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Abstract

We give new examples of graphs with the n-e.c. adjacency property. Few explicit families of n-e.c. graphs are known, despite the
fact that almost all finite graphs are n-e.c. Our examples are collinearity graphs of certain partial planes derived from affine planes
of even order. We use probabilistic and geometric techniques to construct new examples of n-e.c. graphs from partial planes for
all n, and we use geometric techniques to give infinitely many new explicit examples if n = 3. We give a new construction, using
switching, of an exponential number of non-isomorphic n-e.c. graphs for certain orders.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Adjacency properties of graphs were first studied by Erdős and Rényi in their classic work on random graphs. One
such adjacency property is the n-existentially closed property: for a positive integer n, a graph is n-existentially closed
or n-e.c., if we can extend all n-subsets of vertices in all possible ways; more precisely, if for each n-subset S of vertices,
and each subset T of S, there is a vertex not in S joined to each of the vertices of T and to no vertex in S\T . The
n-e.c. adjacency property and its variants have since been studied by many authors; see, for example, [1–9]. From
the results of Erdős and Rényi [10], for an integer m and fixed p ∈ (0, 1) a random graph G ∈ G(m, p) with m
vertices asymptotically almost surely has the n-e.c. property. Despite this result, relatively few explicit examples of
n-e.c. graphs are known.

One such family of n-e.c. graphs are Paley graphs. The Paley graph of order q, for a prime power q ≡ 1 (mod 4), is
the graph whose vertices are the elements of the finite field GF(q) in which two distinct vertices x and y are joined if
and only if x − y is a square in GF(q). From the work of [4,5,11], it follows from a non-trivial theorem on character
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sum estimates that Paley graphs of order q > n222n−2 are n-e.c. Until recently, this was the only such family of graphs
(other than random graphs) known to contain members which are n-e.c., for arbitrary n.

A k-regular graph G with v vertices, so that each pair of joined vertices has exactly � common neighbours, and each
pair of non-joined vertices has exactly � common neighbours is called a strongly regular graph; we say that G is an
SRG(v, k, �, �). Cameron and Stark in [9] give a new family of strongly regular n-e.c. graphs, that are not isomorphic
to Paley graphs. They prove the following theorem in [9] via probabilistic methods and by exploiting certain graphs
derived from affine designs.

Theorem 1. Suppose that q is a prime power such that q ≡ 3 (mod 4). There is a function ε(q) = O(q−1 log q) such

that there exist 2

(
q+1

2

)
(1−ε(q))

non-isomorphic SRG((q + 1)2, q(q + 1)/2, (q2 − 1)/4, (q2 − 1)/4) which are n-e.c.
whenever q �16n222n.

In the present article, strongly regular n-e.c. graphs are constructed from certain finite geometries; in particular, finite
affine planes of even order. Our approach fundamentally differs from the Paley graph construction of [4,5,11], and
from the construction of [9] in two important ways. One difference is our use of geometric methods. The second and
perhaps more important difference is that our proofs are elementary, in the sense that they do not use any specialized
machinery beyond basic properties of affine planes, counting, and probability theory. This is in contrast with the use of
the Hasse–Weil character sum estimates to prove that Paley graphs are n-e.c., or the relatively involved probabilistic
techniques including Poisson approximation theory used in the proof of Theorem 1.

Our graphs are inspired by the graphs constructed in [3] which were of odd order. For a general n, we use elementary
geometric and probabilistic techniques to construct n-e.c. graphs that are non-Paley and non-isomorphic to the graphs
constructed in [9]; see Theorem 2. In the case when n= 3, the proof of Theorem 4 uses deterministic arguments to find
new examples of 3-e.c. graphs. The proof of this theorem uses the coordinatization properties of Desarguesian affine
planes; see Section 4. We note that the infinite family of 3-e.c. graphs provided by Theorem 4 includes graphs of much
smaller order than those supplied by Theorem 1. (For example, Theorem 4 produces a 3-e.c. graph of order 64, while
the order of any 3-e.c. graph produced by Theorem 1 is at least 84,953,089.) In Section 3, we give a new construction
using switching, which preserves the n-e.c. property. For certain orders (which will be made more explicit in Theorem
6) the new operation provides an exponential number of non-isomorphic n-e.c. graphs.

2. The Graphs G(q,U, A) and their adjacency properties

All graphs considered are finite, simple, and undirected. For a graph G, the vertex set of G is written V (G), and the
edge set is written E(G). Edges are written xy, and we say that x and y are joined. Given a fixed vertex x, the neighbour
set of x is the set of vertices joined to x, written N(x). A non-neighbour of x is a vertex not joined to and not equal to
x, and the co-neighbour set of x is the set of all non-neighbours of x, written Nc(x). The vertices that are not in a set
S of vertices will be written S (this should not be confused with the complement of G, which is also written G). The
complete graph, or clique, of order n is written Kn.

Throughout, q �8 will be a power of 2 (unless otherwise stated) and our affine plane A will be of order q. That is, A
is a 2-(q2, q, 1) design (with “blocks” called “lines”), and hence, satisfies the property that given a point x and a line
�, there is a unique line L(x, �) parallel to � that goes through x. As is well known, such a plane has q2 points, q2 + q

lines, and each line contains exactly q points. The relation of parallelism on the set of lines is an equivalence relation,
and the equivalence classes are called parallel classes. If a point x is on the line �, then we write xI�. Each pair of
non-parallel distinct lines � and m intersect in a unique point, which we will write � ∧ m. Each pair of distinct points
x, y is joined by a unique line that we write as xy. (Although this notation conflicts with our earlier notation for edges
of a graph, we keep both notations since they are standard.) If two lines � and m are parallel, then we write �‖m. Each
parallel class contains q lines, and there are q + 1 parallel classes.

A partial plane results from an affine plane A if we delete some set of lines of A. If P is a partial plane resulting from
A, then the collinearity (or point) graph of P is the graph with vertices equal to the points of A, with two points joined
if they are joined by a line of P.

Fix A, an affine plane of even order q �8. If A is Desarguesian, then q=2k for some fixed k�3, and A is coordinatized
by GF(2k). Consider the partial plane that results from deleting the lines of some fixed set of q+2

2 of the parallel classes
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of A. Then there are q
2 parallel classes in the partial plane. We denote the set of lines in the partial plane by U and the

set of deleted lines by U′. Define a graph G = G(q,U, A) to be the collinearity graph of this partial plane. It follows
that G is a Latin square graph, and that G is a SRG(q2,

q(q−1)
2 ,

q(q−2)
4 ,

q(q−2)
4 ). Note that the parameters for the graphs

G(q,U, A) appear to be the same as those in Theorem 1. However, some quick checking demonstrates that they are the
same if and only if the q in G(q,U, A) has the property that q = 2p, where p is prime and 2p − 1 is prime (and hence,
2p − 1 is a Mersenne prime). Therefore, for infinitely many values of q, the parameters of our family of graphs are
distinct from the parameters of the strongly regular graphs of Cameron and Stark. The graphs G(q,U, A) are defined
in an analogous way to the graphs defined in [3], where q was odd, and U was a set of lines from some q+1

2 parallel
classes.

We may view the set of all graphs G(q,U, A) as a finite equiprobable probability space G(q,U, A) of cardinality(
q+1

q
2

)
: each point of the probability space corresponds to a choice of U. With this perspective, we prove the following

result. We use logarithms in base 2 (denoted by log) and the notation R+ for the set of positive real numbers.

Theorem 2. Let q be a power of 2. For every fixed positive constant c < 1
2 , if n=�c log q�, then asymptotically almost

surely as q → ∞ a graph G ∈ G(q,U, A) is n-e.c.

As an application of Theorem 2, we obtain a new infinite family of n-e.c. graphs. Before we prove Theorem 2, we
introduce some notation that will simplify the discussion. An n-sequence � is a length n binary sequence. An n-e.c.
problem is a pair (B, �), where B is an ordered n-subset of vertices and � is an n-sequence; if B = (x1, . . . , xn) and
� = (i1 . . . in), then a solution to (B, �) is a vertex z not in B so that z is joined to xj if and only if ij = 1. If (B, �) is an
n-e.c. problem, then the (B, �)-solution set is the set of all solutions to the n-e.c. problem (B, �). If B and � are clear
from context, then we will just say solution set. For simplicity, if B is clear from context, we will identify � with the
(B, �)-solution set. For example, if B consists of three vertices x, y, and z, then (111) consists of N(x) ∩ N(y) ∩ N(z).

Proof of Theorem 2. Let �∞ be the line at infinity of A. We identify �∞ as a set of slopes. For a point p, the projection
from p, written �p, is the map from the points of A\{p} to the points of �∞ defined by �p(x) = px ∧ �∞. If X is a set
of points, then �p(X) =⋃

x∈X �p(x).
Choose U uniformly at random, and fix a set of n vertices X = {x1, . . . , xn}. We choose a fixed constant d ∈ R+

so that 0 < c < d < 1
2 and let s = �qd. We inductively construct points pi in A, where 1� i�s, so that if �pi

is the
projection from pi , then |�pi

(X)| = n for all i, and �pi
(X) ∩ �pj

(X) = ∅, whenever 1� i < j �s. In particular, for
each n element set X of points of A, we construct an s element set PX of points of A with the property that the ns lines
xp where x ∈ X and p ∈ PX are (all distinct and) in distinct parallel classes of A. We choose p1 to be a point that is
not on a line joining two points of X. For a fixed i�s, assuming that p1, . . . , pi−1 are chosen, we would like to choose
pi to be a point that is not on a line joining two points of X, and that is not on a line joining a point of X to a point in⋃i−1

j=1�pj
(X). Hence, we may choose a suitable point pi whenever

n +
(

n

2

)
(q − 2) + n(i − 1)(q − 1) + n(n − 1)(i − 1)(q − 2) < q2. (2.1)

As i�s, the condition (2.1) is satisfied with our choice of s for all sufficiently large q, as the reader may verify.
Let E=⋃s

i=1�pi
(X). Then E ⊆ �∞ and |E|=ns. Fix a particular n-e.c. problem (X, �). We estimate the probability

from above that none of the vertices of PX solves (X, �). The number of n-e.c. problems (X, �) with � �= � is 2n − 1.

Hence, the total possible number of ways that none of the vertices of PX solves (X, �) is (2n − 1)s . We say that one
of these ways is a bad adjacency pattern for PX. A specific bad adjacency pattern B may or may not occur with a
particular U. Let r denote the number of 1’s which occur in all the �’s used in B. Then for B to occur in U, the slopes
associated with U must include the corresponding r slopes in E (and no others in E) and any q/2 − r slopes (from the
q + 1 − ns slopes) outside E. Then the probability that B occurs with a particular U is(

q + 1 − ns
q

2
− r

)
(

q + 1
q

2

) �

⎛⎜⎝
q + 2

2
q + 2 − ns

⎞⎟⎠
ns

= 1

2ns

(
q + 2

q + 2 − ns

)ns

, (2.2)
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where the inequality follows by writing the binomial coefficients as quotients of products, and then estimating the
simplified quotient from above by their largest and smallest factors. The number of distinct n-e.c. problems (X, �) is
at most

2n(q2)n < q3n, (2.3)

since 2 < q. Therefore, by (2.2) and (2.3), the probability that there is an X and � so that there is no solution in the
graph G to the n-e.c. problem (X, �) among the vertices of PX is at most B(q)C(q), where

B(q) = q3n (2n − 1)s

2ns
= q3n

(
1 − 1

2n

)s

and

C(q) =
(

q + 2

q + 2 − ns

)ns

.

The proof will follow if we demonstrate that

lim
q→∞ B(q)C(q) = 0. (2.4)

To verify (2.4), we analyse the asymptotic behaviour of B(q) and C(q) separately. Regarding B(q), we note that

B(q) = exp

(
3n ln q + s ln

(
1 − 1

2n

))
� exp

(
3n ln q − s

2n

)
� exp

(
3c(ln q)2

ln 2
− qd−c

)
,

where the first inequality follows from properties of the ln function, and the second inequality follows by our definitions
of n and s (recall that n=�c log q� and s =�qd), since −2−n � −q−c, and since −s� −qd . However, as the constant
d − c > 0, it follows that

lim
q→∞ B(q) = 0. (2.5)

For C(q), we first define the function h : R+ → R+ by h(x) =
(

x+1
x

)x+1
. Then h is a strictly decreasing function,

and h(x) > 1, for all x ∈ R+. Observe that with our definitions of n and s,

ns�(q + 2)1/2 (2.6)

for all sufficiently large q. To see this, note that the inequality of (2.6) is equivalent to

�c log q��qd
(q + 2)1/2

�1,

which holds for all sufficiently large q since the constant d < 1
2 . Hence, for all sufficiently large q, we have that

C(q) =
(

h

(
q + 2 − ns

ns

))(ns)2/(q+2)

�h

(
q + 2 − ns

ns

)
�h(1) = 4,



C.A. Baker et al. / Discrete Mathematics 308 (2008) 901–912 905

where the first inequality follows by (2.6), and the second inequality follows by (2.6) and since h(x) is a strictly
decreasing function. Hence, for all sufficiently large q,

C(q)�4.

Thus, by (2.5) and this bound for C(q) we have that

lim
q→∞ B(q)C(q)�4 lim

q→∞ B(q) = 0,

and so (2.4) follows. �

With some minor changes (specifically to (2.2)), the reader may verify that Theorem 2 also holds for the graphs
G(q,U, A) defined first in [3], where q is an odd prime power, and U is a set of lines from some set of q+1

2 parallel
classes. It may be possible to extend our construction by different choices of U, say when the number of parallel classes
of each type is not too large or small. As our main goal in the present article is only to present some new families of
n-e.c. graphs, we do not pursue this idea here.

While Theorem 2 gives many new examples of n-e.c. graphs, it does not show that all choices of U will give an
n-e.c. graph. In [3] it was conjectured that for all n, if q is large enough, then all the graphs in G(q,U, A) are n-e.c.
We disprove this conjecture in Theorem 3.

Theorem 3. Let A be a Desarguesian plane of order q. If q is even and q �4, then for all n�4 there is a U such that
G(q,U, A) is not n-e.c.

Theorem 3 demonstrates that Theorem 4 of this paper is best possible in the sense that 3-e.c. cannot be replaced by
n-e.c. for any n > 3.

Proof of Theorem 3. We coordinatize A in any fixed way. It is sufficient to prove the theorem for n= 4. Let U consist
of the lines with slope in S = {w2 + w : w ∈ GF(q)}. Then |S| = q/2 and (S, +) is a subgroup of the additive group
(GF(q), +). Since q is even, 2s = 0 for all s ∈ GF(q).

Let

B = {(0, 0), (0, 1), (0, a), (0, a + 1)},
where a (and therefore, a + 1) �= 0, 1. We use the notation defined just before the proof of Theorem 2. Let � = (1110).
There cannot be a solution to (B, �) of the form (0, v), since the line (0, v)(0, 0) has slope ∞ /∈ S. For a contradiction,
suppose that (u, v) with u �= 0 is a solution. Then the slopes of lines between (u, v) and the points of B are m1 = vu−1,
m2 = (v − 1)u−1, m3 = (v − a)u−1, and m4 = (v − a − 1)u−1; all of these are in GF(q). As (u, v) is a solution, m1,
m2, m3 ∈ S and m4 /∈ S. But by closure in the additive group S we have that m4 = m1 + m2 + m3 ∈ S, which is a
contradiction. �

It may be proved that if q is odd, then for all n�5 there is a U such that G(q,U, A) is not n-e.c. As the proof is
similar to the proof for q even (but letting S = {w2 : w ∈ GF(q)}), we omit the details.

For all q �8, the graphs G(q,U, A), are, however, always 3-e.c.

Theorem 4. Let A be a Desarguesian affine plane of order q �8, and fix G ∈ G(q,U, A). Then G is 3-e.c. If q �32
and any set of k vertices are deleted from G, where k is an integer satisfying 0 < k� q−12

8 , then the resulting graph is
3-e.c.

Our proof of this result uses the coordinatization properties of Desarguesian affine planes. Owing to its length, we
defer the proof of Theorem 4 to Section 4.

In the q = 8 case of Theorem 4 all
(

9
4

)
= 126 graphs in G(8,U, A) are isomorphic (under a graph isomorphism

induced by a geometric isomorphism). To see this, note first that an affine plane of order 8 is unique up to geometric
isomorphism. Second, it is well known that the full group of automorphisms of A is transitive on ordered triples of
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points of �∞. Let Usl be the set of slopes of the lines of U. Therefore, we may assume that {0, 1, ∞} ⊆ Usl. The group
of automorphisms of the subplane of order 2 fixes the unordered set {0, 1, ∞} and (when extended naturally to A) is
transitive on the 6-element set �∞\{0, 1, ∞}. It follows that all 4-element subsets of �∞ are geometrically equivalent.

3. Switching and the n-e.c. property

Our goal in this section is to construct new non-isomorphic n-e.c. graphs from existing ones. The first tool we need is
switching in graphs. If G is a graph and A ⊆ V (G), then the graph GA is formed by interchanging edges and non-edges
between A and V (G)\A, and leaving all other edges and non-edges unaltered. We say that GA is the graph formed
from G by switching on A. If H is an induced subgraph of G, then we will abuse notation and write GH for GV (H).

We next introduce a strengthening of the n-e.c. property. Throughout this section, we use the notation defined just
before the proof of Theorem 2. For a positive integer n, we say that G is n-good if:

(1) There are positive integers r and s such that G is regular of degree r, and G is regular of degree s. In addition,
either r = s, or 2n < s − r + 1. (Hence, r �s.)

(2) For all n-e.c. problems (B, �), the solution set determined by B and � has cardinality at least n + 1.

Note that an n-good graph is n-e.c. A Paley graph with sufficiently many vertices will be n-good (by the results of
[4,5]), and the graphs in G(q,U, A), with A Desarguesian and q sufficiently large, are 3-good. (Item (1) follows from
using r= q(q−1)

2 and s= (q+2)(q−1)
2 ; item (2) follows since, by the proof of Theorem 4, all solution sets where |B|=3 have

cardinality at least q−4
8 .) If n is a fixed positive integer, then it is not hard to show that there is a sufficiently large positive

integer n′ �n, so that an n′-e.c. graph satisfies item (2) in the definition of n-good. (For example, n′ =n+�log2(n+1)
works.) From this fact and Theorem 2, for all positive integers n, we may choose a sufficiently large q so that there are
graphs in G(q,U, A) that are n-good.

The next result demonstrates how switching in n-good graphs leads to new n-e.c. graphs.

Theorem 5. Let n�2 be an integer, and let G be an n-good graph. Then for all n-vertex subgraphs H �G, we have
that GH is n-e.c. There exists an n-vertex clique H �G and for this H we have that GH is n-e.c. and GH �G.

Proof. We show that GH is n-e.c. Fix an n-subset A of V (G). Let 0′ =1 and 1′ =0. Consider the n-e.c. problem (A, �).

Write A = B ∪ C, where B = A ∩ V (H) and C = A\B (note that B may be empty). Let �B = (i1 . . . ik), where each
ij ∈ {0, 1}, be the subsequence of � that corresponds to the elements of B, and let �C be the subsequence of � that
corresponds to the elements of C. Define �′

B = (i′1 . . . i′k). Consider the n-e.c. problem (B ∪ C, �′
B�C) with a solution

z in G chosen outside H (which is permissible since G is n-good.) Then z solves (A, �) in GH .

Since an n-e.c. graph is (n + 1)-universal (that is, each graph of order at most n + 1 is isomorphic to an induced
subgraph; this fact may be proved by induction on n) we may fix H �G an n-vertex clique. Since G is s-regular, a
vertex of H has degree s + n − 1 in GH . Since G is n-e.c. and |V (H)| = n, there is a vertex y of G joined to exactly
one vertex of H. Then y has degree r + n − 2 in GH . But as r �s, we have that r + n − 2 < s + n − 1. Hence, GH �G

as GH is not regular. �

We note that it is remarked in the beginning of Section 5 of [9] that for certain parameters, switching with respect to
the neighbours of a single vertex then deleting that vertex creates an (n − 1)-e.c. strongly regular graph from an n-e.c.
strongly regular one. We point out that Theorem 5 does not produce strongly regular (or even regular) n-e.c. graphs.

The degree of a vertex x in G is written degG(x). If G is a graph with n vertices and degrees d1 � · · · �dn, then
the n-tuple (d1, . . . , dn) is called the degree sequence of G. If � = (d1, . . . , dn), let {�} be the unordered multiset
{d1, . . . , dn}. Two length n degree sequences � and � are distinct if {�} �= {�} as multisets. Note that two distinct length
n degree sequences must correspond to non-isomorphic graphs (but the converse may fail). Let ds(n) be the number
of distinct degree sequences of order n. We now apply Theorem 5 to give many non-isomorphic examples of n-e.c.
graphs.

Theorem 6. Let n�2 be any integer and let G be an n-good graph. Then there are at least ds(n)-many non-isomorphic
n-e.c. graphs of order |V (G)|.
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Proof. Fix H any n-vertex graph (which is not necessarily a clique). Since an n-e.c. graph is (n + 1)-universal, there
is an isomorphic copy of H that is an induced subgraph of G. Let J = GH ; by Theorem 5, J is n-e.c. and has order
|V (G)|.

Fix a vertex x in H, and suppose that degH (x)= kx �0. Then, by s-regularity of G, x is joined in J to s −n+ kx + 1
vertices outside of H in G. Therefore,

degJ (x) = s − n + 2kx + 1. (3.1)

Now consider all the 2n distinct solution sets (i1, . . . , in), where i ∈ {0, 1}, in G determined by the n vertices of H
(each of which is non-empty since G is n-e.c.). These solution sets partition V (G)\V (H) into 2n sets. The degree of a
vertex in (1 · · · 1) in J is r−n=r−n+2n−2n; the degree of a vertex in (01 · · · 1) in J is r−n+2=r−n+2n−(2(n−1));
the degree of a vertex in (0 . . . 0) is r + n = r − n + 2n − 0. In general, the degrees of vertices y in V (G)\V (H) in J
are always one of the integers

r − n + 2n − 2j ,

where 0�j �n.

Let r − n = m, x ∈ V (H), and y ∈ V (G)\V (H). Consider in item (1) of the definition of n-good the case that
r = s. Then s − n = m, and by (3.1), degJ (x) is always m plus an odd number, while degJ (y) is always m plus an even
number. Now consider the case when s − r + 1 > 2n. In this case, it is not hard to see that for all choices of kx and j,
that s − n + 2kx + 1 > r − n + 2n − 2j . In both cases, for all x ∈ V (H), y ∈ V (G)\V (H), we have that

degJ (x) �= degJ (y).

Suppose that H has degree sequence � = (d1, . . . , dn), with d1 � · · · �dn. By the above discussion, GH has degree
sequence (̂�, �), where �̂= (s −n+2d1 +1, . . . , s −n+2dn +1) is a subsequence consisting of degrees from vertices
V (H) in GH , and � is a subsequence containing the degrees r − n, r − n + 2, . . . , r + n from the solution sets

(1 · · · 1), (01 · · · 1), . . . , (0 · · · 0),

respectively. Note that the elements of � depend only on n and r, and not on the degrees in H. Furthermore, for any
graph H, by previous discussion, none of the terms of �̂ can equal a term in �. Suppose that H and H ′ have distinct
degree sequences � and �, respectively. Therefore, by the above discussion, GH and GH ′ have degree sequences (̂�, �)

and (̂�, �), respectively. If {̂��} = {̂��}, then {̂�} = {̂�}. But then {�} = {�}, which is contradiction. Hence, GH �GH ′
and the result follows. �

A straightforward inductive argument establishes that 2n−1 �ds(n). Hence, we obtain the following corollary, which
gives an exponential number of non-isomorphic n-e.c. graphs.

Corollary 1. If there is an n-good graph of order r, then there are at least 2n−1 non-isomorphic n-e.c. graphs of
order r.

As we discussed after the definition of the n-good property, for all positive integers n, there are sufficiently large q so
that there exist n-good graphs in G(q,U, A). Hence, by Corollary 1, for these q there are at least 2n−1 non-isomorphic
n-e.c. graphs of order q2.

Corollary 1 does not exhibit strongly regular n-e.c. graphs like the results of [9]. However, we think the n-e.c.
preserving operation we present via switching is of interest in its own right. In particular, it is the first such explicit
construction that applies to a broad family of n-e.c. graphs.

4. Proof of Theorem 4

Consider a fixed G ∈ G(q,U, A). We use the notation defined just before the proof of Theorem 2. For each triple
x, y, z of distinct vertices in V (G) (which are points of A), it is sufficient show that each of the eight solution sets
(i1i2i3), where ij ∈ {0, 1}, contains at least q−4

8 vertices. (As the cardinality of a solution set is an integer, in the case
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where q = 8, this proves that there is at least one vertex in each solution set.) If q �32, we may then delete up to
q−4

8 − 1 = q−12
8 vertices and the solution sets (i1i2i3) will be non-empty in the resulting graph.

Fix three distinct vertices, x, y, z ∈ V (G). For solutions sets with B = {x, y, z}, we will always list x, y, and z in
that order. We must consider the following six cases:

(1) The vertices x, y, z lie on a line � of A with:
(1.1) � ∈ U;
(1.2) � ∈ U′.

(2) The vertices x, y, z form a triangle in A with:
(2.1) all three sides in U;
(2.2) two sides in U and the third in U′;
(2.3) one side in U and the other two in U′;
(2.4) all three sides in U′.

This gives a total of 48 cases to check. By symmetry, we can considerably reduce the number of cases to 28. For
example, in Cases 1.1 and 1.2, we need only consider the solution sets (111), (000), and one from each of the solution
sets {(100), (010), (001)}, {(110), (011), (011)}.

Case 1: The vertices x, y, z lie on a line �.
Case 1.1: Suppose � ∈ U.
The q − 3� q−4

8 vertices of �, different from x, y, z, are in (111). Since x, y, z /∈ Nc(x), we have that

|(000)| = |Nc(x)| − |Nc(x) ∩ Nc(y)| − |Nc(x) ∩ Nc(z)| + |Nc(x) ∩ Nc(y) ∩ Nc(z)|
= |Nc(x)| − |Nc(x) ∩ N(y)| − |Nc(x) ∩ N(z)| + |(011)|
= (q + 2)(q − 1)

2
− 2

(q + 2)(q − 2)

4
+ |(011)|

= q + 2

2
+ |(011)| > q − 4

8
.

Now suppose for a contradiction that there exist 0�k <
q−4

8 vertices in (011). From above, |(000)| = q+2
2 + |(011)| =

q+2
2 + k. Similarly,

|(000)| = q + 2

2
+ |(101)| = q + 2

2
+ |(110)|,

so |(101)| = |(110)| = k. Let

B = (011) ∪ (101) ∪ (110) ∪ (000).

Then we have that |B| = 4k + q+2
2 < 4(

q−4
8 ) + q+2

2 = q − 1, so there exists a line �′ ∈ U satisfying �′‖�, �′ �= �, and
so that �′ contains no vertices of B. Therefore,

q − 2

2
= |N(x) ∩ �′|
= |(111) ∩ �′| + |(110) ∩ �′| + |(101) ∩ �′| + |(100) ∩ �′|
= |(111) ∩ �′| + |(100) ∩ �′|.

Similarly, q−2
2 = |(111) ∩ �′| + |(010) ∩ �′| and q−2

2 = |(111) ∩ �′| + |(001) ∩ �′|. Hence,

|(001) ∩ �′| = |(010) ∩ �′| = |(100) ∩ �′|
= q − 2

2
− |(111) ∩ �′| (4.1)

and

|N(x) ∩ N(y) ∩ �′| = |N(x) ∩ N(z) ∩ �′|
= |N(y) ∩ N(z) ∩ �′| = |(111) ∩ �′| + |(110) ∩ �′| = |(111) ∩ �′|, (4.2)

since |(110) ∩ �′| = 0.
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Since (000) ⊆ B, every vertex of �′ is in N(x) ∪ N(y) ∪ N(z). Therefore, by the Principle of Inclusion–Exclusion,
(4.1), and (4.2), we have that

q = |(N(x) ∪ N(y) ∪ N(y)) ∩ �′|
= 3|N(x) ∩ �′| − |N(x) ∩ N(y) ∩ �′| − |N(x) ∩ N(z) ∩ �′| − |N(y) ∩ N(z) ∩ �′| + |(111) ∩ �′|

= 3

(
q − 2

2

)
− 2|N(x) ∩ N(y) ∩ �′|.

Therefore, 2|N(x)∩N(y)∩�′|= 3q−6−2q
2 = q−6

2 , and so |N(x)∩N(y)∩�′|= q−6
4 ∈ Z. It follows that q ≡ 2 (mod 4),

which is a contradiction, so |(011)|� q−4
8 .

To complete the remaining cases within Case 1.1, we consider the following argument that we will use repeatedly
in the proof. There are q−2

2 lines m ∈ U, m �= �, xIm; we call these the fixed lines. The conditions on a fixed line m are

the properties that m ∈ U, m �= �, xIm. Consider the set of q+2
2 lines of U′ through y; these are called the first lines.

The conditions on a first line are the properties that it is in U′ and through y. The set of q+2
2 lines of U′ through z are

the second lines. The conditions on a second line are the properties that it is in U′ and through z. The first and second
lines meet each fixed line m in q+2

2 distinct vertices different from x. Since a given fixed line m contains only q − 1
vertices different from x, by the Pigeonhole property there must be at least three vertices in (100) ∩ m, and at least
3(

q−2
2 )� q−4

8 vertices in (100).
To apply the argument in the previous paragraph to other cases, we need only specify the fixed, first, and second lines,

by the conditions on these lines. We supply the following table which lists the cases where the argument applies. In
each case, the total overlap on all fixed lines supplies some number (which we denote by “No.” in the last column; each
entry of the last column is greater or equal to q−4

8 ) of elements in a solution set. The number of lines and conditions
for the various lines are listed in each of the third, fourth, and fifth columns. For example, in the third row (which was
discussed in the last paragraph), the entry “ q−2

2 ,U, x, �= �” in the third column, means that “choose the fixed lines in

this case to be the q−2
2 lines of U incident with x and distinct from �.” We note that q−6

2 �1 so long as q �8.

Case 3-Set Fixed lines 1st lines 2nd lines No.

1.1 (100)
q−2

2 ,U, x, �= �
q+2

2 , U′, y q+2
2 , U′, z 3

(
q−2

2

)
(000)

q+2
2 ,m ∈ U′, x q

2 , U′, y, ∦m
q
2 , U′, z, ∦m

q+2
2

1.2 (110)
q
2 ,U′, z, �= �

q
2 , U, x q

2 , U, y q
2

(100)
q
2 , U, x q

2 , U′, y, �= �
q
2 , U′, z, �= �

q
2

2.1 (100)
q−6

2 ,U, x, �= xy,
q+2

2 , U′, y q+2
2 ,U′, z 4

(
q−6

2

)
�= xz, L(x, yz)

(000)
q+2

2 ,m ∈ U′, x q
2 , U′, y, ∦m

q
2 ,U′, z, ∦m q + 2

2.2 (100)
q−4

2 ,U, x, �= xy, q+2
2 , U′, y q

2 ,U′, z, �= xz 3
(

q−4
2

)
L(x, yz)

(101)
q−4

2 ,m ∈ U, x, �= xy, q+2
2 , U′, y q−4

2 ,U, z,
q−4

2
L(x, yz) �= yz, L(z, m)

2.3 (010)
q−2

2 ,U,y, �= L(y, xz)
q
2 , U′, x, �= xy

q
2 ,U′, z, �= yz q − 2

(110)
q−2

2 ,m ∈ U, q−2
2 ,U, y,

q+2
2 ,U′, z q−2

2
x, �= xz �= L(y, m)

2.4 (110)
q−2

2 , U′, z q
2 , U, x q

2 , U, y q−2
2
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Case 1.2: Suppose that � ∈ U′.
The q − 3� q−4

8 points of � different from x, y, and z are in (000). Based on previous work in the table, it remains

in this case to consider the 3-set (111). Suppose for a contradiction that |(111)| = k, where 0�k� q−4
4 . Then

|(110)| = |N(x) ∩ N(y)| − k

= q(q − 2)

4
− k,

|(100)| = |N(x) ∩ Nc(z)| − |(110)|
= q2

4
− q(q − 2)

4
+ k

= q

2
+ k.

By the table in Case 1.2 for the 3-set (100), each line of U through x must contain at least one vertex of (100). So there
exist at least q

2 − k >
q+4

4 lines of U through x which contain exactly one vertex of (100). A straightforward check
shows that such a line would also contain x itself plus q

2 − 1 vertices of (110),
q
2 − 1 vertices of (101), and therefore,

no vertices of (111). Similarly, there exist at least q
2 − k� q+4

4 lines of U through y which contain exactly one vertex
of (010) and no vertices of (111). Since all the lines of U are from q

2 < q − 2k parallel classes, there must exist parallel
classes �j1 , �j2 ⊆ U so that L(x, j1) and L(x, j2) each contain exactly one vertex of (100), and L(y, j1) and L(y, j2)

each contain exactly one vertex of (010).
Now we consider the triangle x, y, L(x, j1)∧L(y, j2). Since the automorphism group of A is transitive on triangles,

we can coordinatize A so that these vertices have the coordinates (0, 0), (0, 1), (1, 0), respectively, and each vertex of
G is of the form (u, v), where u, v ∈ GF(q). We use the notation [m, a], where m, a ∈ GF(q) to represent the line
with y-intercept a and with slope m. A vertical line (with slope ∞) is written [a], where a is the x-intercept.

Then [0] = (0, 0)(0, 1) = xy = � ∈ U′, and [0, 0] = (0, 0)(1, 0) = x(L(x, j1) ∧ L(y, j2)) = L(x, j1) ∈ U. Since
the coordinates come from GF(2k), we have that

[1, 1] = [−1, 1] = (0, 1)(1, 0) = y(L(x, j1) ∧ L(y, j2)) = L(y, j2) ∈ U

so all vertical lines (which we say have slope ∞) are in U′, while all lines with slope 0 or 1 are in U. Recall that Usl
is the set of slopes of the lines of U; we use a similar notation U′

sl for the set of slopes of U′. Since z �= x, y and
zI� = [0], z must have coordinates (0, d) for some d �= 0, 1.

Consider L(x, j1) = [0, 0] ∈ U which contains no vertices of (111). For any u ∈ Usl\{0},
(u−1, 0)I [0, 0], [u, 1], [ud, d],
(u−1d, 0)I [0, 0], [ud−1, 1], [u, d].

Thus, if u ∈ Usl\{0}, since (111) ∩ [0, 0] = ∅, we have that

{ud : u ∈ Usl\{0}}, {ud−1 : u ∈ Usl\{0}} ⊆ U′
sl\{∞}. (4.3)

If we let u = 1 ∈ Usl, then (4.3) implies that d, d−1 ∈ U′
sl\{∞}.

The lines L(x, j2) = [1, 0], L(y, j1) = [0, 1], and L(y, j2) = [1, 1] in U also contain no vertices of (111), so the
relations

(1, 1)I [1, 0], [0, 1], [1 + d, d],
(d, d)I [1, 0], [d−1 + 1, 1], [0, d],
(d + 1, 1)I [0, 1], [1, d], [(d + 1)−1, 0],
(d + 1, d)I [1, 1], [(1 + d−1)−1, 0], [0, d]

imply that 1 + d, d−1 + 1, (d + 1)−1 and (1 + d−1)−1 are in U′
sl.
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In addition,

(d + 1, d + 1)I [1, 0], [(1 + d−1)−1, 1], [(d + 1)−1, d],
((d−1 + 1)−1, (d−1 + 1)−1)I [1, 0], [d−1, 1], [d, d].

Thus, (d + 1, d + 1), ((d−1 + 1)−1, (d−1 + 1)−1) ∈ (100). However, since |[1, 0] ∧ (100)| = 1, we have that
(d−1 + 1)−1 = d + 1. A straightforward calculation gives that d + 1 = d−1. Then 1 = dd−1 = d(d + 1), and
d2 = d + 1 = d−1.

Since |Usl\{0}| = q−2
2 = |U′

sl\{∞}| − 1, we have by (4.3) that

|{ud−1 : u ∈ Usl\{0}} ∩ {ud : u ∈ Usl\{0}}|� q − 4

2
.

Hence, there exist distinct u1, u2 ∈ Usl\{0} such that u1d
−1 = u2d. Then by (4.3) and since d2 = d−1, we have that

u1 = u2d
2 = u2d

−1 ∈ U′
sl\{∞}, which is a contradiction.

Case 2: The vertices x, y, z are not collinear and so form a triangle.
Case 2.1: Suppose that xy, xz, yz ∈ U.
Choose any m ∈ U, m �= xy, xz, L(x, yz) with xIm. This is possible since q �8. Then m ∧ yz ∈ (111), so there are

q−6
2 � q−4

8 vertices of (111) on yz. There are also q−6
2 such vertices on each of xy and xz.

Now fix any line n ∈ U′, xIn. Then n ∧ yz ∈ (011), so |(011)|� q+2
2 � q−4

8 . The remaining cases are contained in
the table.

Case 2.2: Suppose that xy, yz ∈ U and xz ∈ U′.
Consider any line m ∈ U, m �= xy, L(x, yz), and xIm. Then m ∧ yz ∈ (111) and L(y, m) ∧ xz ∈ (010), so

|(111)|, |(010)|� q−4
2 � q−4

8 .

Fix any line n ∈ U′, n �= xz with xIn. Then n∧yz ∈ (011) and L(y, n)∧xz ∈ (000), so |(011)|, |(000)|� q
2 � q−4

8 .
The remaining cases are contained in the table.

Case 2.3: Suppose that xy, yz ∈ U′ and xz ∈ U.
Consider any m ∈ U\{L(y, xz)} through y. Then m ∧ xz ∈ (111) and L(x, m) ∧ yz ∈ (100), so |(111)|, |(100)|�

q−2
2 � q−4

8 .
Now fix any n ∈ U′\{xy, yz}, incident with y. Then n∧ xz ∈ (101) and L(x, n)∧ yz ∈ (000), so |(101)|, |(000)|�

q−2
2 . The remaining cases are contained in the table.
Case 2.4: Suppose that xy, xz, yz ∈ U′.
First, consider any line n of U′\{xy, xz, L(x, yz)} through x. Then n∧ yz ∈ (000) and |(000)|� q−4

2 . Now take any
line � of U through x. Then � ∧ yz ∈ (100), so |(100)| > q

2 . Similarly, |(010)|, |(001)| > q
2 . All vertices on �, except

x, are in N(x). Since |N(y) ∩ �| = |N(z) ∩ �| = q−2
2 , we have

q − 1 = |(100) ∩ �| + |(110) ∩ �| + |(101) ∩ �| + |(111) ∩ �|
= |(111) ∩ �| + |N(y) ∩ �| + |N(z) ∩ �| − |(111) ∩ �|
= |(100) ∩ �| + q − 2 − |(111) ∩ �|.

Therefore, |(111) ∩ l| = |(100) ∩ l| − 1. By a similar argument, for a line m of U through y, and a line n of U through
z, we have that

|(111) ∩ m| = |(010) ∩ m| − 1,

|(111) ∩ n| = |(001) ∩ n| − 1. (4.4)

Now suppose for a contradiction that |(111)| = k, where 0�k� q−4
4 . Then there are at least q

2 − k� q
4 + 1 parallel

classes in U so that the lines through x in these classes contain no vertices of (111). A similar result holds for y, so
there exists at least one parallel class from U, say �m, such that

L(x, m) ∩ (111) = L(y, m) ∩ (111) = ∅. (4.5)
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We can assign coordinates using the triangle L(x, m) ∧ yz, x, y as the coordinate frame so that these vertices have
coordinates (0,0), (1,0), (0,1), respectively. Hence,

[0] = (0, 0)(0, 1) = (L(x, m) ∧ yz)y = yz ∈ U′,
[0, 0] = (0, 0)(1, 0) = (L(x, m) ∧ yz)x = L(x, m) ∈ U,

[1, 1] = [−1, 1] = (1, 0)(0, 1) = xy ∈ U′.

Since zIyz = [0], z has coordinates (0, d), for some d �= 0, 1. Let Usl (U′
sl) be the set of slopes of lines of U (U′).

Recall by (4.5) that [0, 0] contains no vertices of (111). Take any vertex (a, 0)I [0, 0] with a �= 0. Then (a, 0) ∈ N(x).
Since

(a, 0)(0, 1) = [a−1, 1],
(a, 0)(0, d) = [a−1d, d],

if a−1 ∈ Usl, then a−1d ∈ U′
sl.

By (4.5), the line [0, 1] = L(y, m) contains no vertices of (111). Each vertex (a + 1, 1) with a �= 1 is on [0, 1] and
so is in N(y). Since (a + 1, 1)(1, 0) = [a−1, a−1] and (a + 1, 1)(0, d) = [(a + 1)−1(d + 1), d], if a−1 ∈ Usl, then
(a + 1)−1(d + 1) ∈ U′

sl.

Consider the set S = {a : a �= 0; a−1 ∈ Usl}. Then |S| = q−2
2 . For each element a ∈ S, we have that a−1d, (a +

1)−1(d + 1) ∈ U′
sl, and the vertex (a + 1, d) is on the lines [0, d], [a−1d, a−1d]= (a + 1, d)(1, 0) and [(a + 1)−1(d +

1), 1] = (a + 1, d)(0, 1), which implies that (a + 1, d) ∈ (001). Therefore, the line [0, d] contains q−2
2 vertices of

(001) and so by (4.4) it contains q−4
2 vertices of (111). Since q−4

2 >
q−4

4 �k, this is a contradiction.
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