ACSC/STAT 4720, Life Contingencies II

FALL 2021
Toby Kenney
Homework Sheet 2
Due: Thursday 7th October: 14:30

Basic Questions

1. The following is a standard multiple decrement table giving probabilities of death (decrement 1) and surrender (decrement 2) for a life insurance policy:

x	l_{x}	$d_{x}^{(1)}$	$d_{x}^{(2)}$
51	10000.00	19.48	3.58
52	9976.94	22.19	3.48
53	9951.27	25.24	3.38
54	9922.64	28.64	3.31
55	9890.70	32.44	3.25

A life who is in poor health has the following lifetable.

x	l_{x}	d_{x}
51	10000.00	443.73
52	9556.27	509.55
53	9046.72	579.76
54	8466.95	652.25
55	7814.70	723.74

Use this lifetable and the standard multiple decrement table to produce a multiple decrement table for this life, assuming that this life has standard surrender probabilities, using:
(a) UDD in the multiple decrement table.
(b) UDD in the independent decrements.
2. The mortalities for a husband and wife (whose lives are assumed to be independent) aged 35 and 62 respectively, are given in the following tables:

x	l_{x}	d_{x}	x	l_{x}	d_{x}
35	10000.00	25.33	62	10000.00	110.82
36	9974.67	26.90	63	9889.18	117.39
37	9947.77	28.60	64	9771.79	124.26
38	9919.17	30.42	65	9647.53	131.42
39	9888.75	32.38	66	9516.11	138.87
40	9856.37	34.49	67	9377.24	146.61
41	9821.88	36.76	68	9230.63	154.62
42	9785.11	39.20	69	9076.00	162.89
43	9745.91	41.82	70	8913.11	171.40
44	9704.08	44.64	71	8741.71	180.13
45	9659.45	47.65	72	8561.58	189.04

The interest rate is $i=0.04$.
(a) They want to purchase an 8 -year joint life insurance policy with a death benefit of $\$ 1,200,000$. Annual premiums are payable while both are alive. Calculate the net premium for this policy using the equivalence principle.
(b) They want to purchase a 9 -year last survivor insurance with a benefit of $\$ 12,000,000$. Premiums are payable while either life is alive. Calculate the net premium for this policy using the equivalence principle.
3. A husband is 76 ; the wife is 41 . Their lifetables while both are alive, and the lifetable for the wife if the husband is dead, are given below:

x	l_{x}	d_{x}
76	10000.00	1473.82
77	8526.18	1409.36
78	7116.83	1319.45
79	5797.37	1205.58
80	4591.79	1071.07
81	3520.72	921.20
x	l_{x}	d_{x}
41	10000.00	161.87
42	9838.13	186.25
43	9651.88	213.77
44	9438.12	244.61
45	9193.51	278.89
46	8914.62	316.59

x	l_{x}	d_{x}
41	10000.00	14.70
42	9985.30	15.94
43	9969.37	17.30
44	9952.07	18.80
45	9933.27	20.44
46	9912.83	22.25

Calculate the probability that the wife is alive in 5 years time. Use the UDD assumption for handling changes to the wife's mortality in the year of the husband's death.

Standard Questions

4. The following is a multiple decrement table giving probabilities of surrender (decrement 1) and death (decrement 2) for a life insurance policy:

x	l_{x}	$d_{x}^{(1)}$	$d_{x}^{(2)}$
44	10000.00	21.36	6.74
45	9971.90	19.85	11.25
46	9940.80	18.47	15.95
47	9906.39	17.21	20.89
48	9868.29	16.08	26.10
49	9826.11	15.04	31.65
50	9779.42	14.10	37.59
51	9727.73	13.24	43.97
52	9670.52	12.46	50.83
53	9607.23	11.75	58.25
54	9537.23	11.10	66.28

A life insurance policy pays a benefit of $\$ 640,000$ at the end of the year of death. Premiums are payable at the beginning of each year. Calculate the premium for a 10-year policy sold to a life aged 44 if the interest rate is $i=0.08$.
5. A couple want to receive the following:

- While both are alive, they would like to receive a pension of $\$ 140,000$ per year.
- If the husband is alive and the wife is not, they would like to receive a pension of $\$ 90,000$ per year.
- If the wife is alive and the husband is not, they would like to receive a pension of $\$ 70,000$ per year.
- When the husband dies: if the wife is still alive, they would like a death benefit of $\$ 700,000$; otherwise, they would like a death benefit of $\$ 300,000$.
- When the wife dies: if the husband is still alive, they would like a death benefit of $\$ 400,000$; otherwise, they would like a death benefit of $\$ 200,000$.

Construct a combination of insurance and annuity policies that achieve this combination of benefits.
6. A husband aged 61 and wife aged 54 have the following transition intensities:

$$
\begin{aligned}
& \mu_{x y}^{01}=0.005 y-0.09 \\
& \mu_{x y}^{02}=0.003 x-0.027 \\
& \mu_{x y}^{03}=0.08 \\
& \mu_{x}^{13}=0.006 x-0.022 \\
& \mu_{y}^{23}=0.012 y-0.024
\end{aligned}
$$

They want to purchase a last survivor insurance, which will pay a benefit of $\$ 1,700,000$ when the second life dies. Premiums are payable continuously while either life is alive. Force of interest is $\delta=0.04$.
(a) Calculate the annual rate of continuous premium.
(b) Calculate the policy value after 3 years if the husband is dead and the wife is alive.

