MATH 3090, Advanced Calculus I
Fall 2006

Final Examination
Model Solutions
1 Which of the following series of functions converge uniformly on the in-

terval (0,1)?
(a) Yot oy

As z > 0, ﬁ < n—lg, so this series converges uniformly by the Weier-
strass M-test with M,, = .

o0 1
() S5, ik

_ 1 1
The error in the Nth partial sumis Y7 ., (1+1)n Bk ——
W' If we choose € = %, given any IV, we can choose x = 2% —1 (so

that (x + 1) = 2). Then W > 1 (z <1,s0 1 >1). Therefore, the
series does not converge uniformly.

2 Which of the following series converge? For series which converge, is
the convergence absolute? Justify your answers. (You may assume con-
vergence of geometric series and Y ., nip for p > 1, and divergence of

>omet i forp < 1)
(a) ZZ‘Lo(—l)” 2n3+5

% is a decreasing function of n, so by the alternating series test, the
n+5
series converges. For n > 5, TB’% > %, so the series does not converge
absolutely by comparison to ZZOZE) %
1X4X7X---X(3n+1)
(b) Zn =0 2Xx5x8x%---x(3n+5)
L(n+3)

Ix4x7Tx - x(3n+1) =37+

, while 2x4x8x - x (3n+5) =

r(z) ’
8
3"+2F¥E;)3>. Therefore, the series is:
3
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and we know that 11:((;:)+Ta) — 1 as x — 00, SO taking z = (n+3%) and
o = 2, for large n, the series is approximately > 7)4, which converges
n+3

—_



by comparison to Y -4 (% > 1). Since all the terms are positive, the
n3

convergence is absolute.

Prove that the ratio test works — i.e. show that if a, is a sequence of posi-
twe real numbers, and “ — x <1 asn — oo, then Y~ a, converges.
[You may assume the compamson test and convergence of geometric se-
ries.]

Theorem 1. If a, is a sequence of positive real numbers, and “*=1 —
n
z <1 asn— oo, then Y.~ a, converges.

Proof. Since xz < 1, there is an € > 0 such that x+e¢ < 1. As % — X, we

can choose N so that for n > N,

fnt1 fx’ < ¢, and thus 4 < 2 4.
77/ n

This means that ax 1 < (v+e€)ay, anio < (r+e)anii < (v+¢€)%ay, and
so on. In general, ay 1 < (z + €)*any (We can prove this by induction).
However, the series Y >7 , an(z + €)* is a geometric series, with common
ratio less than 1, so it converges. Therefore, > ° \ a, converges by the
comparison test. Also, Zg;ol an is a finite sum, so it converges. Therefore,
D oo° o Gn cOnverges. O

Find the radius of convergence of the following series.

w?n
() Xnio =nrs)

22" T24" (n43) _ z%(n+3)
z2n4ntl(n44) = 4(n+4) *

The rati

However, as n — oo, Z—ii — 1, so the ratio of consecutive terms a"“ T

as n — oo. Therefore, by the ratio test, the series converges whenever
|z| < 2, and diverges whenever |z| > 2. Thus the radius of convergence is

2.

QN 1

(b) Xonzo 55

. . . . L gndlgndlp

The ratio M of consecutive terms in this series is 2—2% 1 — For
an 2nzn (n+1)! n+1

any value of z, % — 0 as n — oo. Therefore, the series converges for all

x, so its radius of convergence is infinite.

Find the Fourier series for the following functions: [You may use either
the Y07 cn€™® or the a9+ pr o an cos(naz)+by, sin(na) form for the
Fourier series]

(a) f(x) =22 for 0 < x < 2w, and f 2w-periodic.

oo nT
Zn:—oo Cnt



The coeﬁi;:ients ¢, are 2given by ¢, = i fo% z2e~™%dg. For n = 0, we get
co = 5= [ @?dx = 43-. For n # 0, we integrate by parts:

1 2 ) 1 2 —inx 27 2m QpeinT
Cn = 7/ x2€71nzdx [ l:“:| _/ de
2m Jo 2m —in |, 0 —in
1 [ 4n? 2ge~ine " I ge—inw
(P [
2m \ —in -n 0 0 -n
1 472 n dr\ 2 27
S 2r \—in n%2/) n2 n
Therefore, the Fourier series is f(x) = % + 2 o (% + 2 eine,
300 + Y op o an cos(nz) + by, sin(nz)
The calculation of ag is similar to that of ¢y, and gives ag = %. The

other coefficients are given by

And

bn

So the Fourier

1 27 )
ap = — x” cos(nx)dx
T Jo
_ 1 ([a?sin(na) _/2<>d
T n 0 0 n
_ 1 ([2zcos(na) 2”_/2”2008(71@6553
K n? o Jo o n?
4
T2
1 2m 5 .
=— x” sin(nzx)dz
T Jo
1 ([_x?wwrl/%mwdw)
T n o Jo n
L 4n®  [2zsin(nz)]™ (" 2sin(na)
AT e, ) e
0 0
_an
n
series is f(x) = % +30, 4COTSL(2n:v) _ 4m Siz(nm)



] if —m<z<-—3% .
(b) f(JC)—{ 7% if-T<z<n and f 2m-periodic.
ZZO:_OO Cneina:

The coefficients ¢,, for n £ 0 are given by

Cn = 1 /Tr f(x)e ™o dx =

T J—m

1 % —inx 1 " —inx
27T</ﬂe da:—&—i/w—e dx)

1 (z” (=) (=) - w) _ 3(gn+1 — j2nt1)

- o —in —2in

4mn

and ¢y = 5= (f,f ldx + ff% f%dx)
6 18) = T P e

- ™

é. Therefore, the Fourier series

Tag + X0 an cos(nz) + by, sin(nz)

From the above calculation, we get ap = f%, while:
1 - 1 (7 1 [sin(—2 sin(—%
n = 5- (/_ﬂ cos(nx)dx + 3 /—g —cos(nx)d;p> = ( ln(ngﬂ') n 1n(2n27T)>
0 if n is even
= 4%)?; %f n = 4k 4 1 for some %nteger k
1o, if n =4k + 3 for some integer k
and
, L /—5.( )d+1/” in(n)d
n = — sin(nz)dx + = —sin(nx)dx
27(' —_r 2 _%
1 ((=1)" —cos(—5m) N (=1)" —cos(—5m)
27 n 2n
27?” if n is even but not divisible by 4
=< 0 if n is divisible by 4
47?” if n is odd
Therefore, the Fourier series is f(z) = —§+2 372 ) = COS((4k+i2i;;ii;((4k+1)z) +
—2sin((4k+2)x) + cos((4k+3)z)—sin(4k+3)x
(4k+2) w(4k+3) '

@ s@={ 1 §oEsrs!

: and f 2mw-periodic.
1 zf—ﬁ<x<—gor0<x<7r f p



This f is obtained from the f in (b) by multiplying by 2, adding 2, and

1 if —m<x<-3

. . o —
making the change of variable z — z+73. ie. Ifg(x) = ¢ ~ 4 if T <z
and g is 2w-periodic, then f(z) = 2g(z — 7) + 2, so its Fourier serles is:

n+41

3(gntl_42n+1 s
F@) =5+ 3, M ein(=8) = Ty 5 M ) cine Alter-
natively,

7 300 —COS 4]€+1 ( 3))—51{1(4]{;4_1)(5(;_1))
1*%2% (k1) )

—2sin ((4k +2) (z — §) c05(4k—|—3 (—3%)) —sin((4k+3)(z— %))

m(4k +2) w(4k + 3)

7 3= —sin((4k + 1)z) + cos((4k + 1)z)  2sin((4k + 2)z)
*1+§ZO 7@k + 1) T4k +2)

LT sin((4k + 3)z) — cos((4k + 3)x)

m(4k + 3)

6 Find the Fourier sine series for the following functions on the interval
[0, 7).

(a) f(x) = sin
The coefficients b,, are given by:

2 (" 2 [M1-— 2
by, = 7/ sin?  sin(na)dz = 7/ 1= cos(2z) sin(nz)dx
T Jo 0

™ 2
1 (7 i 2 i -2
_ 7/ (sin(nw) _sin((n + 2)z) +sin((n )x)) i
™ Jo 2
A (2 -5k) ifnisodd
0 if n is even

Therefore, the Fourier sine series is

(o) 8 .
Z 7(2m+ 1)((2m + 1)2 — 4) sin((2m + 1)z)

m=0

(b) f(z) = a(r —x)

The Fourier coefficients are given by:

2

by = 2 /OW 2 — 2) sin(nz)dz = % ({‘x(” —2) COSW)E + /Ow (r = %) cos(na) .

™ n

) cos(nz)

)



_ 2 ([ =20)sin(na))" ”%fﬂ@dm :%_Q%S(n@ﬂ
4(5{(1)”){?},0 iféisodd ) [ 3 }0

s
0 if n is even

So the sine series is f(z) = > °_, %

7 Given that f(x) = x on [—7, 7|, extended to a 2m-periodic function, has

(*1)n+1 nT

Fourier series f(x) = Zn;éo L€', use Parseval’s identity to show

that Y00 | L =2,

Parseval’s identity: > 07 |en|? = o= [ |f(2)[*dx.

2

P 3™ 2
This gives 3,0 1z = o5 [, 22de = 5= [%} =2 =T,
—T

n 27 2 67

However, in this sum, we have counted each # twice — once for n and
2
once for —n, so Y07 | A =T

8 A guitar string of length 1 is plucked at the point one third of the way
along its length. When it is plucked, the displacement is therefore given

by u(x,0) = { ?, fo S % . 1t is then released from rest in this
’ Tx zf% <x<l1

position (so %‘(x, 0) =0). Use separation of variables and Fourier series

to find u(x,t) for t > 0. (The ends of the string are fized, so u(0,t) =

u(1,t) = 0. You may assume the string satisfies the wave equation %ZT“; =

02‘327’2‘ .) [2 marks]

We first look for solutions of the form w(z,t) = O(z)®(t) that satisfy
the wave equation %277; = 62%, and the boundary conditions u(0,t) =
u(1,t) = 0. When u(z,t) = ©(z)®(t), the wave equation becomes O(z)®(t) =
20" (x)®(t), so % =c? %/(g;). The left-hand side depends only on t,
while the right-hand side depends only on z, so both must equal some
constant A\. To get u(0,t) = u(1,t) = 0, we must have ©(0) = ©(1) = 0,
and © satisfies ©”(z) — 30(z) = 0. To get ©(0) = O(1) = 0, we must
have O(z) = sin(nmz) for some integer n. For this to be a solution to
©"(z) — £0O(z) = 0, we must have that A = —n?n2c>. We now solve
for @, to get ®(t) = acos(nwet) + bsin(nmwet) for some a and b. However,
because %(:c, 0) = 0, we must have ®(0) = 0, and therefore, b = 0.

We therefore have solutions of the form asin(nmz) cos(nmet) for n an in-
teger. (In fact, we may assume that n is a positive integer, since sine and
cosine are odd and even respectively, so the function for —n is just —1
times the function for n.) Our general solution is just a sum of these:



u(z,t) = D07 | ap sin(nwx) cos(nmet). Now, using our initial condition,
we can find the a, as the coeficients of the Fourier sine series for the

initial displacement.

1 1 . 1 . .
oo / U(I,())Sin(nﬂx)de( / asinms) / W‘de>
0 0 %

_ [_zeostoma)]® ¥ costoma) (L= @) cosume) )" cos(nma)
[ } +/0 d:ch{ } L dx

nmw 0 nmw 2nm nmw

e (5) () | os (5) s ()

1
3 3

3nm n2m? 3nm n2m?
0 if n = 3m for some integer m
gn (BT m
= 2% = % if n = 3m + 1 for some integer m
n?m
% if n = 3m + 2 for some integer m

Therefore, the string satisfies u(x,t) = Y °_, (=)™ V3 sin(@Bm+1)rz) cos(3m+Lmet) 4

m= (3m+1)2nw2
(=1)™+/3sin((3m+42)7wx) cos((3m+2)wct)
(3m—+2)272

for t > 0.

9 A metal rod of length 7, satisfying the heat equation ‘3—7; = k%, where

u(x,t) is the temperature of the point a distance x along the rod at time t,
is heated to a uniform 50° C, then one end of the rod is fixed at 0° C, so that
u(0,t) = 0 for all t, and the other end is insulated, so that %(ﬂ,t) =0
for all t.

(a) Use separation of variables to find a family of solutions u(x,t), that
can be expressed as O(x)P(t), that satisfy the heat equation %—1‘ = k%
and the boundary conditions u(0,t) = 0 and %(ﬂ,t) =0 for all t. [Hint:
to satisfy the boundary conditions, you should get ©(x) = csin ((n + %) x)
for constant c.]

We look for a solution of the form u(x,t) = O(z)®(¢). The heat equa-

tion then becomes ©(z)®(t) = kO” (z)®(t), and so % = k%,(%). The
left-hand side depends only on ¢, while the right-hand side depends only
on x, so they must both be equal to some constant A\. The boundary
conditions, u(0,t) = 0 and 2%(m,¢) = 0 for all ¢, mean that ©(0) = 0 and
©’(m) = 0. To get this, we must have ©(z) = asin ((n + ) z), and so

A= — (n + %)2 k. Therefore, the solutions are

1 2
Up(x,t) = ay sin ((n + 2) x) o~ (nt3) kt




Use Fourier series to find a solution for u(x,t) that satisfies the boundary
conditions and the intial condition u(x,0) = 50 for all x. [Hint: since
you’re trying to get a series with terms sin ((n + %) a:), you will need to
extend u(x,0) to a function on [0,27]. To get only the odd terms, you
should make the extension symmetric about m (so u(2m —z,0) = u(z,0)).]

We have that u(z,t) = Yo" a,sin ((n + ) z) 67(”+%)th, and u(z,0) =
50 for all . We need to express u(z,0) as a sum of functions of the
form a,, sin ((n + %) x) To do this, we see that if we extend f to a func-
tion on the interval [0,2n], then its sine series will have terms of the
form a, sin (Zz) for a natural number m. We need to ensure that the
terms for even n are all zero. This can be done by extending f in such
a way that it is symmetric about 7, since sin(kx) satisfies sin(k(2m —
z)) = —sin(kz) for any integer k, so if f is symmetric about =, then
[27 f(x) sin(kx)dz = 0. On the other hand, [™ f(z)sin ((n + 1)) de =
2 foﬂ f(z)sin ((n+ 1) x) dz, so the Fourier coefficients are:

™ _ . 1 T
ap = 2/ 50 sin <(n+ 1) x> = g 50C06((n1+ 2)3:) — 10(1)

)ei(n+%)2kt

)

co 100 cos((n—&-%)
n=0 (n+

Therefore, the solution is u(z,t) =Y

wl=| 8



