}+7.56(1.06)^{-4}+7.63(1.06)^{-5}-274=\$ 64.58
$$

The NPV of premiums received is

$$
720\left(1.000000+0.999275(1.06)^{-1}+0.998474(1.06)^{-2}+0.997589(1.06)^{-3}+0.996611(1.06)^{-4}\right)=3210.02
$$

so the profit margin is $\frac{64.58}{3210.02}=2.012 \%$.
3. For the policy in Question 2:
(a) Calculate the reserves and profit signature for a general premium. [You may assume that P is such that the reserves are zero in Years 1 and 2.]

For a premium P, the expected present value of future benefits and future premiums in each year are given below:

Year	EPV future benefits	EPV premiums (less expenses)	Reserve
1	3022.02	$4.612330 P$	0
2	2562.32	$3.728080 P$	0
3	2036.58	$2.823656 P$	$2036.58-2.823656 P$
4	1439.72	$1.901089 P$	$1439.72-1.901089 P$
5	763.81	$0.960000 P$	$763.81-0.960000 P$

We assume that $721.26<P<757.31$ so that the first three reserves are zero.
Now we calculate the profit vector

t	Premium $($ at $t-1)$	Expenses	Interest	Exp. Death Benefits	Change in Reserves	Net Cash Flow
0	$130+0.2 P$					$-(130+0.2 P)$
1	P	0.00	$0.03 P$	522.00	0.00	$1.03 P-522.00$
2	P	$0.04 P$	$0.0292 P$	577.14	$2036.58-2.823656 P$	$3.812856 P-2613.72$
3	P	$0.04 P$	$61.09-0.05590968 P$	637.71	$0.922567 P-596.86$	$20.24-0.018577 P$
4	P	$0.04 P$	$43.19-0.028233 P$	704.78	$0.941089 P-675.91$	$14.32-0.009322 P$
5	P	$0.04 P$	22.91	779.08	$0.960000 P-763.81$	7.64

The profit signature is then calculated as

t	P (in force)	Pr_{t}	Π_{t}
0	1.000000	-274.00	-274.00
1	1.000000	$1.03 P-522.00$	$1.03000000 P-522.00$
2	0.999275	$3.812856 P-2613.72$	$3.810092 P-2611.83$
3	0.999199	$20.24-0.018577 P$	$20.22-0.018562 P$
4	0.999115	$14.32-0.009322 P$	$14.31-0.00931375 P$
5	0.999022	7.63	7.62

(b) Calculate the premium that gives an internal rate of return of $i=0.10$.

At $i=0.10$, the NPV is

$$
(1.03 P-522.00)(1.1)^{-1}+(3.810092 P-2611.83)(1.1)^{-2}+(20.22-0.018562 P)(1.1)^{-3}+(14.31-0.00931375 P)(1.1)^{-4}+(7.62)(1
$$

Setting this to zero gives

$$
\begin{aligned}
4.064893 P & =2877.39 \\
P & =\$ 707.86
\end{aligned}
$$

4. For a 5-year term insurance policy sold to a life aged 44, and actuary performs the following profit test without reserves:

Year	Premium	Expenses	Interest	Expected Death Benefits	Pr $_{t}$
0		1500			-1500
1	5900	0	177.00	4216.80	1860.20
2	5900	80	174.60	4806.66	1187.94
3	5900	80	174.60	5478.02	516.58
4	5900	80	174.60	6243.89	-249.29
5	5900	80	174.60	7117.12	-1122.52

Calculate the reserves needed to ensure that all cash flows are non-negative.
In order for the Year 5 cash flows to be non-negative, the reserve has to be $1122.52(1.03)^{-1}=1089.82$. The probability of paying this reserve to a policy in force at the start of Year 4 is $\frac{9326.11}{9524.35}=0.9791859812$, so the expected reserve payment at the end of Year 4 is $0.9762762824 \times 1089.82=1067.14$. Adding this to the current Year 4 cash flows makes the net cash flow at end of Year $4-1316.43$. The reserve needed to cover this
is $1316.43(1.03)^{-1}=1278.09$. The expected reserve payment at the end of Year 3 is $1278.09 \frac{9524.35}{9701.49}=1254.75$. This makes the net-cash flow at end of Year $3516.58-1254.75=-738.17$. To cover this, the Year 3 reserve needs to be $738.17 \frac{9701.49}{9859.44}=726.35$. With this reserve payment, the Year 2 cash-flow is still positive, so no reserves are needed in Years 1 or 2. In summary the reserves are:

Year	Reserve
1	0.00
2	0.00
3	726.35
4	1278.09
5	1089.82

Standard Questions

5. A couple purchase a 5-year last survivor insurance policy. Annual Premiums of $\$ 49,830$ are payable while both are alive. If one life is dead, there are no premiums or benefits. If both lives die within the 5-year period, a benefit of $\$ 1,000,000$ is payable. The husband is 74 and the wife is 81 . Their lifetables are given below. Assume both lives are independent.

x	l_{x}	d_{x}
74	10000.00	591.85
75	9408.15	628.62
76	8779.53	662.27
77	8117.26	691.27
78	7425.99	713.96
79	6712.03	728.54

x	l_{x}	d_{x}
81	10000.00	1113.81
82	8886.19	1114.43
83	7771.76	1097.45
84	6674.31	1061.21
85	5613.10	1004.92
86	4608.18	928.94

Initial expenses are $\$ 3,000$, and renewal expenses are $\$ 80$ at the start of each subsequent year while both are alive, and $\$ 60$ at the start of each year while only one is alive. The interest rate is $i=0.04$. Use a profit test without reserves to determine the NPV of this policy at a risk discount rate of $i=0.10$.

We first perform the profit test in the both alive state

t	Premium $($ at $t-1)$	Expenses	Interest	Expected Death Benefits	Net Cash Flow
0		3000.00			-3000.00
1	49830	0	1993.20	6592.08	45231.12
2	49830	80	1990.00	8379.56	43360.44
3	49830	80	1990.00	10651.95	41088.05
4	49830	80	1990.00	13540.45	38199.55
5	49830	80	1990.00	17212.67	34527.33

Then in the husband alive wife dead state

t	Premium $($ at $t-1)$	Expenses	Interest	Expected Death Benefits	Net Cash Flow
0		3000.00			-3000.00
1	0	0	0	59185.00	-59185.00
2	0	60	-2.40	66816.54	-66878.94
3	0	60	-2.40	75433.42	-75495.82
4	0	60	-2.40	85160.51	-85222.91
5	0	60	-2.40	96143.41	-96205.81

Then in the wife alive husband dead state

t	Premium $($ at $t-1)$	Expenses	Interest	Expected Death Benefits	Net Cash Flow
0		3000.00			-3000.00
1	0	0	0	111381.00	-111381.00
2	0	60	-2.40	125411.45	-125473.85
3	0	60	-2.40	141209.97	-141272.37
4	0	60	-2.40	158999.21	-159061.61
5	0	60	-2.40	179031.19	-179093.59

Now we calculate the profit signature:

Year	$P($ Both $)$	P (Husband)	$P($ Wife $)$	$N C F($ Both $)$	$N C F$ (Husband)	$N C F$ (Wife)	Π_{t}
0	1	0	0	-3000			-3000
1	1.000000	0.000000	0.000000	45231.12	-59185.00	-111381.00	45231.12
2	0.836026	0.104789	0.052593	43360.44	-66878.94	-125473.85	22643.25
3	0.682324	0.195629	0.094852	41088.05	-75495.82	-141272.37	-133.78
4	0.541771	0.269955	0.125660	38199.55	-85222.91	-159061.61	-22298.60
5	0.416828	0.325771	0.144482	34527.33	-96205.81	-179093.59	-42824.83

The NPV at a risk discount rate $i=0.1$ is therefore
$45231.12(1.1)^{-1}+22643.25(1.1)^{-2}-133.78(1.1)^{-3}-22298.60(1.1)^{-4}-42824.83(1.1)^{-5}-3000=\$ 14,911.03$

