ACSC/STAT 4720, Life Contingencies II
 Fall 2016
 Toby Kenney
 Homework Sheet 7
 Model Solutions

Basic Questions

1. An equity-linked insurance policy has the following properties:

- Annual premiums are \$6,000.
- Expense charges are 10% of the first premium and 0.5% of subsequent premiums.
- There is a year-end management fee of 1.5% of fund value.
- There is a year-end death benefit of 150% of fund value.
- Surrenders receive full fund value.
- GMMB is the total of the premiums paid.
- The annual return is 6%.
- The insurer's initial expenses are $\$ 700$ plus 30% of the first premium.
- The insurer's renewal expenses are 0.5% of each subsequent premium.
- Mortality is given by $q_{x}=0.0003+0.00002 x$.
- The policy is sold to a life aged 47 .
- The policy matures in 5 years.
- Surrenders happen at a rate of 2\% per year.
(a) Calculate the projected fund value up to maturity of the policy.

t	Alloc. Prem.	Start	Int.	Fund Before	Mmgt. Charge	Fund Value
1	5400	0.00	324.00	5724.00	85.86	5638.14
2	5970	5638.14	696.49	12304.63	184.57	12120.06
3	5970	12120.06	1085.40	19175.46	287.63	18887.83
4	5970	18887.83	1491.47	26349.30	395.24	25954.06
5	5970	25954.06	1915.44	33839.50	507.59	33331.91

(b) Calculate the profit signature of the policy.

First we calculate the profit vector:

t	Unalloc. Prem.	Exp.	Int.	Mgmt. Charge	EDB	Pr_{t}
0		2500				-2500
1	600	0	36	85.86	3.50	718.36
2	30	30	0.0	184.57	7.64	176.93
3	30	30	0.0	287.63	12.09	275.54
4	30	30	0.0	395.24	16.87	378.37
5	30	30	0.0	507.59	22.00	485.59

This gives the profit signature:

P (in force)	$P r_{t}$	Π_{t}	
0	1.0000000	-2500	-2500
1	1.0000000	718.36	718.36
2	0.9787848	176.93	173.18
3	0.9580005	275.54	263.97
4	0.9376388	378.37	354.77
5	0.9176914	485.59	445.63

(c) If the annual return is $i=0.01$, what is the profit signature?

If the annual return is $i=0.01$, the projected fund value is:

t	Alloc. Prem.	Start	Int.	Fund Before	Mmgt. Charge	Fund Value
1	5400	0.00	54.00	5454.00	81.81	5372.19
2	5970	5372.19	113.42	11455.61	171.83	11283.78
3	5970	11283.78	172.54	17426.32	261.39	17164.92
4	5970	17164.92	231.35	23366.27	350.49	23015.78
5	5970	23015.78	289.86	29275.63	439.13	28836.50

So the profit vector is

t	Unalloc. Prem.	Exp.	Int.	Mgmt. Charge	EDB	GMMB	Pr_{t}
0		2500					-2500
1	600	0	6	81.81	3.33	0.0	684.48
2	30	30	0	171.83	7.11	0.0	164.73
3	30	30	0	261.39	10.99	0.0	250.41
4	30	30	0	350.49	14.96	0.0	335.53
5	30	30	0	439.13	19.03	1163.5	-743.40

The profit signature is therefore

P (in force)	$P r_{t}$	Π_{t}	
0	1.0000000	-2500	-2500
1	1.0000000	684.48	684.48
2	0.9787848	164.73	161.23
3	0.9580005	250.41	239.89
4	0.9376388	335.53	314.61
5	0.9176914	-743.40	-682.21

2. For an equity-linked insurance policy with the following properties:

- Annual premiums are \$10,000.
- Expense charges are 6% of the first premium and 1% of subsequent premiums.
- There is a year-end management fee of 0.6% of fund value.
- There is a year-end death benefit of 120% of fund value.
- Surrenders receive full fund value.
- GMMB is the total of the premiums paid.
- The insurer's initial expenses are $\$ 600$ plus 20% of the first premium.
- The insurer's renewal expenses are 0.4% of each subsequent premium.
- Mortality is given by $q_{x}=0.0002+0.00001 x$.
- The policy is sold to a life aged 52.
- The policy matures in 5 years.
- Surrenders happen at a rate of 1% per year.
(a) Use the following random numbers from a uniform distribution to simulate 5 years of annual returns following a log-normal distribution with $\mu=0.04$ and $\sigma=0.07$.

```
0.42398186
0.10803186 0.70858266
```

t	U_{t}	$0.07 \Phi^{-1}\left(U_{t}\right)+0.04$	Return
1	0.42398186	0.02657979	0.02693619
2	0.82146466	0.10446728	0.11011907
3	0.88083835	0.12254317	0.13036791
4	0.38797765	0.02007843	0.02028136
5	0.05112565	-0.07438252	-0.07168347

(b) Use the simulated returns to calculate the account values for the next 5 years.

t	Alloc. Prem.	Start	Int.	Fund Before	Mmgt. Charge	Fund Value
1	9400	0.00	253.20	9653.20	57.92	9595.28
2	9900	9595.28	2146.80	21642.08	129.85	21512.23
3	9900	21512.23	4095.15	35507.38	213.04	35294.33
4	9900	35294.33	916.60	46110.94	276.67	45834.27
5	9900	45834.27	-3995.23	51739.04	310.43	51428.61

(c) Calculate the profit signature for the policy for these simulated returns.

First we calculate the profit vector:

t	Unalloc. Prem.	Exp.	Int.	Mgmt. Charge	EDB	ESB	$P r_{t}$
0		2600				-2600	
1	600	0	16.16	57.92	1.38	0	672.70
2	100	40	6.61	129.85	3.14	0	193.32
3	100	40	7.82	213.04	5.22	0	275.64
4	100	40	1.22	276.67	6.88	0	331.01
5	100	40	-4.30	310.43	7.82	0	358.32

This gives the profit signature:

P (in force)	$P r_{t}$	Π_{t}	
0	1.0000000	-2600	-2600
1	1.0000000	672.70	672.70
2	0.9892872	193.32	191.25
3	0.9786794	275.64	269.77
4	0.9681756	331.01	320.47
5	0.9577750	358.32	343.19

Standard Questions

3. An equity-linked insurance policy has the following properties:

- Annual premiums are \$11,000.
- Expense charges are 10% of the first premium and 1% of subsequent premiums.
- There is a year-end management fee of 1.3% of fund value.
- There is a year-end death benefit of 150% of fund value.
- Surrenders receive full fund value.
- GMMB is 110% of the total of the premiums paid.
- The insurer's initial expenses are $\$ 200$ plus 20% of the first premium.
- The insurer's renewal expenses are 0.5% of each subsequent premium.
- Mortality is given by $q_{x}=0.0002+0.00003 x$.
- The policy is sold to a life aged 55.
- The policy matures in 5 years.
- Surrenders happen at a rate of 2\% per year.
- Annual returns are log-normally distributed with $\mu=0.04$ and $\sigma=0.18$.

Simulate 5000 sets of 5-years' worth of annual returns. [Please include your code with your answer.]
(a) Calculate the expected NPV of the policy at a risk discount rate of 10%.

My simulation gives the value
$-\$ 3,217.23$
(b) Calculate the value of the Management expense fee needed to ensure that the probability of a net loss (negative NPV) is at most 10%, and the expected NPV is at least $\$ 500$.
For my simulation, a management fee of 79% is needed to ensure the probability of net loss is at most 10%. This was easily enough to ensure that the expected NPV is at least $\$ 500$.
4. For the policy in the previous question, suppose the fund value at the beginning of year 4 (before premiums are received) is $\$ 39,230$. Use a simulation to calculate a 95% quantile reserve at the start of year 4 , if the reserve makes an annual return of $i=0.03$.
We simulate 5,000 sets of returns in Years 4 and 5 . If the returns are i_{4} and i_{5} respectively, then the account value is

t	4	5
Alloc. Prem.	10890	10890
Start	39230	$49468.44\left(1+i_{4}\right)$
Fund Before	$50120\left(1+i_{4}\right)$	$\left(10890+49468.44\left(1+i_{4}\right)\left(1+i_{5}\right)\right.$
Mmgt. Charge	$651.56\left(1+i_{4}\right)$	$141.57\left(1+i_{5}\right)+643.09\left(1+i_{4}\right)\left(1+i_{5}\right)$
Fund Value	$49468.44\left(1+i_{4}\right)$	$10748.43\left(1+i_{5}\right)+48825.35\left(1+i_{4}\right)\left(1+i_{5}\right)$

This gives a profit vector:

t	4	5
Unalloc. Prem.	110	110
Exp.	55	55
Int.	$55 i_{4}$	$55 i_{5}$
Mgmt. Charge	$651.56\left(1+i_{4}\right)$	$141.57\left(1+i_{5}\right)+771.40\left(1+i_{4}\right)\left(1+i_{5}\right)$
EDB	$28.79063\left(1+i_{4}\right)$	$6.352322\left(1+i_{5}\right)+28.85578\left(1+i_{4}\right)\left(1+i_{5}\right)$
GMMB		$\left(56500-10748.43\left(1+i_{5}\right)-48825.35\left(1+i_{4}\right)\left(1+i_{5}\right)\right)_{+}$
$P r_{t}$	$787.3241\left(1+i_{4}\right)$	$300.22\left(1+i_{5}\right)+742.54422\left(1+i_{4}\right)\left(1+i_{5}\right)-G M M B$

The profit signature is

t	4	5
$P($ in force $)$	1.0000000	0.9780988
${P r_{t}}^{\prime}$	$787.3241\left(1+i_{4}\right)$	$300.22\left(1+i_{5}\right)+742.54422\left(1+i_{4}\right)\left(1+i_{5}\right)-G M M B$
Π_{t}	$787.3241\left(1+i_{4}\right)$	$293.645\left(1+i_{5}\right)+726.2816\left(1+i_{4}\right)\left(1+i_{5}\right)-0.9780988 G M M B$

The NPV of the policy at the rate $i=0.03$ earned by the reserves is therefore

$$
\begin{aligned}
& (1.03)^{-1} 787.3241\left(1+i_{4}\right)+(1.03)^{-2}\left(293.645\left(1+i_{5}\right)+726.2816\left(1+i_{4}\right)\left(1+i_{5}\right)-0.9780988 G M M B\right) \\
= & 764.3923301\left(1+i_{4}\right)+276.7885757\left(1+i_{5}\right)+684.5900650\left(1+i_{4}\right)-0.9219519 G M M B
\end{aligned}
$$

The reserve should therefore be -1 times the 5 th percentile of this NPV. We note that if the GMMB is zero, then this NPV is positive, so the reserve is actually 0 . Therefore, we can assume the GMMB is positive, and instead take the 5 th percentile of

$$
\begin{aligned}
& (1.03)^{-1} 787.3241\left(1+i_{4}\right)+(1.03)^{-2}\left(293.645\left(1+i_{5}\right)+726.2816\left(1+i_{4}\right)\left(1+i_{5}\right)-0.9780988 G M M B\right) \\
= & 764.3923301\left(1+i_{4}\right)+276.7885757\left(1+i_{5}\right)+684.5900650\left(1+i_{4}\right)\left(1+i_{5}\right)-0.9219519\left(56500-10748.43\left(1+i_{5}\right)-48825.35\left(1+i_{4}\right)\left(1+i_{5}\right)\right) \\
= & 764.3923301\left(1+i_{4}\right)+10186.32\left(1+i_{5}\right)+45699.21\left(1+i_{4}\right)\left(1+i_{5}\right)-55778.09
\end{aligned}
$$

For my simulation, from 5,000 simulations, the 250 th value is -13424.44 and the 251 st is -13404.41 , so the quantile reserve is $\frac{13424.44+13404.41}{2}=\$ 13,414.43$.

