On an adjacency property of almost all tournaments

Anthony Bonato, Kathie Cameron
Department of Mathematics, Wilfrid Laurier University, Waterloo, Ont., Canada N2L 3C5
Received 3 March 2003; received in revised form 15 September 2003; accepted 15 September 2003
Available online 27 July 2006
In loving memory of Claude Berge

Abstract

Let n be a positive integer. A tournament is called n-existentially closed (or n-e.c.) if for every subset S of n vertices and for every subset T of S, there is a vertex $x \notin S$ which is directed toward every vertex in T and directed away from every vertex in $S \backslash T$. We prove that there is a 2 -e.c. tournament with k vertices if and only if $k \geq 7$ and $k \neq 8$, and give explicit examples for all such orders k. We also give a replication operation which preserves the 2 -e.c. property.

© 2006 Elsevier B.V. All rights reserved.

MSC: 05C35; 05C80; 05C75
Keywords: Adjacency property; n-Existentially closed; Tournament; Replication

1. Introduction

A tournament is a directed graph with exactly one arc between each pair of distinct vertices. Consider the following adjacency property for tournaments.

Definition 1. Let n be a positive integer. A tournament is called n-existentially closed or n-e.c. if for every n-element subset S of the vertices, and for every subset T of S, there is a vertex $x \notin S$ which is directed toward every vertex in T and directed away from every vertex in $S \backslash T$. (Note that T may be empty.)

Adjacency properties of tournaments were studied in [3,8,15,18,23]. Much of the research on such properties is motivated by the fact that while almost all tournaments (with arcs chosen independently and with probability p, where $0<p<1$ is a fixed real number) are n-e.c. for any fixed positive integer n (see [15]), few explicit examples of such tournaments are known.

Adjacency properties of graphs were studied by numerous authors; see [9] for a survey. A graph is called n-existentially closed or n-e.c. if it satisfies the following adjacency property: for every n-element subset S of the vertices, and for every subset T of S, there is a vertex not in S which is joined to every vertex of T and to no vertex of $S \backslash T$. The n-e.c. property is of

[^0]

Fig. 1. The tournament D_{7}.
interest in part because the countable random graph is n-e.c. for all $n \geqslant 1$; in fact, the countable random graph is the unique (up to isomorphism) countable graph that is n-e.c. for all $n \geqslant 1$. The countable random tournament is the analogue of the random graph for tournaments; see [13]. The countable random tournament is the unique (up to isomorphism) countable tournament that is n-e.c. for all $n \geqslant 1$.
The cases $n=1$, 2 for graphs were studied in [9,10,12]. For $n>2$, few explicit examples of n-e.c. graphs are known other than large Paley graphs (see [2,8]). A prolific construction of n-e.c. graphs for all n was recently given in [14].
In the present article, we concentrate on the 2 -e.c. adjacency property. Note that a tournament is 2 -e.c. if the following adjacencies hold: for every pair of vertices, u and v, there are four other vertices: one directed toward both u and v, one directed away from both u and v, one directed toward u and away from v, and one directed toward v and away from u. In Section 3, we prove that there is a 2 -e.c. tournament with k vertices if and only if $k \geqslant 7$ and $k \neq 8$, and give explicit examples for all such orders k.

We consider only finite and simple tournaments. For a tournament $G, V(G)$ denotes its vertex-set and $E(G)$ denotes its arc-set. The order of G is $|V(G)|$. We denote an arc directed from x to y by (x, y). For a vertex $x \in V(G)$, we define $N_{\text {out }}(x)=\{y:(x, y) \in E(G)\}$, and $N_{\text {in }}(x)=\{y:(y, x) \in E(G)\}$. As usual, a vertex x with $N_{\text {in }}(x)=\emptyset$ is called a source and a vertex x with $N_{\text {out }}(x)=\emptyset$ is called a sink. If $U \subseteq V(G), G \upharpoonright U$ is the subgraph of G induced by U; for $x \in V(G), G-x=G \upharpoonright(V(G) \backslash\{x\})$. For basic information on graphs and tournaments, see [4,11].

The Paley tournament of order q, written D_{q}, where q is a prime power congruent to $3(\bmod 4)$, is the tournament with vertices the elements of $G F(q)$, the finite field with q elements, and $(x, y) \in E\left(D_{q}\right)$ if and only if $x-y$ is a nonzero quadratic residue. For D_{7}, see Fig. 1. As discussed above for Paley graphs, for a fixed positive n, sufficiently large Paley tournaments are n-e.c. (see [18]); however, no other explicit families of tournaments with these adjacency properties are known.

The next lemma follows from the definitions.
Lemma 1. Let G be an n-e.c. tournament for some $n>1$. For a fixed $v \in V(G)$, the tournaments $G-v, G \upharpoonright N_{\text {in }}(v)$, and $G \upharpoonright N_{\text {out }}(v)$ are each $(n-1)$-e.c.

Definition 2. A tournament G is n-e.c. minimal if G has the smallest number of vertices among all n-e.c. tournaments. An n-e.c. tournament is critical if deleting any vertex leaves a tournament which is not n-e.c.

Clearly, an n-e.c. minimal tournament is n-e.c. critical. In Section 2, we show that there are exactly two 1 -e.c. critical tournaments up to isomorphism. In Section 4, we give examples of 2-e.c. critical tournaments of all possible
orders $k \geqslant 7$ and $k \neq 8$. Vertex-criticality for various properties has been studied by many authors, including Berge [6,5,7,1,17,20-22,24,25].

2. The 1-e.c. critical tournaments

We make the following trivial observations.
Remark 1. A tournament is 1-e.c. if and only if it has no source or sink.
Remark 2. A tournament with a directed hamilton cycle is 1 -e.c.
The tournament D_{3} is the directed circuit on three vertices. It is easy to see that D_{3} is the unique (up to isomorphism) 1 -e.c. minimal tournament, and thus, it is 1-e.c. critical. Define T_{6} to be the tournament consisting of two copies of D_{3}, with arcs oriented from the first copy to the second. It is straightforward to check that T_{6} is 1-e.c. critical.

Theorem 2. The only 1-e.c. critical tournaments (up to isomorphism) are D_{3} and T_{6}.
Proof. Let G be a 1-e.c. critical tournament. We first observe that a strongly connected component S of G has exactly three vertices. To see this, suppose that S has at least $k \geqslant 4$ vertices. By a theorem of Moon [19], S has a directed circuit C of length $k-1$. Deleting the vertex that C misses in S leaves a 1 -e.c. tournament, which is a contradiction.

We claim that if G has exactly one or two strongly connected components, then G is isomorphic to D_{3} or T_{6}, respectively. Assume to the contrary that G has $r \geqslant 3$ strongly connected components. From G we construct an auxiliary tournament G^{\prime}, whose vertices are the strongly connected components of G with the induced adjacencies. Note that G^{\prime} is isomorphic to the r-element linear order. Let u be a vertex of G^{\prime} that is neither a least nor greatest element. If we delete a vertex x in the strongly connected component of G corresponding to u, then the remaining graph $G-x$, is 1 -e.c., which is a contradiction.

3. Examples of 2-e.c. tournaments

In this section, our main theorem is the following.
Theorem 3. There is a 2 -e.c. tournament with k vertices if and only if $k \geqslant 7$ and $k \neq 8$.
To prove Theorem 3, we first prove the following theorem.
Theorem 4. There is a unique (up to isomorphism) 2-e.c. minimal tournament, the Paley tournament D_{7}.
Proof. Let G be a 2-e.c. tournament. Then since the unique minimal 1-e.c. tournament has three vertices, $|V(G)| \geqslant 7$ by Lemma 1. Suppose now $|V(G)|=7$, say $V(G)=\{1,2,3,4,5,6,7\}$. Say $N_{\text {in }}(7)=\{1,2,3\},(1,2),(2,3),(3,1) \in E(G)$; $N_{\text {out }}(7)=\{4,5,6\} ;(4,6),(6,5),(5,4) \in E(G)$. See Fig. 2(a). Vertex 1 currently has outdegree two, but needs outdegree three, so without loss of generality, assume that $(1,4) \in E(G)$. Then by considering the degrees of 1 and 4 , we get $(5,1),(6,1) \in E(G)$ and $(4,2),(4,3) \in E(G)$. See Fig. 2(b). Since $N_{\text {in }}(1)=\{3,5,6\}$ and $(6,5) \in E(G)$, it follows that $(5,3),(3,6) \in E(G)$. See Fig. 2(c). Then, for degree of $5,(2,5) \in E(G)$, and then for degree of $2,(6,2) \in E(G)$. See Fig. 2(d). Then $f: V(G) \rightarrow V\left(D_{7}\right)$ is an isomorphism, where $f(1)=0, f(2)=5, f(3)=4, f(4)=6$, $f(5)=1, f(6)=2$ and $f(7)=3$.

Given a 2-e.c. tournament, another 2-e.c. tournament with two more vertices can be constructed using a "tournament version" of the replication operation which was instrumental in [9].

Definition 3. Let G be a tournament and let $(a, b) \in E(G)$. Add two new vertices a^{\prime}, b^{\prime} such that a^{\prime} has the same adjacencies to vertices of G other than b as a does, b^{\prime} has the same adjacencies to vertices of G other than a as b does,

Fig. 2. The proof of Theorem 4.
$a, b, a^{\prime}, b^{\prime}, a$ is a directed circuit, a and a^{\prime} are joined either way and b and b^{\prime} are joined either way; that is, a replicate $R=R(G, e)$ is a tournament with $V(R)=V(G) \cup\left\{a^{\prime}, b^{\prime}\right\}$ and

$$
\begin{aligned}
E(R)= & E(G) \cup\left\{\left(a^{\prime}, v\right): v \in N_{\text {out }}(a) \backslash\{b\}\right\} \cup\left\{\left(v, a^{\prime}\right): v \in N_{\text {in }}(a)\right\} \\
& \cup\left\{\left(b^{\prime}, v\right): v \in N_{\text {out }}(b)\right\} \cup\left\{\left(v, b^{\prime}\right): v \in N_{\text {in }}(b) \backslash\{a\}\right\} \\
& \cup\left\{\left(b, a^{\prime}\right),\left(a^{\prime}, b^{\prime}\right),\left(b^{\prime}, a\right)\right\} \cup\left\{\text { exactly one of }\left(a, a^{\prime}\right),\left(a^{\prime}, a\right)\right\} \\
& \cup\left\{\text { exactly one of }\left(b, b^{\prime}\right),\left(b^{\prime}, b\right)\right\} .
\end{aligned}
$$

We observe that for each arc e, there are four nonidentical replicates $R(G, e)$ that we may construct (depending on how we orient the edges $a a^{\prime}, b b^{\prime}$).

Definition 4. Let G be a tournament, and let $n \geqslant 1$ be fixed.
(1) An n-e.c. tournament problem is a $2 \times n$ matrix

$$
\left(\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
i_{1} & \ldots & i_{n}
\end{array}\right)
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}$ is an n-element subset of $V(G)$, and for $1 \leqslant j \leqslant n, i_{j} \in\{\uparrow, \downarrow\}$.
(2) A solution to an n-e.c. tournament problem is a vertex $z \in V(G)$ such that $z \in N_{\text {in }}\left(x_{j}\right)$ if $i_{j}=\uparrow$ and $z \in N_{\text {out }}\left(x_{j}\right)$ if $i_{j}=\downarrow$.

Note that a tournament G is n-e.c. if and only if each n-e.c. tournament problem in G has a solution.
Theorem 5. If G is a 2-e.c. tournament, then for every $e \in E(G)$, each replicate $R=R(G, e)$ is 2-e.c.

Fig. 3. The unique 1-e.c. tournament of order 4.
Proof. Fix $e=(a, b) \in E(G)$. Fix distinct $x, y \in V(R)$. We show that each problem $\left(\begin{array}{cc}x & y \\ i & j\end{array}\right), i, j \in\{\uparrow, \downarrow\}$ has a solution in R.

Case $1:\left|\left\{a^{\prime}, b^{\prime}\right\} \cap\{x, y\}\right|=0$. A solution to the problem in G is a solution to the problem in R.
Case 2: $\left|\left\{a^{\prime}, b^{\prime}\right\} \cap\{x, y\}\right|=1$.
Assume that $x=a^{\prime}$ and $y \neq b^{\prime}$. First, suppose $y=a$. If $(i, j)=(\uparrow, \uparrow)$, an in-neighbour of a in G solves the problem; if $(i, j)=(\downarrow, \downarrow)$, an out-neighbour of a in G other than b solves the problem. The vertex b solves $\left(\begin{array}{ll}a^{\prime} & a \\ \uparrow & \downarrow\end{array}\right)$ and b^{\prime} solves $\left(\begin{array}{cc}a^{\prime} & a \\ \downarrow & \uparrow\end{array}\right)$.

If $y \neq a$, first solve $\left(\begin{array}{ll}a & y \\ i & j\end{array}\right)$ by say, c, in G. If $c \neq b$, then c also solves $\left(\begin{array}{cc}a^{\prime} & y \\ i & j\end{array}\right)$. If $c=b$, then $i=\downarrow$ and $y \neq b$, so b^{\prime} solves $\left(\begin{array}{cc}a^{\prime} & y \\ \downarrow & j\end{array}\right)$.

The case when $x=b^{\prime}$ and $y \neq a^{\prime}$ follows by a similar argument.
Case 3: $\left|\left\{a^{\prime}, b^{\prime}\right\} \cap\{x, y\}\right|=2$.
Where z is a solution of $\left(\begin{array}{ll}a & b \\ i & j\end{array}\right)$ in G, z is a solution of $\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ i & j\end{array}\right)$ in R.
Using tournament replication on D_{7}, we obtain 2-e.c. tournaments for any odd order $k, k \geqslant 7$. Now we work on finding 2-e.c. tournaments of all possible even orders.

Theorem 6. There is no 2-e.c. tournament of order 8.
Proof. It is straightforward to see that there is a unique 1-e.c. tournament of order 4; see Fig. 3. Let G be a 2 -e.c. tournament of order 8 . Then G has a vertex of degree 4 . In fact, the outdegree sequence of G is completely determined.

Claim. G has exactly four vertices of indegree 3 and four vertices of indegree 4.
Let $v \in V(G)$. Since both $G \mid N_{\text {in }}(v)$ and $G \mid N_{\text {out }}(v)$ are 1-e.c., it follows that $3 \leqslant\left|N_{\text {in }}(v)\right| \leqslant 4$. Let x be the number of vertices of indegree 3 , and let y be the number of vertices of indegree 4 . Then since the sum of all indegrees is the number of arcs,

$$
\begin{aligned}
& x+y=8 \\
& 3 x+4 y=28 .
\end{aligned}
$$

Solving the system establishes the claim.
Now suppose $V(G)=\{1, \ldots, 8\}$. For each vertex v of G, one of the subgraphs induced by $N_{\text {in }}(v)$ and $N_{\text {out }}(v)$ is D_{3} and the other is the tournament of Fig. 3.

Without loss of generality, suppose vertex 1 has indegree 4 and the subgraphs induced by $N_{\text {in }}(1)$ and $N_{\text {out }}(1)$ are as in Fig. 4.

Case 1: Vertex 8 has indegree 3.
Without loss of generality, by the symmetry of 2,3 , and 4 in the directed graph in Fig. $4,(2,8),(3,8),(8,4) \in E(G)$. $N_{\text {in }}(8)=\{2,3,7\}$ and $(2,3) \in E(G)$, so for $G \upharpoonright N_{\text {in }}(8) \cong D_{3}$, also $(3,7),(7,2) \in E(G) . N_{\text {out }}(8)=\{1,4,5,6\}$ and $(5,1),(5,6) \in E(G)$, so $(4,5) \in E(G)$.

Now $\left|N_{\text {out }}(7)\right|=4$, so all remaining arcs meeting 7 must be directed toward 7 , so $(4,7) \in E(G)$. Then $N_{\text {in }}(7)=\{3,4,6\}$ and $(3,4) \in E(G)$, so $(4,6),(6,3) \in E(G)$. The vertices 4,5 , and 8 are in $N_{\text {in }}(6)$, but $(8,5),(4,5) \in E(G)$ so $\left|N_{\text {in }}(6)\right|=4$, so $(2,6) \in E(G)$. Now $N_{\text {in }}(6)=\{2,4,5,8\}$ and $(4,5),(8,5) \in E(G)$ so $(5,2) \in E(G)$.

Fig. 4. The in- and out-neighbours of 1.

Fig. 5. G missing one arc.

Now we have all but one arc of G, either $(3,5)$ or $(5,3)$. See Fig. 5. If that arc were (3, 5), then $N_{\text {out }}(3)=\{4,5,7,8\}$ and $(4,5),(7,5),(8,5) \in E(G)$ which is a contradiction. Otherwise, if that arc were $(5,3)$, then $N_{\text {out }}(5)=\{1,2,3,6\}$ and $(1,3),(2,3),(6,3) \in E(G)$, which is a contradiction.
Case 2: Vertex 8 has indegree 4.
In this case $(2,8),(3,8),(4,8) \in E(G)$. Then $N_{\text {out }}(8)=\{1,5,6\}$, but $(5,1),(6,1) \in E(G)$, which is a contradiction.

To find 2-e.c. tournaments of all possible even orders as described in Theorem 3, it is sufficient to give an example of a 2-e.c. tournament of order 10, and then use replication. For this, see the tournament R^{\prime} in Fig. 6. It is straightforward to verify that R^{\prime} is 2 -e.c.: one need only check the vertices 1,2 , and 10 versus each of the other vertices. The details are tedious and are therefore omitted.

In [12] it was proved that whenever there is a 2-e.c. graph of order m, then there is an 2-e.c. graph of order $m+1$, and the question of this type of monotonicity was raised in general for n-e.c. graphs. We remark that the "gap" for 2-e.c. tournaments supplies the first example of nonmonotonicity of a 2-e.c. property.

Fig. 6. The tournament R^{\prime}. Reverse the arc $(2,1)$ in $R\left(D_{7},(5,4)\right.$) (where $\left(4,4^{\prime}\right)$ and $\left(5,5^{\prime}\right)$ are arcs), and add a new vertex 10 so that $N_{\text {in }}(10)=\left\{2,3,5^{\prime}, 6\right\}$. Note that not all arcs are shown.

4. Examples of 2-e.c. critical tournaments

Definition 5. An arc $e=(a, b)$ of tournament G is good if every vertex $v \neq a, b$ is the unique solution to some 2 -e.c. tournament problem not involving a or b.

Lemma 7. Let G be a 2-e.c. critical tournament and let arc $e=(a, b)$ be good. Then each replicate $R=R(G, e)$ is a 2-e.c. critical tournament.

Proof. Note that: the unique solution of $\left(\begin{array}{ll}b & b^{\prime} \\ \uparrow & \downarrow\end{array}\right)$ is a, of $\left(\begin{array}{cc}b & b^{\prime} \\ \downarrow & \uparrow\end{array}\right)$ is a, of $\left(\begin{array}{cc}a & a^{\prime} \\ \uparrow & \downarrow\end{array}\right)$ is b^{\prime}, and of $\left(\begin{array}{ll}a & a^{\prime} \\ \downarrow & \uparrow\end{array}\right)$ is b. Now let $x \in V(R)-\left\{a, a^{\prime}, b, b^{\prime}\right\}$. By hypothesis, x is the unique solution to some 2-e.c. tournament problem in G. If a^{\prime} were a solution to this problem in R then a would be a solution to it in G, and if b^{\prime} were a solution to this problem in R, then b would be a solution to it in G. Therefore, x is the unique solution to this problem in R.

Definition 6. In the definition of replication of the arc $e=(a, b)$ in tournament G, we insist that the arc between a and a^{\prime} be $\left(a, a^{\prime}\right)$, and the arc between b and b^{\prime} be $\left(b^{\prime}, b\right)$, then we call the replication a type-1 replication, and use a subscript 1 to indicate the resulting tournament, $R_{1}(G, e)$.

Lemma 8. Let G be a 2-e.c. critical tournament and let $e=(a, b) \in E(G)$ be good. Repeatedly replicating e using type-1 replication gives a 2 -e.c. critical tournament.

Proof. Define $G_{0}=G$. For $k \geqslant 0$, define $G_{k+1}=R_{1}\left(G_{k}, e\right)$, and call the replication arc $e_{k+1}=\left(a_{k+1}, b_{k+1}\right)$. Then by Lemma 5, G_{k+1} is a 2-e.c. tournament of order $|V(G)|+2 k$. We need to show that G_{k+1} is 2-e.c. critical.
We proceed by induction on k. Assume G_{k} is 2-e.c. critical and that for $1 \leqslant j \leqslant k$, vertex a_{j} uniquely solves $\left(\begin{array}{ll}b_{j} & b \\ \uparrow & \downarrow\end{array}\right)$ and vertex b_{j} uniquely solves $\left(\begin{array}{cc}a_{j} & a \\ \downarrow & \uparrow\end{array}\right)$. Consider G_{k+1}.

Since (a, b) is good in G, each vertex $v \in V(G) \backslash\{a, b\}$ is the unique solution to some 2-e.c. tournament problem in G not involving a or b. In G_{k+1}, no vertex a_{j} or $b_{j}, 1 \leqslant j \leqslant k+1$ can solve this problem, because otherwise, a or b would have solved it in G.
Vertices a_{k+1} and b_{k+1} cannot solve the problems that a_{j} and $b_{j}(1 \leqslant j \leqslant k)$ uniquely solve in the induction hypothesis: for the a_{j} problem, $\left(b_{j}, a_{k+1}\right)$ and $\left(b_{k+1}, b\right)$ are arcs of G_{k+1}; for the b_{j} problem, $\left(b_{k+1}, a_{j}\right)$ and $\left(a, a_{k+1}\right)$ are arcs of G_{k+1}.

Vertex a_{k+1} uniquely solves $\left(\begin{array}{cc}b_{k+1} & b \\ \uparrow & \downarrow\end{array}\right)$ since every vertex except a_{k+1} and a (and b) is directed the same way with respect to b and b_{k+1}, and a is directed toward b. By a similar argument, vertex b_{k+1} uniquely solves $\left(\begin{array}{cc}a_{k+1} & a \\ \downarrow & \uparrow\end{array}\right)$, since every vertex except b_{k+1} and b (and a) is directed the same way with respect to a and a_{k+1}, and a is directed toward b.

Finally, a uniquely solves $\left(\begin{array}{cc}b_{k+1} & b \\ \downarrow & \uparrow\end{array}\right)$ and b uniquely solves $\left(\begin{array}{cc}a_{k+1} & a \\ \uparrow & \downarrow\end{array}\right)$.
Using Lemmas 7 and 8 , we may construct 2 -e.c. critical tournament for all the possible orders k, where $k \geqslant 7$ and $k \neq 8$ as follows. For the odd orders, we note that in $D_{7},(4,3)$ is a good arc, as demonstrated by the following table.

Vertex	0	1	2	5	6
Uniquely solves $\left(\begin{array}{ll}2 & 5 \\ \downarrow & \uparrow\end{array}\right)\left(\begin{array}{ll}0 & 6 \\ \uparrow & \uparrow\end{array}\right)\left(\begin{array}{ll}0 & 5 \\ \uparrow & \uparrow\end{array}\right)\left(\begin{array}{ll}0 & 2 \\ \downarrow & \downarrow\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ \downarrow & \downarrow\end{array}\right)$					

For the even orders, the following tables demonstrate that the tournament R^{\prime} (introduced at the end of Section 3) is 2 -e.c. critical, and that $(0,6)$ is a good arc.
$\left.\begin{array}{lcccc}\hline \text { Vertex } & 0 & 1 & 2 & 3\end{array}\right] 4$.

We close with the following problem: find examples of n-e.c. tournaments, where $n \geqslant 3$, that are not Paley tournaments.

Acknowledgements

The authors gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[1] R. Aharoni, E. Berger, The number of edges in critical strongly connected graphs, Discrete Math. 234 (2001) 119-123.
[2] W. Ananchuen, L. Caccetta, On the adjacency properties of Paley graphs, Networks 23 (1993) 227-236.
[3] W. Ananchuen, L. Caccetta, On tournaments with a prescribed property, Ars Combin. 36 (1993) 89-96.
[4] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[5] C. Berge, Some Common properties for regularizable graphs, edge-critical graphs and B-graphs, Theory and Practice of Combinatorics, North-Holland Mathematical Studies, vol. 60, North-Holland, Amsterdam, 1982, pp. 31-44.
[6] C. Berge, About vertex-critical nonbicolorable hypergraphs, Austral. J. Combin. 9 (1994) 211-219.
[7] C. Berge, Some properties of non-bicolorable hypergraphs and the four-color problem, First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz), Discrete Appl. Math. 65 (1996) 73-79.
[8] B. Bollobás, Random Graphs, Academic Press, London, 1985.
[9] A. Bonato, K. Cameron, On an adjacency property of almost all graphs, Discrete Math. 231 (2001) 103-119.
[10] A. Bonato, K. Cameron, On 2-e.c. line-critical graphs, J. Combin. Math. Combin. Comput. 38 (2001) 111-121.
[11] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[12] L. Caccetta, P. Erdős, K. Vijayan, A property of random graphs, Ars Combin. 19 (1985) 287-294.
[13] P.J. Cameron, The random graph, in: R.L. Graham, J. Nešetřil (Eds.), Algorithms and Combinatorics, vol. 14, Springer, New York, 1997, pp. 333-351.
[14] P.J. Cameron, D. Stark, A prolific construction of strongly regular graphs with the n-e.c. property, Electron. J. Combin. 9 (1) (2002), Research Paper 31.
[15] P. Erdős, On a problem in graph theory, Math. Gaz. 47 (1963) 220-223.
[17] T. Gallai, Kritische Graphen I, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 165-192.
[18] R.L. Graham, J.H. Spencer, A constructive solution to a tournament problem, Canad. Math. Bull. 14 (1971) 45-48.
[19] J.W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966) 297-301.
[20] V. Neumann-Lara, Vertex critical 4-dichromatic circulant tournaments, Discrete Math. 170 (1997) 289-291.
[21] J. Plesník, Diametrically critical tournaments, Časopis Pěst. Mat. 100 (1975) 361-370.
[22] J.H. Schmerl, W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191-205.
[23] E. Szekeres, G. Szekeres, On a problem of Schütte and Erdős, Math. Gaz. 49 (1965) 290-293.
[24] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B 70 (1997) 67-100.
[25] B. Toft, An investigation of colour-critical graphs with complements of low connectivity, Advances in Graph Theory (Cambridge Combinatorial Conference, Trinity Colloquium, Cambridge, 1977); Ann. Discrete Math. 3 (1978) 279-287.

[^0]: E-mail addresses: abonato@rogers.com (A. Bonato), kcameron@wlu.ca (K. Cameron).

