Chapter 1 Overview and Descriptive Statistics	1.1 Populations, Samples, and Processes	Populations and Samples A <i>population</i> is a well-defined collection of objects. When information is available for the entire population we have a <i>census</i> . A subset of the population is a <i>sample</i> .	Data and Observations Univariate data consists of observations on a single variable (<i>multivariate</i> – more than two variables).
Branches of Statistics <i>Descriptive Statistics</i> – summary and description of collected data. <i>Inferential Statistics</i> – generalizing from a sample to a population.	Relationship Between Probability and Inferential Statistics Probability Population Sample Inferential Statistics	1.2 Pictorial and Tabular Methods in Descriptive Statistics	 Stem-and- Leaf Displays Select one or more leading digits for the stem values. The trailing digits become the leaves. List stem values in a vertical column. Record the leaf for every observation. Indicate the units for the stem and leaf on the disply.
Stem-and-Leaf Example Observed values: 9, 10, 15, 22, 9, 15, 16, 24, 11 0 9 9 2 1 0 5 5 6 3 2 4 Stem: tens digit Leaf: units digit	Stem-and- Leaf Displays • Identify typical value • Extent of spread about a value • Presence of gaps • Extent of symmetry • Number and location of peaks • Presence of outlying values	Dotplots Represent data with dots. Observed values: 9, 10, 15, 22, 9, 15, 16, 24, 11 $\overline{5}$ 10 15 20 25	Types of Variables A variable is <i>discrete</i> if its set of possible values constitute a finite set or an infinite sequence. A variable is <i>continuous</i> if its set of possible values consists of an entire interval on a number line.
Histograms: Discrete Data Determine the frequency and relative frequency for each value of <i>x</i> . Then mark possible <i>x</i> values on a horizontal scale. Above each value, draw a rectangle whose height is the relative frequency of that value.	Ex. Students from a small college were asked how many charge cards that they carry. x is the variable representing the number of cards and the results are below. $ \begin{array}{r} \hline x & \#people & Rel. Freq \\ \hline 0 & 12 & 0.08 \\ \hline 1 & 422 & 0.28 \\ \hline 2 & 57 & 0.38 \\ \hline 3 & 24 & 0.16 \\ \hline 4 & 9 & 0.06 \\ \hline 5 & 4 & 0.03 \\ \hline 6 & 2 & 0.01 \end{array} $	Histograms Credit card results: $\overline{\begin{array}{c} x & Rel. Freq.\\ \hline 0 & 0.08\\ 1 & 0.28\\ 2 & 0.38\\ \hline 3 & 0.16\\ \hline 4 & 0.06\\ \hline 5 & 0.03\\ \hline 6 & 0.01\end{array}}$ Relative Frequency a_{0} a_{0} a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{3} a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{3} a_{5} a_{1} a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{3} a_{5} a_{5} Number of Cards	Histograms Continuous Data: Equal Class Widths Determine the frequency and relative frequency for each class. Then mark the class boundaries on a horizontal measurement axis. Above each class interval, draw a rectangle whose height is the relative frequency.

Histograms (Continuous Data): Unequal Widths After determining frequencies and relative frequencies, calculate the height of each rectangle using: $rectangle height = \frac{relative frequency of the class}{class width}$ The resulting heights are called <i>densities</i> and the vertical scale is the <i>density scale</i> .	Histogram Shapes $ \begin{array}{c} $	1.3 Measures of Location	The Mean The average (<i>mean</i>) of the <i>n</i> numbers $x_1, x_2,, x_n$ is \overline{x} where $\overline{x} = \frac{x_1 + x_2 + + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$ Population mean: μ
Median The <i>sample median</i> is the middle value in a set of data that is arranged in ascending order. For an even number of data points the median is the average of the middle two. <i>Population median</i> : ũ	Three Different Shapes for a Population Distribution	1.4 Measures of Variability	Sample Variance Variance is a measure of the spread of the data. The sample variance of the sample x_1, x_2, \dots, x_n of <i>n</i> values of <i>X</i> is given by $s^2 = \frac{\sum (x_i - \overline{x})^2}{n-1} = \frac{S_{xx}}{n-1}$ We refer to s^2 as being based on $n-1$ degrees of freedom.
Standard Deviation Standard deviation is a measure of the spread of the data using the same units as the data. The sample standard deviation is the square root of the sample variance: $s = \sqrt{s^2}$	Formula for s^2 An alternative expression for the numerator of s^2 is $S_{xx} = \sum (x_i - \overline{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$	Properties of s^2 Let $x_1, x_2,,x_n$ be any sample and c be any nonzero constant. 1. If $y_1 = x_1 + c,, y_n = x_n + c$, then $s_y^2 = s_x^2$ 2. If $y_1 = cx_1,, y_n = cx_n$, then $s_y^2 = c^2 s_x^2$, where s_x^2 is the sample variance of the x 's and s_y^2 is the sample variance of the y 's.	Upper and Lower Fourths After the <i>n</i> observations in a data set are ordered from smallest to largest, the <i>lower</i> (<i>upper</i>) fourth is the median of the smallest (largest) half of the data, where the median is included in both halves if <i>n</i> is odd. A measure of the spread that is resistant to outliers is the fourth spread (<i>IQR</i>) f_s = upper fourth – lower fourth.
Outliers Any observation farther than $1.5f_s$ from the closest fourth is an <i>outlier</i> . An outlier is <i>extreme</i> if it is more than $3f_s$ from the nearest fourth, and it is <i>mild</i> otherwise.	Boxplots		