ACSC/STAT 4720, Life Contingencies II Fall 2016

Toby Kenney Homework Sheet 6 Model Solutions

Basic Questions

1. A policyholder aged 58 buys a 5-year type A universal life insurance policy. The death benefit is \$450,000. The policyholder pays a premium of \$6,400 at the start of each year. The lifetable for the policyholder is:

x	l_x	d_x
58	10000.00	137.45
59	9862.55	149.49
60	9713.06	162.35
61	9550.71	176.05
62	9374.66	190.57
63	9184.09	205.89

The cost of insurance is based on 105% of mortality in the above table and i = 0.04. Expense charges are 2% of the account value (after each premium is paid). Assume the credited interest rate is i = 0.05.

(a) Calculate the projected account value for the next 5 years.

t	AV_{t-1}	P_t	EC_t	CoI_t	interest	AV_t
1	0.00	6400	128.00	61.54	310.52	6520.98
2	6520.98	6400	258.42	65.93	303.78	13226.46
3	13226.46	6400	392.53	70.47	296.85	20121.63
4	20121.63	6400	530.43	75.16	289.72	27211.84
5	27211.84	6400	672.24	79.96	282.39	34502.63

(b) Suppose the insurer earns an interest rate, i = 0.06, and mortality follows the above table, initial expenses are \$1,300 and renewal expenses are 1% of account value each year after the first. Suppose there are no surrenders. Calculate the profit margin of this policy at a risk discount rate of i = 0.10.

t	AV_{t-1}	P_t	E_t	I_t	EDB_t	EAV_t	\Pr_t
0			1300				-1300.00
1	0.00	6400	0.00	384.00	64.95	6520.08	198.97
2	6520.98	6400	65.21	771.35	70.64	13224.48	331.99
3	13226.46	6400	132.26	1169.65	76.72	20118.37	468.76
4	20121.63	6400	201.22	1579.23	83.20	27207.05	609.39
5	27211.84	6400	272.12	2000.38	90.06	34496.06	753.99

The profit signature is then given by

t	P(in force)	\Pr_t	Π_t
0	1.0000000	-1300.00	-1300.00
1	1.0000000	198.97	198.97
2	0.9998626	331.99	331.94
3	0.9997131	468.76	468.63
4	0.9995507	609.39	609.12
5	0.9993747	753.99	753.52

At a risk discount rate of i = 0.1, the NPV is therefore

$$198.97(1.1)^{-1} + 331.94(1.1)^{-2} + 468.63(1.1)^{-3} + 609.12(1.1)^{-4} + 753.52(1.1)^{-5} - 1300 = \$391.22$$

The EPV of premiums received is

 $6000(1+0.9998626(1.1)^{-1}+0.9997131(1.1)^{-2}+0.9995507(1.1)^{-3}+0.9993747(1.1)^{-4}) = \$26,679.93$

The profit margin is therefore $\frac{391.22}{26679.93} = 1.466\%$.

2. A life aged 37 buys a 5-year type B universal life insurance policy with additional death benefit \$350,000. The annual premium is \$7,400. Mortality is as shown in the following table:

x	l_{x}	d_r
37	10000.00	11.86
38	9988.14	12.77
39	9975.37	13.75
40	9961.62	14.80
41	9946.82	15.93
42	9930.88	17.15
43	9913.73	18.47

The credited interest rate is i = 0.04. Cost of insurance is based on mortality in the above table and i = 0.02. Expense charges are 1.5% of account value.

(a) Project the account value for the next 5 years.

t	AV_{t-1}	P_t	EC_t	CoI_t	interest	AV_t
1	0.00	7400	111.00	406.96	275.28	7157.32
2	7157.32	7400	218.36	438.71	556.01	14456.26
3	14456.26	7400	327.84	472.98	842.22	21897.66
4	21897.66	7400	439.46	509.80	1133.94	29482.33
5	29482.33	7400	553.23	549.54	1431.18	37210.74

(b) Assume that the insurance company earns interest i = 0.08; Mortality is 105% of the mortality in the lifetable. Initial expenses are \$3,700; renewal expenses are 1% of premiums paid. The surrender charges and surrender rates are:

	~	
Year	Charge	rate
1	\$4,200	1%
$\mathcal{2}$	\$3,200	2%
\mathcal{B}	\$1,400	3%
4	\$400	3%
5	\$0	100%

Which of the following is the internal rate of return of the policy:

(i) i = 0.09906

(*ii*) i = 0.10320

(*iii*) i = 0.11382

 $(iv) \ i = 0.12034$

We calculate the profit vector

t	AV_{t-1}	P_t	E_t	I_t	EDB_t	ESB_t	EAV_t	\Pr_t
0			3700					-3700
1	0.00	7400	0	592.00	423.59	29.54	7077.34	419.58
2	7157.32	7400	74	1158.67	465.96	224.84	14149.03	738.24
3	14456.26	7400	74	1742.58	512.62	614.08	21211.45	1144.75
4	21897.66	7400	74	2337.89	563.80	871.17	28555.37	1559.23
5	29482.33	7400	74	2944.67	620.12	37151.14	0.00	1981.73

and the profit signature:

t	P(in force)	\Pr_t	Π_t
0	1.0000000	-3700.00	-3700.00
1	1.0000000	419.58	461.53
2	0.9899877	738.24	793.20
3	0.9701749	1144.75	1148.49
4	0.9410561	1559.23	1472.98
5	0.9128102	1981.73	1799.42

We calculate the NPV for the values given

i	NPV
0.09903	373.66
0.10320	321.11
0.11382	191.63
0.12034	115.09

So (iv) i = 0.12034 is closest to the internal rate of return. [In fact the IRR is i = 0.13051.]

3. A life aged 52 has an annual type A Universal life insurance policy that has been in effect for 12 years.

- The current account value is \$112,483.
- The annual premium is \$6,500.
- The expense charge is 1% of account value.
- The credited interest rate is i = 0.05.
- The total death benefit is \$300,000.
- The corridor factor requirement is 2.5.
- The insurance is priced using mortality rate $q_{52} = 0.000412$ and interest i = 0.03.

Calculate the cost of insurance charge for the year.

If the cost of insurance is C, then the value after premium, expense charges and cost of insurance is $118983 \times 0.99 - C = 117793.17 - C$. After applying interest the value is 1.05(117793.17 - C) = 123682.83 - 1.05C. The corridor factor applies if this is more than $\frac{300000}{2.5} = 120000$.

If the corridor factor does not apply, The additional death benefit is therefore 176317.17 + 1.05C and the cost of insurance is $(176317.17 + 1.05C)(1.03)^{-1} \times 0.000412 = 70.527 + 0.00042C$ We solve this to get $C = \frac{70.527}{1-0.00042} = \70.56 . This means the account value is more than \$120,000, so the corridor factor applies.

Since the corridor factor applies, the additional death benefit is 1.5(123682.83 - 1.05C) = 185524.24 - 1.575C. The cost of insurance is then $C = (185524.24 - 1.575C)(1.03)^{-1}0.000412 = 74.2097 - 0.00063C$. We solve this to get $C = \frac{74.2097}{1.00063} = \74.16 .

Standard Questions

4. Consider an annual type A universal life insurance policy with annual premiums of \$6,000, death benefit \$400,000 with no corridor factor requirement.

Surrender charges and rates are

Year	Charge	rate
1	\$2,200	2%
$\mathcal{2}$	\$1,300	2%
3	\$800	2%
4	0	2%
5	0	100%

Initial expenses are \$1,100, and renewal expenses are \$90. Cost of insurance is based on mortality $q_x = 0.000702$ and i = 0.05. The insurance company makes an annual rate of return equal to i = 0.08. A competitor offers a comparable policy with expense charge 1% and credited interest rate i = 0.05. If the company wants to charge an expense charge of 2% and base Cost of Insurance on $q_x = 0.00066$ and i = 0.04, what credited interest rate should it charge so that the NPV of its policy at a risk discount rate of i = 0.12 is the same as the competitor's policy?

- (*i*) i = 0.007917
- (*ii*) i = 0.011423
- (*iii*) i = 0.014042
- (iv) i = 0.017162

For the competitor's policy we project the account value

t	AV_{t-1}	P_t	EC_t	CoI_t	interest	AV_t
1	0.00	6000	60.00	263.44	283.83	5960.38
2	5960.38	6000	119.60	259.30	281.05	12160.56
3	12160.56	6000	181.61	254.99	278.17	18610.16
4	18610.16	6000	246.10	250.50	275.17	25319.24
5	25319.24	6000	313.19	245.83	272.05	32298.22

t	AV_{t-1}	P_t	E_i	$_t$ I_t	EDB_t	ESB_t	EAV_t	\Pr_t
1	0.00	6000	() 480.00	280.80	75.15	5837.08	286.97
2	5960.38	6000	90	949.63	280.80	217.06	11908.98	413.18
3	12160.56	6000	90) 1445.64	280.80	355.95	18225.16	654.29
4	18610.16	6000	90) 1961.61	280.80	506.03	24795.43	899.51
5	25319.24	6000	90) 2498.34	280.80	32275.55	0.00	1171.23
		-	t	P(in force)	\Pr_t	Π_t	-	
		-	1	1.0000000	189.77	286.97	-	
			2	0.9793120	413.18	404.63		
			3	0.9590521	654.29	627.50		
			4	0.9392112	899.51	844.83		

 $5 \quad 0.9197809 \quad 1171.23 \quad 1077.27$

So the NPV of the competitor's policy (ignoring initial expenses) is \$2,173.61.

If the company sets its credited interest so that the account values are A_i , then

t	AV_{t-1}	P_t	E_t	I_t	EDB_t	ESB_t	EAV_t	\Pr_t
1	0.00	6000	0	480	280.80	$0.0199868A_1 - 43.97$	$0.9793532A_1$	$6199.20 - 0.99934A_1$
2	A_1	6000	90	$472.80 + 0.08A_1$	280.80	$0.0199868A_2 - 25.98$	$0.9793532A_2$	$6102 + 1.08A_1 - 0.99934A_2$
3	A_2	6000	90	$472.80 + 0.08A_2$	280.80	$0.0199868A_3 - 15.99$	$0.9793532A_3$	$6102 + 1.08A_2 - 0.99934A_3$
4	A_3	6000	90	$472.80 + 0.08A_3$	280.80	$0.0199868A_4$	$0.9793532A_4$	$6102 + 1.08A_3 - 0.99934A_4$
5	A_4	6000	90	$472.80 + 0.08A_4$	280.80	$0.99934A_5$	0.00	$6102 + 1.08A_4 - 0.99934A_5$
t = P(in force)						Pr.		Π.

t	P(in force)	\Pr_t	Π_t
1	1.0000000	$6199.20 - 0.99934A_1$	$6199.20 - 0.99934A_1$
2	0.9793120	$6102 + 1.08A_1 - 0.99934A_2$	$5975.762 + 1.0576570A_1 - 0.9786657A_2$
3	0.9590521	$6102 + 1.08A_2 - 0.99934A_3$	$5852.135 + 1.0357762A_2 - 0.9584190A_3$
4	0.9392112	$6102 + 1.08A_3 - 0.99934A_4$	$5731.066 + 1.0143480A_3 - 0.9385912A_4$
5	0.9197809	$6102 + 1.08A_4 - 0.99934A_5$	$5612.502 + 0.9933632A_4 - 0.9191737A_5$

At a risk discount rate of i = 0.12 the NPV is

The company therefore wants to choose the credited interest rate so that

$$21291.16 - 0.05500343A_1 - 0.05386552A_2 - 0.05275115A_3 - 0.05165983A_4 - 0.5841515A_5 = 2173.61$$

The insurance company has $EC_t = 0.02(A_{t-1} + 6000), CoI_t = \frac{0.000702}{1.04}(400000 - A_t) = and$

$$\begin{aligned} A_t &= 0.98(A_{t-1} + 6000 - CoI_t)(1+i) \\ A_t &= 0.98(A_{t-1} + 6000 - 270 + 0.000675A_t)(1+i) \\ A_t(1-0.0006615(1+i)) &= 0.98(1+i)A_{t-1} + 5615.4(1+i) \\ A_t &= \frac{0.98(1+i)A_{t-1} + 5615.4(1+i)}{(1-0.0006615(1+i))} \end{aligned}$$

If we let $a = \frac{0.98(1+i)}{(1-0.0006615(1+i))}$ and $b = \frac{5615.4(1+i)}{(1-0.0006615(1+i))}$ then we get

$$A_{1} = b$$

$$A_{2} = ab + b$$

$$A_{3} = a^{2}b + ab + b$$

$$A_{4} = a^{3}b + a^{2}b + ab + b$$

$$A_{5} = a^{4}b + a^{3}b + a^{2}b + ab + b$$

 $0.5841515a^4b + 0.6358113a^3b + 0.6885625a^2b + 0.7424280ab + 0.7974314b = 19117.55$

Furthermore $b = \frac{5615.4}{0.98}a = 5730a$

$$3347.188a^5 + 3643.199a^4 + 3945.463a^3 + 4254.112a^2 + 4569.282a = 19117.55$$

$$3347.188a^5 + 3643.199a^4 + 3945.463a^3 + 4254.112a^2 + 4569.282a - 19117.55 = 0$$

Numerically, we find that the solution is a = 0.98841755, which gives

$$\frac{0.98(1+i)}{(1-0.0006615(1+i))} = 0.98841755$$
$$0.98(1+i) = 0.98841755(1-0.0006615(1+i))$$
$$0.9806538(1+i) = 0.98841755$$
$$(1+i) = 1.007917$$

So the credited interest rate is (i) i = 0.007917.