ACSC/STAT 4720, Life Contingencies II

FALL 2021
Toby Kenney
Homework Sheet 4
Model Solutions

1. An insurance company uses a Lee-Carter model and fits the following parameters:

$$
c=-0.3 \quad \sigma_{k}=1.2 \quad K_{2021}=-2.25 \quad \alpha_{36}=-1.74 \quad \beta_{36}=1.11
$$

It estimates that its reserves are adequate in a given year provided $q(36, t)<$ 0.0034. Calculate the probability that its reserves are still adequate in 7 years' time. Use UDD to calculate the relation between q_{x} and m_{x}.

Recall that $m_{x}=\frac{q_{x}}{\int_{0}^{1}+p_{x} d t}$. Under UDD, we have

$$
\int_{0}^{1}{ }_{t} p_{x} d t=\int_{0}^{1}\left(1-t q_{x}\right) d t=\left[t-q_{x} \frac{t^{2}}{2}\right]_{0}^{1}=1-\frac{q_{x}}{2}
$$

Therefore, we have that $q(36, t)<0.0034$ if and only if $m(34, t)<\frac{0.0034}{0.9983}=$ 0.00340578984273 .

The Lee-Carter model gives $\log (m(34,2028))=\alpha_{34}+\beta_{34} K_{2028}=-1.74+$ $1.11 K_{2028}$. We therefore have $m(34, t)<0.00340578984273$ if

$$
\begin{aligned}
-1.74+1.11 K_{2028} & <\log (0.00340578984273)=-5.68227840072 \\
K_{2028} & <-3.55160216281
\end{aligned}
$$

We have $K_{2028}=K_{2021}+7 c+\sigma_{k}\left(Z_{2022}+Z_{2023}+Z_{2024}+Z_{2025}+Z_{2026}+\right.$ $\left.Z_{2027}+Z_{2028}\right)=-2.25-2.1+1.2\left(Z_{2022}+Z_{2023}+Z_{2024}+Z_{2025}+\right.$ $\left.Z_{2026}+Z_{2027}+Z_{2028}\right)$). Therefore we have $K_{2028}<-3.55160216281$ if and only if $Z_{2022}+Z_{2023}+Z_{2024}+Z_{2025}+Z_{2026}+Z_{2027}+Z_{2028}<$ $\frac{-3.55160216281-(-4.35)}{1.2}=0.665331530992$. Since each Z_{t} is i.i.d. standard normal. $\stackrel{1}{Z}_{2022}+Z_{2023}+Z_{2024}+Z_{2025}+Z_{2026}+Z_{2027}+Z_{2028}$ is normal with mean 0 and variance 7 , so $P\left(Z_{2022}+Z_{2023}+Z_{2024}+Z_{2025}+Z_{2026}+Z_{2027}+\right.$ $\left.Z_{2028}<0.665331530992\right)=\Phi\left(\frac{0.665331530992}{\sqrt{7}}\right)=\Phi(0.251471681487)=$ 0.599275273117 .
2. An insurance company uses a Cairns-Blake-Dowd model with the following parameters:

$$
\begin{aligned}
K_{2021}^{(1)} & =-9.37 & K_{2021}^{(2)} & =0.11 & c^{(1)} & =-0.12 \\
\sigma_{k_{1}} & =0.7 & \sigma_{k_{2}} & =0.06 & \rho & =0.4
\end{aligned}
$$

(a) Use this scale to calculate the median value of $q(33,2029)$.

Under the CBD model, we have $\log \left(\frac{q(33,2029)}{1-q(33,2029)}\right)=K_{2029}^{(1)}+K_{2029}^{(2)}(33-$ 46). Since $\log \left(\frac{q(33,2029)}{1-q(33,2029)}\right)$ is an increasing function of $q(33,2029)$, the median value of $q(33,2029)$ corresponds to the median value of $K_{2029}^{(1)}+$ $K_{2029}^{(2)}(33-46)=K_{2029}^{(1)}-13 K_{2029}^{(2)} . \quad K_{2029}^{(1)}$ is normally distributed with mean $K_{2021}^{(1)}+8 c^{(1)}$, and $K_{2029}^{(2)}$ has mean $K_{2021}^{(2)}+8 c^{(2)}$. Therefore the mean of $K_{2029}^{(1)}-13 K_{2029}^{(2)}$ is $K_{2021}^{(1)}+8 c^{(1)}-13\left(K_{2021}^{(2)}+8 c^{(2)}\right)=-9.37+8 \times$ $(-0.12)-13(0.11+8 \times 0.02)=-13.84$. Since $K_{2029}^{(1)}-13 K_{2029}^{(2)}$ is normally distributed, the mean is the median, so the median value of $q(33,2029)$ is $\frac{e^{-13.84}}{1+e^{-13.84}}=9.75807039208 \times 10^{-7}$.
(b) A life aged 72 will only be approved for life insurance if her mortality is less than 0.1. How long can she wait to purchase a life insurance contract and still have a 70\% probability of being approved? [Remember that her age also increases by 1 each year.]

If $q(x, t)<0.1$, we have $\log \left(\frac{q(x, t)}{1-q(x, t)}\right)<\log \left(\frac{0.1}{0.9}\right)=-2.19722457734$, so we want to find the probability that $K_{2021+t}^{(1)}+(26+t) K_{2021+t}^{(2)}<$ -2.19722457734 .
We have that $K_{2021+t}^{(1)}=-9.37-0.12 t+0.7\left(Z_{2022}^{(1)}+\cdots+Z_{2021+t}^{(1)}\right)$ and $K_{2021+t}^{(2)}=0.11+0.02 t+0.7\left(Z_{2022}^{(1)}+\cdots+Z_{2021+t}^{(1)}\right)$ are both normally distributed. Therefore, $K_{2021+t}^{(1)}+(26+t) K_{2021+t}^{(2)}=-9.37-0.12 t+$ $0.7\left(Z_{2022}^{(1)}+\cdots+Z_{2021+t}^{(1)}\right)+(26+t)\left(0.11+0.02 t+0.06\left(Z_{2022}^{(1)}+\cdots+Z_{2021+t}^{(1)}\right)\right)$ $K_{2021+t}^{(1)}+(26+t) K_{2021+t}^{(2)}=-6.51+0.51 t+0.02 t^{2}+0.7\left(Z_{2022}^{(1)}+\cdots+\right.$ $\left.\left.Z_{2021+t}^{(1)}\right)+(26+t) 0.06\left(Z_{2022}^{(2)}+\cdots+Z_{2021+t}^{(2)}\right)\right)$ This has mean $-6.51+0.51 t+$ $0.02 t^{2}$ and variance $t\left(0.7^{2}+0.06^{2}(26+t)^{2}+2 \times 0.7 \times 0.06(26+t) \times 0.4\right)=$ $3.7972 t+0.2208 t^{2}+0.0036 t^{3}$
The probability that she is approved in t year's time is therefore $\Phi\left(\frac{6.51-0.51 t-0.02 t^{2}-2.19722457734}{\sqrt{3.7972 t+0.2208 t^{2}+0.0036 t^{3}}}\right)$. This probability is more than 70% provided

$$
\begin{aligned}
\Phi\left(\frac{-6.51+0.51 t+0.02 t^{2}+2.19722457734}{\sqrt{3.7972 t+0.2208 t^{2}+0.0036 t^{3}}}\right) & <0.3 \\
\frac{-4.31277542266+0.51 t+0.02 t^{2}}{\sqrt{3.7972 t+0.2208 t^{2}+0.0036 t^{3}}} & <-0.524400512708
\end{aligned}
$$

Numerically, we see that this is first satisfied for $t<4$ years, so she can wait for 3 years.

Standard Questions

3. An insurance company uses a Lee-Carter model and fits the following parameters:

$$
c=-0.5 \quad \sigma_{k}=1.3 \quad K_{2021}=-5.12
$$

And the following values of α_{x} and β_{x} :

x	α_{x}	β_{x}
33	-6.788236	0.2228085
34	-6.750172	0.1375526
35	-6.755374	0.1979110
36	-6.720697	0.1529246
37	-6.694897	0.2131581

Using the approximation $m(x, t) \approx q(x, t)$, calculate the probability that a life aged 33 dies at age 35 under this model.

The probability that the life dies aged 35 is $\mathbb{E}((1-q(33,2021))(1-q(34,2022)) q(35,2023)))$
Using the approximation $m(x, t) \approx q(x, t)$, we have $\log (q(x, t))=\alpha_{x}+$ $\beta_{x} K_{t}$. We have that

$$
\begin{aligned}
\log (q(33,2021)) & =-6.788236+0.2228085 \times-5.12=-7.92901552 \\
\log (q(34,2022)) & =-6.750172+0.1375526 \times\left(-5.12-0.5+1.3 Z_{2022}\right) \\
& \left.=-7.523217612+0.17881838 Z_{2022}\right) \\
\log (q(35,2023)) & =-6.755374+0.1979110 \times\left(-5.12-1.0+1.3\left(Z_{2022}+Z_{2023}\right)\right) \\
& \left.=-7.96658932+0.2572843\left(Z_{2022}+Z_{2023}\right)\right)
\end{aligned}
$$

The probability we want to calculate is

$$
\begin{aligned}
& \mathbb{E}((1-q(33,2021))(1-q(34,2022)) q(35,2023))) \\
& \quad=(1-q(33,2021)) \mathbb{E}((1-q(34,2022)) q(35,2023)) \\
& \quad=(1-q(33,2021))(\mathbb{E} q(35,2023)-\mathbb{E}(q(34,2022) q(35,2023))) \\
& =0.99963985921(\mathbb{E} q(35,2023)-\mathbb{E}(q(34,2022) q(35,2023)))
\end{aligned}
$$

We know that $q(35,2023)$ is log-normal with parameters $\mu=-7.96658932$ and $\sigma^{2}=2 \times 0.2572843^{2}=0.132390422053$. Furthermore
$\log (q(34,2022) q(35,2023))=\log (q(34,2022))+\log (q(35,2023))=\left(-7.523217612+0.17881838 Z_{2022}\right)+(-7$
so $q(34,2022) q(35,2023)$ is \log-normal with $\mu=-15.489806932$ and $\sigma^{2}=$ $0.43610268^{2}+0.2572843^{2}=0.25638075853$ This gives $\mathbb{E}(q(35,2023))=$ $e^{-7.96658932+\frac{0.132390422053}{2}}=0.000370597455893$. Similarly $\mathbb{E}(q(34,2022) q(35,2023))=$ $e^{-15.489806932+\frac{0.25638075853}{2}}=2.13076079832 \times 10^{-7}$. Thus, the probability that the life dies aged 35 is
$0.99963985921\left(0.000370597455893-2.13076079832 \times 10^{-7}\right)=0.00037025098929$
4. An insurance company uses a Cairns-Blake-Dowd model with the following parameters:

$$
\begin{array}{rlrlr}
K_{2021}^{(1)} & =-4.33 & K_{2021}^{(2)} & =0.22 & c^{(1)}
\end{array}=-0.15 \quad c^{(2)}=0.01
$$

It has not yet decided on a suitable value of ρ. The company sells both life insurance and annuity contracts. It's expected profit in 2024 (in millions) is $36+22.4 q(58,2024)-38.8 q(73,2024)$. In order to satisfy the regulators, it needs to ensure that the expected profit has a 95% probability of being positive. For what values of ρ is this achieved?
(i) $\rho<0.24$
(ii) $\rho>0.24$
(iii) $\rho<0.33$
(iv) $\rho>0.33$
(v) $\rho<0.45$
(vi) $\rho>0.45$
(vii) $\rho<0.52$
(viii) $\rho>0.52$

Justify your answer. [You may need to use simulation to numerically estimate the probability of profit.]

We have that $\log \left(\frac{q(58,2024)}{1-q(58,2024)}\right)=K_{2024}^{(1)}+5 K_{2024}^{(2)}$ and $\log \left(\frac{q(73,2024)}{1-q(73,2024)}\right)=$ $K_{2024}^{(1)}+20 K_{2024}^{(2)}$ Recalling that $K_{2024}^{(1)}=K_{2021}^{(1)}+3 c^{(1)}+\sigma_{k_{1}}\left(Z_{2022}^{(1)}+Z_{2023}^{(1)}+\right.$ $\left.Z_{2024}^{(1)}\right)=-4.78+0.8\left(Z_{2022}^{(1)}+Z_{2023}^{(1)}+Z_{2024}^{(1)}\right)$ and $K_{2024}^{(2)}=K_{2024}^{(2)}+3 c^{(2)}+$ $\sigma_{k_{1}}\left(Z_{2022}^{(1)}+Z_{2023}^{(1)}+Z_{2024}^{(1)}\right)=0.25+0.06\left(Z_{2022}^{(1)}+Z_{2023}^{(1)}+Z_{2024}^{(1)}\right)$ We have that $\sigma_{k_{1}} Z_{t}^{(1)}+a \sigma_{k_{2}} Z_{t}^{(2)}$ is normal with mean 0 and variance $\sigma_{k_{1}}^{2}+a^{2} \sigma_{k_{2}}^{2}+$ $2 a \rho \sigma_{k_{1}} \sigma_{k_{2}}=0.64+0.0036 a^{2}+0.096 \rho a$, so $\sum_{t=2022}^{2024} \sigma_{k_{1}} Z_{t}^{(1)}+a \sigma_{k_{1}} Z_{t}^{(2)}$ is normal with mean 0 and variance $3\left(0.64+0.0036 a^{2}+0.096 \rho a\right)=1.92+$ $0.0108 a^{2}+0.288 \rho a$ Finally, the covariance of $\sum_{t=2021}^{2024} \sigma_{k_{1}} Z_{t}^{(1)}+a_{1} \sigma_{k_{1}} Z_{t}^{(2)}$ and $\sum_{t=2021}^{2024} \sigma_{k_{1}} Z_{t}^{(1)}+a_{2} \sigma_{k_{1}} Z_{t}^{(2)}$ is

$$
\begin{aligned}
& \frac{1}{2}\left(\operatorname{Var}\left(\sum_{t=2022}^{2024} 2 \sigma_{k_{1}} Z_{t}^{(1)}+\left(a_{1}+a_{2}\right) \sigma_{k_{2}} Z_{t}^{(2)}\right)-\operatorname{Var}\left(\sum_{t=2022}^{2024} \sigma_{k_{1}} Z_{t}^{(1)}+a_{1} \sigma_{k_{2}} Z_{t}^{(2)}\right)-\operatorname{Var}\left(\sum_{t=2022}^{2024} \sigma_{k_{1}} Z_{t}^{(1)}+a_{2} \sigma_{k_{2}} Z_{t}^{(2)}\right)\right) \\
& \frac{1}{2}\left(4\left(1.92+0.0108\left(\frac{a_{1}+a_{2}}{2}\right)^{2}+0.288 \rho \frac{\left(a_{1}+a_{2}\right)}{2}\right)-\left(1.92+0.0108 a_{1}^{2}+0.288 \rho a_{1}\right)-\left(1.92+0.0108 a_{2}^{2}+0.288 \rho a_{2}\right)\right) \\
& =1.92+0.0108 a_{1} a_{2}+0.288 \rho\left(\frac{a_{1}+a_{2}}{2}\right)
\end{aligned}
$$

In particular, we have that $\log \left(\frac{q(58,2024)}{1-q(58,2024)}\right)$ and $\log \left(\frac{q(73,2024)}{1-q(73,2024)}\right)$ jointly follow a multivariate normal distribution with mean $-3.53,0.22$ and covariance matrix

$$
\left(\begin{array}{ll}
2.19+1.44 \rho & 3+3.6 \rho \\
3+3.6 \rho & 6.24+5.76 \rho
\end{array}\right)
$$

We use a simulation to estimate the probability that $36+22.4 q(58,2024)-$ $38.8 q(73,2024)>0$ for different values of ρ.

```
library (MASS)
HW4Q4evaluateProb<-function(rho){
# This function doesn't work with vector inputs!!!!
    a<-mvrnorm(1000000,c(-3.53,0.22),rbind(c(2.19+1.4*rho , 3+3.6*rho ), c(3+3.6*rho , 6.24+5.76*rho )))
ea<-exp(a)
q<-ea/(1+ea)
return (mean (q%*%c(22.4,-38.8)>-36))
}
```

My simulation gives the following probabilities:

ρ	$P(36+22.4 q(58,2024)-38.8 q(73,2024)>0)$
0.24	0.955233
0.33	0.949648
0.45	0.943467
0.52	0.939586

We see that the probability of a profit is a decreasing function of ρ, and that it is 0.95 when $\rho=0.33$. Thus the condition is achieved for $\rho<0.33$.

