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Abstract: The author proposes a new method for flexible regression modeling of multi-dimensional data,
where the regression function is approximated by a linear combination of logistic basis functions. The
method is adaptive, selecting simple or more complex models as appropriate. The number, location, and (to
some extent) shape of the basis functions are automatically determined from the data. The method is also
affine invariant, so accuracy of the fit is not affected by rotation or scaling of the covariates. Squared error
and absolute error criteria are both available for estimation. The latter provides a robust estimator of the
conditional median function. Computation is relatively fast, particularly for large data sets, so the method
is well suited for data mining applications.

Un modèle de régression flexible défini à partir
d’une base de fonctions logistiques adaptatives

Résumé : L’auteur propose une nouvelle m´ethode de r´egression flexible pour la mod´elisation de donn´ees
multivariées dans laquelle la fonction de r´egression est approch´ee par une combinaison lin´eaire de fonctions
logistiques. Cette m´ethode adaptative permet de choisir des mod`eles plus ou moins complexes selon les
besoins. Le nombre, la localisation et (jusqu’`a un certain point) la forme des fonctions logistiques de base
sont automatiquement d´eterminésà partir des donn´ees. La m´ethodeétantéquivariante par transformations
affines, la pr´ecision de l’ajustement n’est pas affect´ee par une rotation ou un changement d’´echelle des
variables exog`enes. L’estimation peut s’appuyer sur le crit`ere de l’erreur quadratique ou absolue. Dans
le second cas, on obtient un estimateur robuste de la m´ediane conditionnelle. La m´ethode se prˆete bien
au forage de donn´ees, car les calculs n´ecessaires se font rapidement, mˆeme pour de grands ensembles de
données.

1. INTRODUCTION

Consider the problem of estimating a regression functionf(x) = E(y jx), wherey is a response
variable andx is a vector ofd covariates. Estimators often approximatef by a linear combination
of basis functions:

f(x) � fK (x) =
KX
k=1

Æk�k(x): (1)

Examples include tensor-product splines (Gu, Bates, Chen & Wahba 1989; Friedman 1991),
thin-plate splines (Wahba 1990), and ridge functions (Friedman & Stuetzle 1981). This article
investigates a new family of estimatorŝf defined by logistic basis functions:

�k(x) = exp(�k + �
0

kx)

,
KX

m=1

exp(�m + �
0

mx): (2)

There is some redundancy in the parameterization. We have
P

�k(x) = 1 for all x, so approx-
imation (1) does not require a constant term. Dividing the numerator and denominator of (2) by
exp(�K + �

0

Kx) shows that, without loss of generality, one pair(�K ;�K) can be set to zero.
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The effective number of parameters used in approximation (1) is thus

p = 1 + (K � 1)(d+ 2): (3)

I refer to the methodology developed in this article as adaptive logistic basis (ALB) regres-
sion. The method is “adaptive” in that bothK and the parameters definingfK are determined
from the data. ALB estimatorŝf are defined for a family of location measures, including the
conditional mean and median. Suppose that(x; y) is a random vector, chooseq � 1, and letf be
a function minimizingEfjy � f(x)jqg. It is assumed that this expectation is finite. Conditional
mean and median functions are obtained by takingq = 2 andq = 1, respectively. The conditional
median need not be uniquely defined. Suppose that we have a samplef(xi; yi); i = 1; : : : ; ng.
For givenK, an ALB Lq estimatorf̂K is calculated by minimizing

P jyi � fK(xi)jq. The pa-
rameter values defininĝfK are determined separately for different numbersK, and a generalized
cross-validation technique is used to selectK.
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FIGURE 1: Preschool boys’ weight/height ratio by age. (a) ALBL2 estimatef̂ .
(b) Basis functions. The correspondingÆk estimates, from left to right, are 0.25, 0.75, and 1.09.

(c) Standard error of̂f. (d) Gradient̂g � 2se(ĝ).

This article introduces the ALB regression methodology and investigates its potential useful-
ness through theory, examples, and simulations. First, in section 2, using five data sets, I will
illustrate the method. Section 3 contains some theoretical results and comparisons of ALB with
related statistical and neural network methods. Algorithms to obtainf̂K for givenK and to select
K are described in Section 4. A simple formula for approximate standard errors is developed in
Section 5. The results of simulation studies on predictive performance of the ALBL2 estimator
are reported in Section 6. Finally, in section 7, several extensions of the ALB methodology are
discussed.
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Logistic basis functions have proved to be useful in many applications. They have long been
used in regression models for binary responses (Cox & Snell 1989). They have recently been
applied in classification problems to construct flexible classification boundaries (Hooper 1999)
and to model conditional probabilities of class membership (Hooper 2001). The estimation al-
gorithm described in Section 4.1 is based on a stochastic approximation algorithm developed for
the related classification problem. The classification methodology is an important component of
a program to predict genetic structure in DNA sequences (Hooper, Zhang & Wishart 2000). ALB
regression has been used to model a covariance function, as part of a model relating ultrasound
estimates of fetal weight to gestational age (Hooper, Mayes & Demianczuk 2001).
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FIGURE 2: Nursing time of a beluga whale calf by time period.
(a) ALB L2 (solid line) andL1 (broken line) estimates. (b) Basis functions for theL2 estimate.

The correspondingÆk estimates, from left to right, are�137, 453, 46, 225, 16, and 149.

2. EXAMPLES

The examples in this section illustrate properties off̂ , its gradient̂g = @f̂=@x, standard errors,
and basis functions. Usually the basis functions are not interpretable and would not be examined
when analysing a data set. They are displayed here to provide insight concerning the construction
of f̂ .

2.1. Weight/height ratio.

Figure 1 presents data relating weight/height ratio (in lb/in.) to age (in months) for preschool
boys [source: Gallant (1987), Epprightet al. (1972)]. The ALBL2 estimate in (a) is a linear
combination of theK̂ = 3 basis functions plotted in (b). The coefficientsÆ̂k are listed in the
caption below Figure 1. This example provides a simple illustrationof how the basis functions are
used to construct the curved and linear portions off̂ . The plot (c) of the standard errorseff̂ (x)g
shows how the standard deviation off̂(x) increases at the boundaries of the data. The plot (d)
of the gradient estimate includes approximate 95% confidence intervalsĝ(x)� 2sefĝ(x)g. Note
how ĝ(x) shrinks slightly toward zero at the data boundaries. This is likely an artifact that is
related to the shape of the basis functions, which causesf̂ to flatten asx moves away from the
data. Note also howsefĝ(x)g is large whenx is close to the boundary andjĝ(x)j is large. These
two effects occur quite generally with single and multiple covariates.

2.2. Beluga whale.

Figure 2 presents data on nursing patterns for Hudson, a beluga whale calf born at the New
York Aquarium [source: Chatterjee, Handcock & Simonoff (1995)]. Herex is the six-hour time
period postpartem index andy is the nursing time in seconds. The ALBL2 andL1 estimates
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are superimposed on scatterplot (a). Plots of residuals (not shown) indicate right skewness and
heteroscedasticity, so it is not surprising that theL1 estimate is slightly less than theL2 estimate
over much of the interval. TheL2 estimate useŝK = 6 basis functions, plotted in (b), while
theL1 estimate useŝK = 8. Simonoff (1996, Fig. 5.18) estimated the regression function
using a local quadratic kernel smoother with varying bandwidth. His bandwidths were selected
informally to account for varying smoothness and scatter. The adaptive selection of the logistic
basis functions has a similar motivation.
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FIGURE 3: Anaerobic threshold data. (a) ALBL2 estimate. (b) Gradient̂g � 2se(ĝ).

2.3. Anaerobic threshold.

This example illustrates how gradient estimates can be applied to the problem of estimating
anaerobic threshold levels. Routledge (1991) described this problem in applied physiology as
follows. Physiologists believe that during a progressive exercise test, there comes a point when
aerobic metabolic processes are supplemented by anaerobic processes, producing an additional
source of CO2. Some investigators have estimated this “anaerobic threshold” by locating an
upward bend in a plot of expired ventilation against oxygen uptake. Several authors have noted
that these plots often curve smoothly with no apparent bend. Figure 3(a) presents data for a
single individual in a single exercise test [source: Bennett (1988)]. The location (or even the
existence) of a threshold is not obvious from the plot of the ALBL2 estimate (̂K = 3). The plot
of its gradient in (b), however, suggests an upward bend. It is possible that the threshold effect
is introduced more gradually in some cases, producing an upward bend in the gradient but not in
the original function.

2.4. Viking formation.

The Viking formation is a sandstone layer, the floor of an ancient ocean, lying beneath the surface
of western Canada. ALB regression can be used to model the elevation of this layer (in feet above
sea level) as a function of latitudeand longitude. The data were obtained from 74229 drill holes in
Alberta [source: Stefan Bachu, Alberta Geological Survey, personal communication]. The drill
holes range from the Saskatchewan border to the foothills of the Rocky Mountains and from the
50th to the 57th parallel. Elevations vary from+560 in the northeast to�1900 near the foothills
in the southwest. The ALBL1 andL2 estimators produce similar results, with respectiveK̂
values of 12 and 13. The more robustL1 estimator seems preferable in this application. The
distribution of the residuals is symmetric and very long-tailed, with an interquartile range of 17
and a range of1913.

Figure 4 presents a contour plot of theL1 estimatef̂ , with a sample of drill hole locations
superimposed. The plot shows a rapid decline in elevation as one approaches the mountains. The
flattening off̂ in the southwest corner of the plot is an artifact associated with an absence of drill
holes in this region. Figure 4 also displays a contour plot ofmaxk �k, illustrating the location,
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orientation, and relative height of the 12 basis functions. Two of the basis functions, located near
(�111; 52), are difficult to identify in the plot because their maximum height is overshadowed
by neighbouring peaks. Reasonably good fitsf̂K can be obtained with substantially fewer basis
functions. AsK increases from 1 to 12, the standardized predictive absolute error risk decreases
as follows: 1:000; :295; :078; :069; :046; :042; :040; : : :; :034. An examination of the residuals
from f̂ reveals many outliers (likely due to measurement or data entry errors) but also some
localized effects that appear to represent structure missed by the ALB fit. These finer details
might be investigated by fitting surfaces to the residuals over smaller subregions.
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FIGURE 4: Viking formation. (a) Contours of theL1 estimatef̂, with 2000 randomly sampled
locations superimposed. Latitude is plotted on the vertical axis. Negative longitude

is plotted on the horizontal axis, producing the usual east-west orientation.
(b) Contours ofmax(�1; : : : ; �12), with lighter shaded regions closer to 1.
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FIGURE 5: Boston housing data. (a) Contours of theL2 estimatef̂ , with the 374 data points
superimposed. Thêf values increase from 9.1 to 10.8 as the contours proceed from left to right.

The horizontal and vertical axes are linear combinationsb
0

1x andb0

2x of the original 13 predictors.
(b) Contours ofmax(�1; �2; �3), with lighter shaded regions closer to 1. TheÆk estimates for

the lower left, upper middle, and lower right basis function are 8.85, 9.80, and 10.92.

2.5. Boston housing.

Following Li (1997), I examined a low crime rate subset of 374 census tracts from the Boston
housing data [source: Harrison & Rubinfeld (1978), Breiman & Friedman (1985)]. Herey is the
log median housing price per census tract andx consists of the remaining 13 variables. Ten-fold
cross-validation indicates that the ALBL2 estimator accounts for 89% of the variance ofy, i.e.,
the predictive squared error risk estimate divided by the sample variance ofy equals 0.11.
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Before examining a plot of the fitted model, consider how one might try to visualize an ALB
model in higher dimensions. It is straightforward to show that an estimatef̂K can be expressed
as a function ofr = min(d;K � 1) linear combinationsb01x; : : : ;b

0

rx, whereb1; : : : ;br span
the subspace that is spanned by the contrasts�̂1 � �̂K ; : : : ; �̂K�1 � �̂K . Whenr = 2, we
can visualizef̂K in a 3-dimensional plot. More generally, we can identify the directions in
the covariate space that best represent variation inf̂K by carrying out a principal components
analysis of the gradient sum-of-products matrixG =

P
ĝ(xi)ĝ(xi)

0. The gradient vectors
ĝ(xi) lie in the above-mentioned contrast subspace, so the rank ofG is at mostr. Let bj be
the eigenvector corresponding to thejth largest eigenvalueej of G. The first eigenvectorb1
maximizes the sum of squared gradients

Pfb0ĝ(xi)g2. If (e1 + e2)=(e1 + � � �+ er) � 1, then
a plot of f̂K versus(b01x;b

0

2x) accounts for nearly all of the variation in̂fK . Otherwise,f̂K
cannot be visualized in a single plot.

For the Boston housing data, the ALBL2 estimatef̂ hasK̂ = 3, sof̂ can be fully represented
in a 3-dimensional plot. Figure 5(a) shows a scatter plot of the data and a contour plot off̂ , with
horizontal and vertical axes defined by the principal gradient componentsb01x andb02x. The
leading eigenvalue ofG is relatively large, so most of the variation in̂f occurs in the horizontal
direction. The plot reveals a partial helix effect similar to that reported by Li (1997). Contours
of the 3 basis functions are shown in Figure 5(b). The ALB estimate withK = 4 is similar to
that withK = 3. A plot (not shown) off̂4 against its first two principal gradient components
accounts for most of the variation in̂f4 because the third eigenvalue of theG matrix for f̂4 is
relatively small.

To interpret an ALB model, we must relatêf to the individual covariates. I address this
problem by examining regions where the axis of steepest ascent/descent remains fairly stable.
This can be done by clustering gradient direction vectors~g(xi) = ĝ(xi)=jjĝ(xi)jj about direc-
tion “centroids”cj using the “distance”1� jcj 0~g(xi)j. Choosing three clusters leads to regions
on roughly the left side, middle, and right side of Figure 5(a), corresponding to census tracts
with low, middle, and high median housing prices. Withineach region,̂f is well approximated
by a one-dimensional function. One can attempt to interpret local directions of steepest ascent
(cluster centroids) by examining within-cluster correlations between directions and individual
covariates. The interpretation is, of course, less clear when there are stong dependencies among
the covariates. A gradient clustering approach suggests the following interpretation of the ALB
model. In regions where median prices are high, it appears that median prices are well predicted
by median size of the house alone. Where prices are low, additional variables are needed for the
best effect. This analysis supports the conclusion of Li (1997) that a linear model is inadequate.

3. THEORY AND COMPARISONS

This section presents some simple results about logistic basis functions, together with discussion
and comparisons. The results shed some light on howf is approximated byfK and on what kind
of functionsf are well approximated with smallK. The first proposition presents some useful
derivatives. The second describes key features of the basis functions whend = 1.

PROPOSITION1.

(i) @�k=@x = �k(x)f�k � ��(x)g, where��(x) =
PK

k=1 �k(x)�k.

(ii) @��
0

=@x =
PK

k=1 �k(x)f�k � ��(x)gf�k � ��(x)g0.

(iii) @2 log�k=@x@x0 = �@�� 0

=@x.

(iv) Eachlog�k is concave.

Proof. Direct calculation. 2
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PROPOSITION2. Let d = 1 and suppose�1 � � � � � �K with�1 < �K .

(i) Eachlog�k is strictly concave.

(ii) �1 is strictly decreasing, approaching0 at+1. If �1 < �2, then�1 approaches1 at�1.

(iii) �K is strictly increasing, approaching0 at�1. If �K�1 < �K , then�K approaches1 at
+1.

(iv) If �1 < �k < �K , then�k is strictly increasing forx < x�k and strictly decreasing for
x > x�k, withx�k determined by��(x�k) = �k. Furthermore,�k approaches0 at�1. We
also havex�k < x�m if �1 < �k < �m < �K .

Proof. The results follow from Proposition 1, which shows that�� is a strictly increasing function
mapping< onto the open interval(�1; �K). 2

Whend = 1, ALB can be viewed as a scatterplot smoother. A large variety of nonpara-
metric smoothers have been developed, e.g., see Simonoff (1996) or Eubank (1999). Various
methods often provide similaraccuracy given appropriate choices of smoothing parameters. The
concavity oflog�k suggests connections with b-splines, in that basis functions contribute tof̂ in
local, overlapping regions. The adaptive estimation of the�k suggests comparison with free-knot
splines, where the number and location of the knots are chosen adaptively (Lindstrom 1999). The
ALB and spline methods differ with regard to smoothness of the fitted models. ALB models are
infinitely differentiable. Splines possess a finite number of derivatives at knot locations (two for
cubic splines), and the number can be reduced by moving knots together. This suggests that free-
knot splines may be more efficient than ALB in fitting curves with sharp bends. Applications of
ALB to examples from Lindstrom (1999) support this view, although differences in predictive
performance appear to be minor.

The following proposition allows an interpretation of higher-dimensional basis functions
through lower-dimensional projections. It also establishes the important property of affine in-
variance.

PROPOSITION3.

(i) LetB be ad0 � d matrix, withd0 � d, and leta 2 <d. The restriction off�kg to the
d0-dimensional linear manifoldfa + B0z : z 2 <d0g produces a set ofd0-dimensional
logistic basis functions, i.e.,

�k(a+B0z) = exp(~�k + ~�
0

kz)

,
KX

m=1

exp(~�m + ~�
0

mz);

where~�k = �k + �
0

ka and ~�k = B�k.

(ii) If f�1 � �K ; : : : ;�K�1 � �Kg spans<d, then eachlog�k is strictly concave.

(iii) Each�k is quasiconcave; i.e., upper level setsfx : �k(x) � cg are convex.

(iv) If �k is in the interior of the convex hull off�1; : : : ;�Kg, then the upper level sets of�k
are compact forc > 0. Otherwise, the upper level sets are either unbounded or empty.

(v) If �k = �m for somek 6= m, thenfK =
P

Æk�k can be re-expressed as a linear
combination ofK � 1 logistic basis functions.

(vi) The family of functionsfK is invariant under affine transformations ofx andfK .
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Proof. (i) Immediate. (ii) Concavity follows from Proposition 1. Strict concavity follows from
(i) with d0 = 1, and from Proposition 2. The spanning assumption implies that ifb 6= 0, then
b0�k 6= b0�m for some(k;m). (iii) Follows from concavity oflog�k. (iv) Follows from (i) and
Proposition 2. (v) Replace�k and�m by � = logfexp(�k) + exp(�m)g. ReplaceÆk andÆm
by Æ=2, whereÆ = Æk exp(�k � �) + Æm exp(�m � �). (vi) Follows from (i) withd0 = d and
B invertible, and from the identitya+ bfK =

P
(a+ bÆk)�k. 2

Propositions 2 and 3 suggest limitations on the complexity offK . It appears likely that
whend = 1, the functionfK can have at mostK � 2 local extrema; i.e., local minima and
maxima. Although I do not have a proof of this conjecture, I have been unable to construct a
counterexample. Proposition 3(i) shows that this limitationwould also apply to fluctuations along
one-dimensional linear manifolds in higher dimensions. A large number of basis functions would
thus be required to approximate functions with many bumps or ripples occurring in multiple
directions.

Linear and quadratic functions are often used for local approximation. One may ask whether
these functions are well-approximated by ALB. Linear functions are well-approximated with
K = 2 basis functions. From expression (3), the effective number of ALB parametersp = d+ 3
is just slightly larger than the numberd + 1 defining a linear function. For a quadratic function
f(x) = a + b0x + x0Cx, simulations withx multivariate normal indicate thatK = 2d + 1
generally yields an adequate approximation, e.g., two basis functions for each dimension plus
a single basis function in the centre. The number of ALB parametersp = 1 + 2d(d + 2) is
substantially larger than the number1+d+d(d+1)=2 defining a quadratic function. Of course,
fK with K = 2d + 1 can approximate many nonquadratic functions as well. Furthermore,
substantially fewer basis functions may be required, depending on the rank ofC and the domain
of interest within<d.

This raises a key question: What kind of functionsf are well-approximated byfK with small
K? ForK = 2 we have a one-dimensional sigmoidal function, which can aproximate linear
functions and monotonic curves with an asymptote. This latter shape often arises in applications
of parametric nonlinear regression models (Bates & Watts 1988). ForK = 3, there are a few
basic patterns that arise in one and two dimensions; see Examples 2.1, 2.3, and 2.5, and the
example from Gu, Bates, Chen & Wahba (1989) discussed in Section 6. Hooper, Mayes &
Demianczuk (2001) obtained a useful approximation for a covariance function usingK = 3. For
K � 4 the possibilities are more varied and harder to characterize. Given the properties of the
basis functions, I would expect ALB to work well when the covariate space can be covered with
a small number of overlapping regions wheref is well approximated by simple low-dimensional
functions. ALB allows the local subspace on whicĥf is implicitly defined to vary smoothly
from one region of the covariate space to another. In the Boston housing example, different
one-dimensional approximations are obtained for regions with low and high prices.

The affine invariance of ALB suggests comparison with projection pursuit regression (Fried-
man & Stuetzle 1981). Both methods employ a linear combination of simpler functions and
neither is affected by rotation or scaling of the covariates. Projection pursuit approximatesf
by a sum of one-dimensional ridge functionsf(x) � Phk(�

0

kx). The ridge functionshk are
estimated using one-dimensional smoothers and can incorporate several bumps. The logistic ba-
sis functions employed by ALB are more complex than ridge functions in one respect, being
multi-dimensional, but are simpler in other respects, with configuration and quasi-concave shape
constrained by a parametric family.

Affine invariance is a mixed blessing. For some applications, it is a desirable property. In the
Viking formation example, there is no reason to think that latitude and longitude are well-suited
for modeling elevation. Alternative characterizations of spatial location should work just as well.
For other applications, the functionf may exhibit simple structure related to the covariates, such
asf(x) =

P
hk(xk). Methods that exploit this structure have an advantage, e.g., generalized

additive models (Hastie and Tibshirani 1990), multivariate adaptive regression splines (Friedman
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1991), and the� method (Breiman 1991). The performance of such methods will usually suffer
if the covariates are rotated. An affine invariant method provides a minimax performance that is
unaffected by linear transformation.

Logistic functions are usually defined using the linear parameterization in expression (2).
An alternative parameterization is also useful. The ALB functions can be expressed in terms of
Euclidean distance from reference points�k in the covariate space

�k(x) = exp(
k � ��2kx� �kk2)=
KX

m=1

exp(
m � ��2kx � �mk2) : (4)

Note that the termexp(���2kxk2) factors out in the numerator and denominator of (4). The
two parameterizations can thus be related by

�k = 
k � ��2k�kk2 and �k = 2��2�k:

The reference point parameterization is easier to interpret than the linear parameterization.
Roughly speaking, the location of�k can be controlled by�k, the relative influence of�k can be
controlled by
k, and the smoothness of�k can be controlled by� . This interpretation is useful
when initializing parameter values for estimation. The interpretation oversimplifies matters to
some degree. The roles of the parameters are actually not so clearly separated due to redun-
dancies among the parameters. For example,� can be fixed without limiting the generality of
(4), and smoothness can be controlled by adjusting the remaining parameters. This is in fact the
approach adopted in Section 4 when estimatingfK . The details underlying the interpretation are
spelled out as follows.

PROPOSITION4. Set�k = �2
k and define

Ak = fx : kx� �kk2 � �k < kx� �mk2 � �m for all m 6= kg: (5)

(i) We haveAk = fx : �k(x) > �m(x) for all m 6= kg. EachAk is a convex set, pos-
sibly empty. The boundary between two neighbouring setsAk andAm is a subset of a
hyperplane orthogonal to�k � �m.

(ii) If the �k are all equal, thenfAkg forms a Dirichlet tessellation of<d; i.e.,Ak consists of
all x nearest to�k. If the�k differ substantially, then the spatial interpretation of the�k is
less clear; e.g., it is possible that�k 62 Ak.

(iii) We have@�m=@
k = �k(1 � �k) for m = k, and��k�m for m 6= k, so increasing
k
increases the influence of�k and diminishes that of other�m.

(iv) Fix �1; �1; : : : ; �K; �K . As� approaches0, �k(x) converges to the indicator function of
Ak, for all x not on the boundary ofAk. As� approaches1, �k(x) converges to1=K.

Proof. Direct calculation. 2

The functionsfK can be viewed as neural networks. If the reference point parameterization
is employed and
k = 
 is fixed, thenfK is a radial basis functions network of a type introduced
by Moody & Darken (1989). It is common practice in applications of such networks to replace�
with varying parameters�k. This permits variation in the receptive field size, i.e., the volume of
upper level sets of the basis functions. Proposition 4(iii) shows that fixing� and varying
k has a
similar effect. The(�; 
k) family of functions has a potential advantage over the(�k; 
) family.
Logistic basis functions are affine invariant while radial basis functions are not.
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When the linear parameterization (2) is employed,fK can be represented as a network with
d inputs,K nodes in a single hidden layer, and one output. This is not a feed-forward net-
work, however, because the logistic transformation (called softmax in neural networkliterature)
involves all nodes in the hidden layer. In feed-forward networks, such as

KX
k=1

Æk exp(�k + �0kx)=f1 + exp(�k + �0

kx)g; (6)

each hiddennode is transformed separately. The basis functions in (6) are ridge functions with
sigmoidal shape. The basis functions in (2) appear to have an advantage over those in (6) with
regard to estimation. While similar training algorithms can be applied to both models, the effec-
tiveness of these algorithms depends on the initial values chosen for the parameters. A spatial
interpretation of the reference points in (4) permits an effective initialization using a clustering
algorithm, which is described in the next section. This approach is not feasible for the�k in (6).
Initial weights in feed-forward neural networks are usually generated randomly (Ripley 1996).

The familyffK ;K � 1g possesses the universal approximation property (Hornik, Stinch-
combe & White 1989), i.e., iff is a continuous function defined on a compact setA, then there
exists a sequence(fK ) converging uniformly tof onA. This result is easily demonstrated using
Proposition 4. Given" > 0, chooseK and subsetsAk of the form (5) such thatf varies by
at most"=2 within eachAk. This can be arranged, for example, by setting all
k to zero and
choosing the�k so that the maximum offkx � �kk : x 2 Ak; k � Kg is sufficiently small.
Let � approach 0, so thatf is essentially approximated by a piecewise constant function. Details
of the proof are omitted because the result follows from the universal approximation property of
radial basis functions (Xu, Kryzak & Yuille 1994).

4. ESTIMATION

4.1. Estimation offK by stochastic approximation.

Stochastic approximation was introduced by Robbins & Monro (1951). The following brief re-
view follows Benveniste, M´etivier & Priouret (1990). Consider minimizing a functionQ(�)
using an iterative algorithm driven by a sequence of independent and identically distributed ran-
dom vectorszm,

�m = �m�1 + amH(�m�1; zm): (7)

Let the gain functionam satisfyam > 0,
P

am = 1, and
P

a�m < 1 for some� > 1.
Write �m = �(tm), wheretm =

Pm
i=1 ai. After an initial transient phase, the behaviour of

process (7) is represented to a first approximation by that of the differential equationd�(t)=dt =
E[Hf�(t); zg]. In stochastic gradient algorithms, the updating functionH is defined so that
�EfH(�; z)g is proportional to the gradient ofQ(�).

This section describes a stochastic gradient algorithm to estimatef by fK =
PK

k=1 Æk�k for
givenK. While the underlying idea is simple, its implementation involves several engineering
details, e.g., choosing the number of iterations and the form of the gain function. The choices
described below were made largely on empirical grounds, guided by experience with similar
classification training algorithms (Hooper 1999, 2001). The implementation of the algorithm
treats these choices as default values, to be ignored in most applications, but subject to adjustment
by the user.

Our underlying aim is to minimize the predictive risk

R(fK) = EP fjy � fK(x)jqg;

whereEP denotes the expected value when sampling(x; y) from a population of interest. Let̂P
denote the empirical distribution, assigning probability1=n to each observation(xi; yi). TheLq
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estimatorf̂K minimizes the training risk

EP̂ fjy � fK(x)jqg = 1

n

nX
i=1

jyi � fK(xi)jq: (8)

The response and covariates are centered and scaled to have zero mean and unit standard devi-
ation. This standardization makes it easier to initialize parameter values and specify updating
formulae. After estimation,̂fK is transformed back to the original scale. The reference point
parameterization (4) is employed, with� fixed at a convenient value described below. Set

�0 = (Æ1; 
1; �
0

1; : : : ; ÆK ; 
K ; �
0

K)

and let�̂ denote a parameter vector definingf̂K . Since the parameters are not uniquely deter-
mined, �̂ is not regarded as an estimator but as one of many equivalent parameterizations of
f̂K .

Initial parameter values are motivated by Proposition 4. The initial
k are set to zero. The
initial �k are obtained as a spatially representative set of points in the covariate space (see below).
The initial Æk are then defined as the average of theyi values forxi in the region nearest to�k.
The parameter� is set to the average distance between nearest neighbours among theK initial
points�k. This choice for� yields a reasonable amount of overlap among neighbouring basis
functions.

A representative set ofK points�k can be obtained by minimizing

nX
i=1

minfkxi � �kk2 : k = 1; : : : ;Kg: (9)

The resulting points have been calledK-means cluster centroids (MacQueen 1967) and principal
points (Flury 1990). The latter term is more appropriate here, as we are not searching for clusters.
The initial�k can be calculated using aK-means clustering algorithm (Hartigan & Wong 1979).
My preference, however, is to initialize both�k andÆk simultaneously, using a vector quantiza-
tion algorithm (Kohonen 1995). Begin by generating�1; : : : ; �K randomly fromfx1; : : : ;xng
and set allÆk to zero. Then repeat the following steps for3000

p
K iterations. At themth itera-

tion, sample(x; y) from P̂ , determine the point�k nearestx, replace�k by (1�am)�k+amxk,
and replaceÆk by (1�am)Æk+amy. The gain is defined asam = 100

p
K=(m+100

p
K). This

algorithm produces approximate principal points andy-averages, which serve as useful starting
values.

After selecting initial values, the training risk (8) is minimized by stochastic approximation.
In successive iterations, an observation(x; y) is randomly sampled (with replacement) fromP̂
and the parameter vector� is updated as in expression (7). Set

hk(x; y; �) = jy � fK(x)jq�1signfy � fK(x)g�k(x):

Differentiation of�jy � fK (x)jq with respect to the parameters yields the following updating
formulae at themth iteration:

Æk  Æk + aÆmhk(x; y; �) ;


k  
k + a
mhk(x; y; �)fÆk � fK(x)g ; (10)

�k  �k + a�mhk(x; y; �)fÆk � fK(x)g(x � �k):

The parameter� remains fixed. The updates make sense, based on the interpretation of the
parameters in Proposition 4. Ify�fK (x) is positive (negative), thenÆk is increased (decreased).
If the productfy� fK(x)gfÆk � fK(x)g is positive (negative), then
k is increased (decreased)
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and�k is shifted toward (away from)x. The magnitude of each change depends on�k(x) and,
if q > 1, on jy � fK(x)j.

The number of iterations is set atM = 50000
p
K. The gains are defined as follows:

a�m =

8>><
>>:

a�0
cgM

m+cgM
; 1 � m �M=2;

a�M=2
2(M�m)

M ; M=2 < m � M;

aÆm = a�m, a
m = a�m=2, a�0 = 0:25, andcg = 0:01. The updating functions and gain functions
were scaled in an attempt to make the three perturbations in (10) have effects of similar magnitude
onfK(x).

The theory of stochastic approximation indicates that after an initial transient phase, the
training process typically converges toward a local optimum (Benveniste, M´etivier & Priouret
1990). There is no guarantee that a global optimum will be found, and replication of the process
could produce varying results, but the algorithm typically yields reasonable results. The quality
of the estimator is improved and variation under replication is reduced by restarting the process,
i.e., replicate the first 10% of the process ten times, calculating the training risk each time, then
continue the process with the most promising vector of parameter values.
Four comments.First, note that the updates (10) for theL1 estimator depend on the deviation
y � fK (x) only through its sign. This shows that theL1 estimator is robust against outliers
and heteroscedasticity in the response variable. Second, the numberM of iterations increases
slowly with the complexity of the fitted model but does not depend onn. Whenn is small to
moderate, each observation is sampled many times, but whenn is very large, some observations
may not be sampled at all. In the Viking formation example, withK = 12 andn = 74229, each
observation is sampled on average2:3 times. One might want to increaseM in such situations.
Third, although I have not done so, one could exploit the conditional linearity of the model
when estimating theÆk coefficients for theL2 estimator, e.g., obtain preliminary estimates by
stochastic approximation, then fix the basis functions and obtain exact least squares estimates of
theÆk. Care would be needed to deal with potential problems of multicollinearity. Fourth, for the
L2 estimator, stochastic approximation can be replaced by anonlinear least squares algorithm,
such as Gauss–Newton or Newton–Raphson (Bates & Watts 1988). These “batch” algorithms
require fewer iterations than the “on-line” algorithm described above, but they typically employ
the entire data set at each iteration. I have found stochastic approximation to be highly effective
in problems with large data sets and large numbers of parameters. Randomness may help in the
search for a good local optimum, given a poor initial function estimate.

4.2. Selection ofK by generalized cross-validation.

Our aim is to select a number̂K so thatR(f̂K̂) � minK R(f̂K ). To this end,K̂ is obtained by
minimizing an adjusted training risk

RGCV(f̂K) =

�
n

n� p

�q
1

n

nX
i=1

jyi � f̂K(xi)jq; (11)

wherep = 1 + (K � 1)(d + 2). This adjustment, called generalized cross-validation, was
originally introduced forL2 loss and linear smoothers (Craven & Wahba 1979). Its application
here is justified primarily on empirical grounds. In simulation studies, withR approximated
using a large test set,R(f̂K̂) was typically close tominK R(f̂K). A straightforward search is
employed to minimize (11). The GCV risk is evaluated for successive values ofK, starting with
K = 1. The search halts when the minimum GCV risk remains unchanged form consecutive
values ofK. The selection of̂K therefore involves the calculation of̂K +m estimateŝfK . This
simple strategy works well because computation time increases rapidly withK (see below) and
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typically K̂ � 10. The stopping valuem = 3 is adequate in most situations. A larger value may
be useful ifRGCV(f̂K ) is unusually flat as a function ofK.

The adjusted riskRGCV(f̂K̂ ) is not always a good estimator ofR(f̂K̂ ). Simulation stud-
ies reported in Section 6 show that when the sample size is small, the ratioRGCV(f̂K̂)=R(f̂K̂)
could be highly variable and the average ratio could be significantly less than one. These findings
suggest that if an estimate ofR(f̂K̂ ) is required, thenRGCV(f̂K̂ ) should be supplemented with
a more reliable estimate, such as a 10-fold cross-validated risk estimate or a bootstrap estimate.
The findings do not invalidate the use of GCV in selectingK, because risk estimates for consec-
utive values ofK are highly correlated. In simulations, plots ofRGCV(f̂K) andR(f̂K ) against
K often differ substantially while still attaining their minima at the same valueK.

Whenp=n is small, the GCV criterion (11) is closely related to AIC (Akaike 1973). Suppose
the conditional density ofy givenx has the form

c

�
exp

�
�jy � fK(x)jq

q�q

�
;

wherec is a normalizing constant and� is a scale parameter. Forq = 2, we have the normal
density, and forq = 1, the double exponential. LetL(�; �) denote the likelihood function based
on the conditional density of(y1; : : : ; yn) given(x1; : : : ;xn). A maximum likelihood estimator
for � yields the ALBLq estimatorf̂K , and the mle for� is

�̂K =

(
1

n

nX
i=1

jyi � f̂K (xi)jq
)1=q

:

Using AIC, we would selectK to minimize� logL(�̂K ; �̂K) + p. This is equivalent to mini-
mizing

log(�̂qK) + qp=n � log(�̂qK) � q log(1� p=n): (12)

The right-hand side of (12) is the logarithm of the GCV criterion (11). Asp=n increases, GCV
assigns an increasingly heavier penalty relative to AIC. In particular, GCV imposes the restriction
p < n, while AIC does not.

A potential misconception about model fitting warrants the following comment. Many re-
gression methods select from a large set of potential basis functions using forward selection
and/or backward elimination strategies. ALB regression adopts a different approach. WhileK
is selected by sequentially calculatinĝfK , parameters are optimized separately for eachK. The
parameters and basis functions determiningf̂K play no role in the calculation of̂fK+1. The
estimatorf̂ would not be improved by pruning basis functions because parameters are optimized
jointly for all K basis functions.

The computation time required to estimatef , including selection of̂K , is typically between
5 and 30 seconds, fast enough for interactive use. The time increases withK̂ andd (but does
not depend onq) and increases very slowly withn. Table 1 lists ALB estimation times for a
360 MHz SUN UltraSparcII workstation. Each value includes the total time needed to obtainf̂K
for K = 1; : : : ; K̂ + 3. The sample size wasn = 500. The time is roughly linear ind, with
intercept and slope depending on̂K, and roughly linear inK̂2 with slope depending ond. The
sample sizen has relatively little effect on time because of the sampling technique used in the
training algorithm. The numberM of iterations is proportional to

p
K , each iteration requires the

evaluation ofK distances, and each distance calculation time is proportional tod. Times increase
slowly with n because of increased overhead (data input and transformation, calculation of the
GCV risk) and a tendency to select largerK̂. In the Viking formation example withn = 74299
andK̂ = 12, the computing time was 150 seconds.



356 HOOPER Vol. 29, No. 3

TABLE 1: Time (in seconds) to calculatêf , including selection of̂K.

d

K̂ 1 5 10 20

1 2.6 3.1 3.6 5.1

2 3.5 4.8 5.6 8.1

5 9.2 12.6 15.2 22.4

10 27.0 37.5 44.6 66.1

15 56.6 79.3 94.6 140.7

5. STANDARD ERRORS

This section presents approximate standard errors for the ALBL2 estimator and the components
of its gradient. The reader is advised that the derivation makes unwarranted assumptions and
the approximations are unreliable in some situations. The derivation assumes thatK = K̂ is
fixed, f(x) = fK(x) for some� 2 <(2+d)K , and theyi � f(xi) are normally distributed with
zero mean and constant variance�2". Standard errors are obtained using a standard asymptotic
technique in nonlinear regression analysis, e.g., see Bates & Watts (1988, Section 2.3). The
regression functionfK(x) is approximated locally near̂� by a linear function of�. Linear
regression formulae are then applied. The redundant parameterization of� presents a potential
problem here. Further difficulties could arise from multicollinearity among the estimated basis
functions. Both problems are resolved in a simple manner by a ridge regression technique.

Set

v(x; �) = @fK (x)=@� and A =
nX
i=1

v(xi; �̂)fv(xi; �̂)g0:

The matrixA is singular and nonnegative definite symmetric with positive diagonal elements. An
invertible matrixB is obtained by slightly increasing (multiply by 1.01)each diagonal element
of A and leaving off-diagonal elements unchanged. The error variance is estimated by

�̂2" =
1

n� p

nX
i=1

fyi � f̂ (xi)g2;

wherep = 1 + (K � 1)(d+ 2). Givenx, the standard deviation of̂f (x) is estimated by

seff̂(x)g = �̂"

h
fv(x; �̂)g0B�1v(x; �̂)

i1=2
: (13)

The intervalf̂ (x) � 2seff̂ (x)g provides an approximate confidence interval forf(x) with
nominal 95% coverage probability. One may note four potential problems with this simple confi-
dence interval. First, the ridge modification toA produces a slight downward bias in the standard
error. Second, the quality of the linear approximation offK may be poor. Bates & Watts (1988)
suggested methods for identifying curvature effects and modifying confidence regions, but their
methods may not be tractable in the applications considered here. Third, standard errorsaccount
for variance, but not bias. Iff is poorly approximated byfK , thenf̂K(x) may have substantial
bias relative to its standard deviation. Fourth, and perhaps most important, the derivation as-
sumes thatK is fixed. The effect of adaptive selection is unknown. It seems likely that variation
in K̂ will increase variation in̂�", and hence in the standard error.
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The simulation studies in Section 6 suggest that the confidence interval can be moderately
liberal with coverage probabilities (averaged overx1; : : : ;xn) between 85% and 97%. These
results reveal only part of the story, since coverage could also vary across the covariate space.
For a simple example, supposed = 1, x is uniformly distributed over(0; 2�), f(x) = sin(x),
and�" = 0:5. The sine function is well approximated byfK with K = 4, but smaller values
of K̂ are often selected whenn is not large, e.g.,P (K̂ � 3) � 0:20 whenn = 100. When
K̂ = 3, f̂ typically fits f well over much of the interval, but fits an asymptote at one end. In
the region with the asymptote,jf̂ � f j tends to be large whilese(f̂ ) tends to be small. Coverage
probabilities are thus lower for values ofx near the ends of the interval. This problem ofK being
underestimated, and bias thereby being increased, appears to diminish asn increases and/or the
signal-to-noise ratio increases.

Approximate standard errors for gradient components can be defined in a manner similar to
(13). Set

gj(x) =
@

@xj
f(x) ; ĝj(x) =

@

@xj
f̂K(x) ; wj(x; �) =

@2

@�@xj
fK (x) ;

wherex0 = (x1; : : : ; xd). Givenx, the standard deviation of̂gj(x) is estimated by

sefĝj(x)g = �̂"

h
fwj(x; �̂)g0B�1wj(x; �̂)

i1=2
:

The intervalĝj(x) � 2sefĝj(x)g provides an approximate confidence interval forgj(x) with
nominal 95% coverage probability. The actual coverage probability is less stable than that for
thef(x) interval, perhaps due to increased bias in the gradient estimator. The estimatorf̂K tends
to flatten near the edge of the data, shrinkingĝj toward zero. The simulation studies in Section
6 (results omitted from Table 3) revealed coverage probabilities (averaged overx1; : : : ;xn) be-
tween 75% and 100%. The higher coverage probabilities occur whengj is identically zero, i.e.,
when the covariatexj is a nuisance variable. Variation in coverage across the covariate space
appears to be greater for derivativesgj(x) than forf(x).

In view of the problems noted above, one may wish to restrict application of the standard er-
rors to exploratory analysis and adopt alternative methods, such as the bootstrap, for more formal
inference. I have found the standard errors useful in two regards. First, plots ofseff̂ (x)g can be
used to detect outliers in the covariate space. When usinĝf to predict a response at a new point
x, it is not always clear whetherx lies within the available data. A large standard error suggests
that the prediction involves extrapolation and is thus likely to be affected by increased bias and
variance. Second, boxplots of the standardized gradientsĝj(x)=sefĝj(x)gmay suggest possible
nuisance variables. Iff does not involve the covariatexj, thengj(x) = 0 for all x. Elimination
of such variables can substantially improve the fit. It should noted that standardized gradient
plots, liket statistics for linear regression coefficients, could be misleading given dependencies
among the covariates.

6. SIMULATION STUDIES

The accuracy of the ALBL2 estimator was investigated in simulation experiments. Various ex-
amples were chosen to investigate how comparative performance depends on the target function
f , the dimensionalityd, and the sample sizen. In each example, 100 samples ofn independent
observations of(x; y) were generated from a model:y = f(x) + ", wherex and" are indepen-
dent,x is distributed uniformly on a hypercube(a; b)d, and" is aN (0; �2") random variable. The
ALB L2 estimatef̂ was calculated and several performance measures were evaluated for each
sample. Averages and standard deviations of the performance measures are reported in Table
3. There are ten basic examples. Each has several values ofn to demonstrate how accuracy
improves with increased sample size. Some have several values ofd to demonstrate the adverse
effects of nuisance variables. Table 2 lists characteristics of the basic examples: the functionf ,
the side(a; b), �f = the standard deviation off(x), and�". The signal-to-noise ratio is�f=�".
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TABLE 2: Examples used in simulation studies.

No. Functionf Side �f �" �2"=�
2

y

1 constant (0; 1) 0.00 1.00 1.000

2 expfx1 sin(�x2)g (�1; 1) 0.45 0.50 0.552

3 3 sin(x1x2) (�2; 2) 1.90 1.00 0.217

4 x1x2x3 (�2; 2) 1.50 1.00 0.308

5 additive (16) (0; 1) 2.52 1.00 0.136

6 partly additive (17) (0; 1) 4.90 1.00 0.040

7 impedance (18) (0; 1) 354. 118. 0.100

8 phase shift (19) (0; 1) 0.33 0.11 0.100

9 GBCW (20) (0; 1) 3.10 1.00 0.094

10 ALB (K = 5; d = 4) (0; 1) 0.53 0.18 0.100

Two measures of predictive accuracy are reported for eachf̂ . Each measure is scaled by
dividing by �2y = �2f + �2". The scaled mean predictive squared error evaluates accuracy at
points within the observed sample:

MPSE =

�
1

n

X
ff(xi) � f̂ (xi)g2 + �2"

��
�2y :

The scaled integrated predictive squared error evaluates accuracy over thehypercube:

IPSE =

�Z
ff(x) � f̂ (x)g2Pu(dx) + �2"

��
�2y ; (14)

wherePu is the uniform distribution on(a; b)d. The numerator of (14) was approximated by
averaging the predictive squared error off̂ over an independent sample of99n observations.
Usually IPSE is greater than MPSE, and the difference could be large whenn is small ord is
large. Both predictive measures are bounded below by�2"=�

2
y listed in Table 2.

Averages for three additional measures are reported as well:K̂ , CPf , and GCV/IPSE. CPf
is the observed coverage probability of a nominal 95% confidence interval forf(x), averaged
over the sample:

CPf =
1

n

nX
i=1

I
h
jf(xi)� f̂ (xi)j � 2seff̂ (xi)g

i
:

GCV/IPSE denotes the ratio of scaled GCV risk to IPSE, where the unscaled GCV risk is defined
in (11). The tabulated values suggest that the bias in the GCV risk is small when MPSE� IPSE
but that the GCV risk tends to underestimate the integrated predictive squared error when MPSE
is substantially less than IPSE. The average ratio of scaled GCV risk to MPSE (which is not
tabulated) is typically greater than one. As the sample sizen increases, the difference IPSE�
MPSE and the bias in the GCV risk both decrease.

Adaptive estimators should detect real structure where it exists and ignore spurious structure
caused by random variation. Example 1 focuses on this second goal by examining performance
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whenf is constant. We would hope that, in most samples, ALB selectsK̂ = 1 so thatf̂ = �y
and IPSE� 1 + 1=n. Table 3 shows how accuracy deteriorates asd increases and improves as
n increases. In the 100 replicates for each of the four(d; n) pairs, ALB selectedK̂ = 1 with
frequencies 96, 74, 64, and 82.

Examples 2, 3, and 4 were used by Breiman (1991) to illustrate the� method for multivariate
function estimation. The� method employs approximations of the form

f(x) �
MX

m=1

dY
j=1

hmj(xj); (15)

where thehmj are smooth functions. The target functionsf in the three examples are all well
approximated by (15) with M � 2, so the� method performs very well here. Breiman’s root
mean squared error results (forn = 100) are equivalent to MPSE values of 0.64, 0.25, and 0.33.
The less efficient performance of ALB, observed in Table 3, stems from the the target functions
being less easily approximated by logistic basis functions. This can be seen by comparing aver-
age numbers of degrees of freedom used in the two approaches. Breiman (1991) reportedave df
= 6.5, 13.1, and 5.0. Corresponding values for ALB (withn = 100) are1+(ave K̂�1)(d+2) =
14.9, 20.8, and 34.5. The difference in comparative performance is greatest in Example 4, where
the target function is extremely simple for the� method but relatively complex for ALB. In
support of ALB, however, note that the� method is sensitive to the coordinate system used to
describe the covariates. If the coordinate axes were randomly rotated, then a larger number of
products would likely be needed for a good approximation in (15), and the performance of the
� method would suffer. The performance of ALB would be unaffected by such a rotation. The
target functions are relatively complex, with several ripples or bumps. ALB adaptively selects
larger values of̂K asn increases.

Examples 5 through 8 were used by Friedman (1991) to illustrate MARS. The target in Ex-
ample 5 is an additive function of the first five covariates:

f(x) = 0:1 exp(4x1) + 4=[1 + expf�20(x2 � 0:5)g] + 3x3 + 2x4 + x5 : (16)

Friedman reported IPSE values for MARS (withd = 10 andn = 50; 100; 200) of 0.26, 0.18,
and 0.16. The target in Example 6 is a partly additive function:

f(x) = 10 sin(�x1x2) + 20(x3 � 0:5)2 + 10x4 + 5x5 : (17)

Friedman’s IPSE values (again withd = 10 andn = 50; 100; 200) were 0.24, 0.074, and 0.056.
ALB results are reported in Table 3. In both examples the results ford = 10 are substantially
worse than those of MARS, but the results ford = 5 are only slightly worse. The higher accuracy
of MARS is obtained to some extent by exploiting the additive and partly additive structure of
f and by effectively eliminating the nuisance variablesx6; : : : ; x10. A rotation of the coordinate
axes would create higher-order interactions, adversely affecting MARS but not ALB.

Plots of the ALB gradient functionŝgj(x) can be used to detect additive and partially additive
structure. If the effect ofx1 is additive, as in Example 5, then the gradientg1(x) is a function of
x1. If the joint effect of(x1; x2) is additive, as in Example 6, then the gradientsg1(x) andg2(x)
are functions of(x1; x2). In these examples, plots of the ALB gradient estimates reveal little
scatter about the gradient curve. These ALB diagnostics would suggest the use of alternative
methods, such as MARS, that exploit additivity. As noted in Section 5, plots of standardized
gradient functions can be used to detect nuisance variables.
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TABLE 3: Performance measures: averages (and standard deviations) from 100 replicated
samples of sizen. MPSE and IPSE are bounded below by�2"=�

2

y listed in Table 2.

No. d n K̂ MPSE IPSE GCV/IPSE CPf

1 1 100 1.04(.20) 1.01(.02) 1.01(.03) 1.00(.16) 0.95(.22)

5 100 1.38(.76) 1.06(.11) 1.07(.14) 0.94(.17) 0.90(.23)

10 100 1.60(.97) 1.14(.21) 1.23(.38) 0.86(.22) 0.88(.23)

10 400 1.26(.63) 1.02(.04) 1.02(.05) 0.98(.08) 0.90(.25)

2 2 100 4.47(.83) 0.66(.03) 0.70(.04) 1.02(.14) 0.92(.06)

2 200 5.49(1.2) 0.63(.02) 0.64(.03) 1.00(.12) 0.90(.08)

2 400 6.64(.94) 0.59(.01) 0.60(.02) 1.02(.08) 0.93(.05)

3 2 100 5.96(1.7) 0.29(.03) 0.34(.04) 1.03(.23) 0.92(.08)

2 200 8.34(1.5) 0.25(.02) 0.27(.03) 1.05(.15) 0.96(.07)

2 400 9.51(.78) 0.23(.006) 0.24(.01) 1.05(.08) 0.98(.03)

4 3 100 7.69(.80) 0.41(.03) 0.55(.09) 0.96(.21) 0.94(.05)

3 200 8.76(.43) 0.35(.02) 0.38(.04) 1.01(.14) 0.97(.04)

3 400 9.04(.20) 0.32(.007) 0.33(.01) 1.02(.09) 0.97(.03)

5 5 50 3.05(.74) 0.22(.02) 0.31(.08) 0.81(.23) 0.88(.08)

5 100 3.87(.92) 0.20(.01) 0.23(.03) 0.89(.15) 0.84(.09)

5 200 5.09(.95) 0.18(.01) 0.19(.01) 0.96(.10) 0.85(.10)

10 50 2.54(.56) 0.25(.02) 0.42(.13) 0.80(.30) 0.92(.07)

10 100 3.36(.88) 0.23(.02) 0.33(.07) 0.79(.20) 0.88(.08)

10 200 4.15(.89) 0.20(.01) 0.24(.02) 0.88(.13) 0.83(.06)

6 5 50 4.58(.73) 0.080(.022) 0.19(.08) 0.87(.40) 0.97(.05)

5 100 5.42(.64) 0.063(.004) 0.089(.025) 0.91(.22) 0.95(.04)

5 200 6.10(.93) 0.056(.003) 0.063(.005) 0.95(.12) 0.89(.05)

10 50 2.85(.72) 0.15(.06) 0.46(.14) 0.71(.29) 0.92(.09)

10 100 4.93(.57) 0.077(.016) 0.17(.06) 0.86(.27) 0.98(.03)

10 200 5.29(.50) 0.063(.003) 0.081(.010) 0.95(.15) 0.92(.03)

7 4 25 2.35(.50) 0.16(.02) 0.25(.10) 0.86(.43) 0.93(.09)

4 50 2.84(.53) 0.14(.01) 0.16(.03) 0.91(.23) 0.92(.09)

4 100 3.16(.44) 0.12(.007) 0.12(.01) 0.97(.16) 0.93(.06)

4 200 3.33(.55) 0.11(.003) 0.11(.005) 0.99(.12) 0.91(.06)

8 4 25 2.38(.53) 0.17(.03) 0.52(.23) 0.47(.23) 0.91(.12)

4 50 3.13(.73) 0.15(.02) 0.33(.12) 0.58(.21) 0.91(.11)

4 100 4.13(.77) 0.14(.01) 0.20(.05) 0.77(.18) 0.93(.05)

4 200 4.60(.68) 0.13(.009) 0.16(.02) 0.89(.14) 0.89(.06)

9 2 25 3.07(.26) 0.12(.02) 0.15(.05) 1.12(.47) 0.98(.04)

2 50 3.16(.39) 0.11(.008) 0.12(.02) 1.01(.23) 0.97(.05)

2 100 3.25(.56) 0.10(.004) 0.10(.007) 1.00(.17) 0.94(.06)

10 50 2.99(.61) 0.19(.07) 0.50(.29) 0.80(.28) 0.91(.16)

10 100 3.14(.38) 0.12(.01) 0.15(.05) 0.95(.21) 0.96(.03)

10 4 50 4.16(.47) 0.14(.01) 0.20(.05) 0.92(.32) 0.97(.04)

4 100 4.59(.62) 0.13(.007) 0.14(.02) 0.95(.19) 0.95(.04)

4 200 5.06(.45) 0.12(.004) 0.12(.006) 0.97(.10) 0.94(.04)

4 400 5.06(.28) 0.11(.002) 0.11(.003) 1.00(.08) 0.94(.04)
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The functionsf in Examples 7 and 8 relate impedance and phase shift to four other variables
in an alternating current series circuit (Friedman 1991):

impedance =
�
Q2 + R2

�1=2
and (18)

phase shift = arctan(Q=R); (19)

whereR = 100x1 is the resistance,! = 2�(20 + 260x2) is the angular frequency,L = x3
is the inductance,C = 1 + 10x4 is the capacitance, andQ = !L � 1=(!C). These target
functions include interactions of all orders, although capacitance has only a slight effect over the
specified domain. Friedman (1991) reported the following IPSE results (withd = 4 andn =
100; 200; 400): 0.35, 0.21, 0.16 for impedance and 0.32, 0.25, 0.21 for phase shift. O’Sullivan
(1991) reported improvements over MARS in these examples using a smoothed version of CART.
Forn = 100, he obtained IPSE� 0:22 for impedance and IPSE� 0:25 for phase shift. ALB is
substantially more accurate in these examples. Results withn = 25; 50; 100; 200 are reported in
Table 3.

Example 9 was used by Gu, Bates, Chen & Wahba (1989) to illustrate interaction spline
smoothing:

f(x) =
40h(x; 0:5; 0:5)

h(x; 0:2; 0:7)+ h(x; 0:7; 0:2)
; (20)

where
h(x; a1; a2) = exp

�
8
�
(x1 � a1)

2 + (x2 � a2)
2
	�

:

This example was also used by Breiman (1991) and Friedman (1991) to illustrate the� method
and MARS, respectively. Plots off and several estimateŝf can be found in these references.
The targetf is well approximated byfK withK = 3, and ALB provides accurate estimates with
small sample sizes. Other estimators are less efficient. Gu, Bates, Chen & Wahba (1989) and
Friedman (1991) reported MPSE = 0.11 forn = 300 andd = 2. Breiman (1991) reported MPSE
= 0.125 forn = 100 andd = 2.

TABLE 4: IPSE results for MARS in Example 10, based on 100 replicated samples of sizen.
The tuning constant “degree” is the maximum number of covariates permitted in MARS interaction terms.

degree
n 1 2 3 4

50 0.74(.10) 0.61(.20) 0.70(.34) 0.72(.38)

100 0.66(.05) 0.40(.46) 0.47(.48) 0.49(.48)

200 0.63(.03) 0.29(.09) 0.32(.09) 0.33(.33)

400 0.61(.02) 0.28(.09) 0.29(.07) 0.30(.06)

In Example 10, the target functionf is an ALB regression function defined on a 3-
dimensional projection of<4, i.e.,f(x) = fK (z) whereK = 5, z = (z1; z2; z3)

0,

z1 =
p
3(x1 + x2 + x3 + x4 � 2);

z2 =
p
3(x1 + x2 � x3 � x4);

z3 =
p
3(x1 � x2 + x3 � x4):

The zj have mean 0 and standard deviation 1. The reference point parameterization is used
to specifyfK : �1 = (1; 0; 0)0, �2 = (�1; 0; 0)0, �3 = (0; 1; 0)0, �4 = (0; 0; 1)0, �5 = (0; 0; 0)0,
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1 = � � � = 
5 = 0, Æ1 = Æ2 = 1, Æ3 = Æ4 = �1, Æ5 = 0, and� = 1. The targetf can
be expressed directly as an ALB function ofx, with suitable parameters, andf has interactions
of all orders among the four covariates. The interpretation off is simpler in terms ofz. For
fixed (z2; z3), f is a bowl-shaped function ofz1. For fixed(z1; z3), f is a decreasing sigmoidal
function ofz2. For fixed(z1; z2), f is a decreasing sigmoidal function ofz3. Table 3 lists ALB
results forn = 50, 100, 200, and 400. In previous examples, the average value ofK̂ increases
with n. Here, the results suggest thatK̂ converges in probability to the true valueK = 5.
Whether this convergence holds asn!1 is unknown.

In this example, the performance of ALB is substantially better than that of MARS (see Table
4). I carried out simulations using the version of MARS in the mda Package (Hastie & Tibshirani
2001,http://lib.stat.cmu.edu), varying the “degree” argument and setting all other arguments
to their default values. The degree specifies the maximum number of covariates permitted in
MARS interaction terms. Setting the degree to 1 yields an additive model. The best MARS
results were obtained with the degree set to 2. It appears that MARS has difficulty modeling the
higher-order interactions inf , even whenn is large. In further simulations, the average IPSE
values for MARS remain roughly constant asn increases from 400 to 4000.

7. DISCUSSION

I have attempted to show that ALB provides a useful addition to regression methodology. Its
strengths, such as affine invariance, complement those of other flexible regression techniques.
ALB appears well-suited for exploration of large multidimensional data sets where the target
functionf contains higher-order interactions. Some of ALB’s limitations may be addressed by
extending its methodology or by combining it with other techniques. The following are some
ideas under investigation.

The simulation studies show that when nuisance variables are added to the predictors, ALB
tends to compensate by reducing the number of basis functions. This results in smoother esti-
matesf̂ and reduced predictive performance. The behaviour is related to the effective number of
parameters1+(K�1)(d+2) employed by ALB. In many applications,f is well-approximated
by a function defined on a lower-dimensional projection, i.e.,f(x) � f0(Bx), whereB is a
d0 � d matrix with d0 < d. There is a substantial body of literature describing stable meth-
ods for dimension reduction, see, e.g., Li (1991, 1992), Cook (1998a,b) and Ferr´e (1998). Such
methods can be used to estimated0 and the column space ofB, before applying ALB to the
lower-dimensional predictor space. The affine invariance of ALB implies that the subspace basis
chosen to defineB will not affect the resulting estimator.

When a residual analysis indicates heteroscedasticity, one may wish to employ a weighted
least squares estimator; i.e., minimize

nX
i=1

h
fyi � f̂(xi)g=s(xi)

i2
;

wheres(x) is an estimate of some measure of scale for the conditional distribution ofy. The
extension of ALB to weighted least squares is straightforward. A robust scale estimate can be
obtained in two steps: first calculate the ALBL1 regression estimatêf , then calculates(x) as the
ALB L1 regression ofjyi� f̂ (xi)j against either̂f (xi) or xi. This conditional scale estimator is
motivated by the MAD (median of absolute deviations from the median) estimator used in robust
methods.

Regression quantiles can be estimated by modifying the ALB training risk. Set0 < � < 1
and define the check function,��(z) = (1 � �)(�z)+ + �z+, wherez+ = max(z; 0). Min-
imizing

P
��fyi � f̂ (xi)g yields an ALB�-quantile estimator suitable for multi-dimensional

applications. He (1997) described methods for constructing several quantile curves that avoid
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crossing. This constraint can be implemented by using a common set of basis functions for all
quantiles and order restrictions on theÆ coefficients.

ALB methods can be applied in the context of generalized linear models. The main adjust-
ment is to replace the training risk with an appropriate log likelihood. If the response variable is
nonnegative (e.g., count data) thenf(x) can be approximated byexpfP Æk�k(x)g. Modifica-
tions to the updating functions (10) are straightforward. Techniques for an unordered polytomous
response variable were developed in Hooper (2001).

ACKNOWLEDGEMENTS

Part of this work was carried out during a sabbatical year at the Department of Statistics, University of
British Columbia. The author wishes to thank Nancy Heckman for helpful advice. Financial support from
the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

REFERENCES

H. Akaike (1973). Information theory and an extension of the maximum likelihood principle. InSecond
International Symposium on Information Theory(B. N. Petrov & F. Cáski, eds.), Akademiai Kaid´o,
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Discussion 1

Comment 1: Mary J. LINDSTROM

The author is to be commended for a very thorough and insightful presentation of a promising
new class of multidimensional nonparametric estimators. From this discussant’s point of view,
the most intriguingaspect of these estimators is that they are based on multivariate basis functions
whose locations are estimated from the data.

1. PARAMETERIZATIONS

Our first challenge is to understand the structure of the ALB estimator. If we start with the
reference point parameterization (equation 4) and (without loss of generality) we set� equal to
1, the parameters which define each basis function are theK d-dimensional “centres”�k and the
K scalars
k. The form of the denominator, viz.

KX
m=1

exp(
m) exp(�kx � �mk2);

is what makes the ALB functions interesting (and complex). If the denominator did not involve
x, the exp(
k) term in the numerator and the entire denominator could be absorbed intoÆk (in
equation 1) and we would have a set of very simple, radially-symmetric, Gaussian-density type
basis functions, i.e.,

�0k(x) = exp(�kx� �kk2):
However, the denominator does involve all the distanceskx � �mk with relative influence con-
trolled by 
m. Note that the relative influence ofkx � �mk is the same for all basis func-
tions (other than themth) since
m does not vary by basis function. Thus the interpretation of

 = (
1; : : : ; 
K)0 is more complex than might be expected at first. One interpretation which
seems helpful is that
 allows for estimation of the appropriate orientation of the basis functions,
i.e., it allows for affine invariance. It would be interesting to compare the ALB estimator to a
(nonaffine invariant) version with fixed
 and potentially more basis functions.

It is interesting to note that while fixing� does not reduce the generality of�k(x), both
 and
the “centres”�k must be adjusted. That is, if we substitute�? = c� for � , then to obtain the same
basis functions we must also substitute�

?
k = c2�k for �k and
?k = 
k�(1�c2)k�kk2=�2 for 
k.

Note that nothing limits the new “centres”�?k (or, for that matter, the original ones�k) to be in the
span of the predictors. This underlines the interdependence of the parameters
, �k, and� and
the risks involved in interpreting them separately. The approach taken by the author seems very
sensible. That is, reduce the over-parameterization of the basis by fixing� to produce reasonably
centered “centres.” Unfortunately this must bedone separately foreach data set. Setting � = 1
is theoretically acceptable, but starting values for
 and�k may be difficult to guess.

2. COMPARISON TO B-SPLINES

The author points out the similarities between one-dimensional ALB functions and the b-spline
basis commonly used in fixed and free-knot regression splines. The term “free-knot” refers to
location parameters (knots) which are estimated from the data. Like an ALB function, the value
of a b-spline at a pointx depends on the distance fromx to the active “centres” (orknots) in
the b-spline. In the cubic regression spline that is commonly used, there are five active knots for
each b-spline. B-splines have truly local support in that ifx is outside the range of the five active
knots, then the b-spline value is zero. This is not a major advantage over ALB functions though

1These comments reflect the discussion of the paper which occurred after its public reading at the 29th
Annual Meeting of the Statistical Society of Canada in Burnaby (British Columbia) on 14 June2001.
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since, depending on the parameter values, ALB functions can have effective (computationally)
local support.

There are at least two major differences between ALB functions and b-splines. First, the knot
locations completely determine the form of the b-splines. There are no parameters analogous to
� and
 modulating the shape. This makes them less flexible but also eliminates the problem of
over-parameterization. Thus free-knot splines may be easier to estimate than ALB estimators.
The second major difference is that replicate centres in a regression spline (two or more centres
or knots with the same value) correspond to the loss of one or more derivatives at that location.
As the author points out, this could be an advantage when modeling non-smooth functions but
typically, it is more a nuisance when estimating knot positions. The enforced smoothness of
the ALB estimators may make them easier to estimate than free-knot splines but only when
using optimization methods which can handle over-parameterized models. These conflicting
conclusions indicate that a detailed comparison would be worthwhile.

The author mentions the over-parameterization of the ALB functions but does not specifically
discuss the problem of exchangeable parameters (which is shared by free-knot splines), i.e., ex-
changing the values of�i and
i with �j and
j for anyi andj will not change the fitted values,
but does change the parameter vector. Exchangeable parameters contribute to the numerous lo-
cal optima which make least squares estimates of the knots in free-knot splines typically very
difficult to find. Not only are there multiple global optima with relabeled parameters, but the
exchangeability introduces extra local optima because of the symmetry induced in the objective
function along lines and surfaces where two exchangeable parameters are equal (see Lindstrom
1999 for details). In one dimension, we can eliminate exchangeability by transforming the cen-
tres to a log-ratio parameterization which enforces ordering. Unfortunately, there is no obvious
analogy in multiple dimensions due to the lack of a strict ordering.

Even when using the log-ratio parameterization, there are typically many local optima in a
free-knot spline objective function which may or may not correspond to fits that are similar to
the global optimum. In other words, the global optimum can be difficult to find and it may be
important to find it. It seems that the estimation methods described in Section 4 would not, in
general, identify this condition. Also, an objective surface with multiple optima corresponding
to similar fits creates difficulties when estimating standard errors. The variability of the estimator
may be much greater than can be inferred from the local characteristics of the objective function
(a fifth caveat to the approximate standard errors).

B-splines do not generalize directly to multiple dimensions but there are many multivariate
basis functions suggested in the literature. Typically, however, thekth basis function depends on
only thekth centre through a term of the formkx � �kk, i.e., the locations of the other centres
do not influence thekth basis function at all. It is intriguing that the ALB functions generalize
the dependence of b-splines on multiple centres to multiple dimensions.

I am not aware of any previous proposal for true estimation of the locations of multi-
dimensional basis functions. As the author points out, there are many proposed stepwise deletion
and insertion algorithms but these do not allow for the inclusion of the variability of the estimated
centre locations in estimates of the variability of the fit. It may be that most researchers, perhaps
given the known difficulties in estimating the knots in a unidimensional spline, felt that the com-
putational difficulties of estimating multivariate locations would be overwhelming. The author
is to be commended for finding a computational approach which is fast and seems to find useful
solutions.

Mary J. LINDSTROM:lindstro@biostat.wisc.edu
Dept. of Biostatistics and Medical Informatics, University of Wisconsin

600 Highland Avenue, Room K6/446, Madison, WI 53792, USA
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Comment 2: James O. RAMSAY

This paper showcases a wide spectrum of interesting ideas and issues in the smoothing of data
and the estimation of response functions and surfaces. The adaptive logistic basis system seems
well worth considering in some applications, and the optimization technology used to fit the data
has some distinct merits. The five examples are interesting, and this article would make great a
discussion piece for a graduate course in data analysis.

The implementation of localized basis functions in the 1960’s, especially in the literature on
spline functions, was an enormous leap forward with respect to either orthogonal polynomials
or Fourier series as basis systems for basis function expansions. It meant that complex curve
features could be accurately captured while still retaining the sparse coefficient matrix in the
linear equation system defining least squares coefficient estimates. This madeO(n) calculations
possible in practice, a crucial advantage when curve-fitting technology was transported to image
analysis where the numbern of data points could routinely be in the thousands. Moreover, a
local basis system implies a local response to either changes in data or changes in coefficients,
whereas in polynomial and Fourier series bases, a change in a single coefficient changes the fit
everywhere, and often catastrophically at extreme sampling points.

Local basis systems led naturally to two strategies: use a lot of basis functions, and trim
or down-weight those not needed in the fit; or keep the numberK of basis functions small,
and move them to where they were needed. Both strategies have advantages and disadvantages.
Certainly one plus for the second adaptive approach is that conventional statistical theory can be
appealed to in constructing confidence regions, since the number of parameters can be kept to a
reasonably small fraction of the number of data values.

However, adaptive systems could also be unstable, and the author alludes to the problem of
multicollinearity when two basis functions get too close together. The adaptive logistic basis
for curve estimation was used by Bock & Thissen (1980) to model human growth data. They
worked with three basis functions, implying nine parameters, but found that two parameters had
to be collapsed to assure stable estimation. This parameter-collapse issue is also well known in
the free-knot spline literature.

The real challenge is now in image analysis, whether over two or three spatial dimensions;
we probably have more reliable curve-fitting technology than we need at this point. Both of the
example response surfaces are rather benign in the sense of being fairly flat, with sampling points
distributed over most of a rectangular region. I wonder what advantages the adaptive logistic fit
would have relative to those from other approaches such as kernel or local polynomial smoothing
or tensor product splines.

There is a third basis selection strategy in the image situation that seems promising, illustrated
in Ramsay (2000). This is to position a great number of local basis functions exactly where they
are needed, and then to control the smoothness through the use of a roughness penalty. The
finite element method for solving partial differential equation systems can be adapted easily to
the smoothing problem, and it also permits adaption to complex boundaries, both around the
exterior of the data and also around “holes” in the interior of their distribution. T. Ramsay (2001)
has taken the finite element approach substantially further.

I would like to focus some remarks on the optimization strategy, stochastic approximation,
used in the paper. I was delighted to see this applied so successfully, and I am sure that we will
see many more applications in the near future as we confront more and more data sets withn’s
of huge size.

Stochastic approximation may seem shocking at first sight, since it is the method that will not
produce the same answer every time, and almost guarantees that the answer settled on is not as
good as something out there. In this sense, it is in the same spirit as Markov chain Monte Carlo
techniques. But in my opinion, statisticians have been too preoccupied by optimality, a view well
argued by Tukey (1962). What matters is that we can find a good answer to a question, especially
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when the best answer is going to be indistinguishably better in a sense that really matters, such
as predictive efficiency, risk, and other criteria. Those of us who work a lot with multicollinear
predictors in regression settings are already used to seeing a dozen models with values ofR2

within 0.005 of the least squares estimate, even withK fixed.
Nevertheless, stochastic approximation could be slow, and when other methods are available

that yield answers quickly enough to enable bootstrapping and other resampling approaches to
interval estimation, they are likely to be preferred. In this regard, the first order differential
equation corresponding to the stochastic gradient method used in the paper can be solved directly
for the numbers of parameters involved in the illustration. The solution can be computed using
existing numerical methods, such as those available in the base version of the Matlab system, for
example. See Ramsay (1970) for a discussion of this approach.

James O. RAMSAY:ramsay@psych.mcgill.ca
Dept. of Psychology, 1205 avenue Docteur-Penfield

McGill University, Montréal (Québec), Canada H3A 2B1

Comment 3: Nancy E. HECKMAN

1. INTRODUCTORY COMMENTS

Parametric regression methods can be used to estimate an arbitrary smooth regression function
provided one uses a flexible set of basis functions. Common bases include trigonometric func-
tions yielding a Fourier series expansion and B-splines (see, e.g., Eubank 1988). The Fourier
method does not accurately estimate functions that are relatively constant in some regions but
rapidly changing in others. B-spline methods are able to adapt to this type of local variation
provided one chooses the B-spline basis appropriately. Choosing a B-spline basis is equivalent
to selecting a finite set of points, called knots, in the independent variable space. This is typically
done by a somewhat cumbersome combination of forward selection and backward elimination.
Extending these B-spline methods to high dimensions is straightforward in principle, but is com-
putationally prohibitive due to the knot selection. See Stone, Hansen, Kooperberg & Truong
(1997) and Zhou & Shen (2001).

The author’s Adaptive Logistic Basis (ALB) regression method can be used to estimate func-
tions that are relatively constant in some regions but rapidly changing in others. The method
works well in high dimensions, and the speed is impressive (see the author’s Table 1). The
method is virtually automatic, following easily understandable criteria in a non-ad hoc manner.
This is quite an accomplishment, and so the method shows great promise.

I will comment on some useful extensions of the methodology and also on one of the high-
dimensional exploratory techniques introduced by the author.

2. ADDITIVE MODELS AND MODEL TESTING

The author notes, in Section 3 of his paper, that “the functionf may exhibit simple structure re-
lated to the covariates... Methods that exploit this structure have an advantage.” Additive models
and semiparametric models have just such a simple structure.

With an additive model, one avoids some of the problems of high-dimensional regression.
Computations are faster and one eliminates the “curse of dimensionality,” the large mean squared
errors inherent in high dimensional estimation. Moreover, additive models are often easily inter-
pretable. As an example of an additive model, suppose the covariate vectorx can be split into
two componentsx = (x1; x2). If there are no interactions betweenx1 andx2, we model the
expected response additively asf(x1; x2) = f1(x1) + f2(x2). In principle, the ALB method
can be adapted to fit this additive model by modelingfj(xj) as

PKj

1 Æjk�
j
k(xj)(j = 1; 2); with

the�jk as in (2) of the paper. Furthermore, the ALB method might be used to construct a test to
determine that there are indeed no interactions betweenx1 andx2. We would compare the fit of
the additive model with the fit gotten from the full model, bootstrapping to calculate ap-value.
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In a semiparametric model, the expected response is linear in some of the covariates and
smooth in the other covariates. Semiparametric models are popular due to their easy inter-
pretability and the parametric rate of convergence of the linear fit. The simplest example of a
semiparametric model arises wheny is the response to some treatment, one of the covariatesÆ
say, is the treatment indicator, and the other covariates,x are nuisance parameters such as age
and weight. We model the expected response as�Æ + f(x), f smooth. Is this model reasonable?
If so, what is�, the treatment effect? A modified ALB would be able to answer these questions.

3. TESTING FOR SHAPE OF REGRESSION FUNCTIONS

In Example 2.3, the main interest is the existence and location of an anaerobic threshold. The
illustration in Figure 3(b) indicates that this threshold may appear at oxygen intake of approx-
imately 3000 units, when the gradient function becomes convex, that is, whenf 000 becomes
negative. However, the�2se(ĝ) confidence bands are pointwise and subject to the problems
discussed in Section 5, so any inference drawn is suspect.

Several nonparametric tests have been proposed to test the null hypothesis thatf 0(x) � 0 for
all x, against the alternative thatf 0 is positive for some region ofx values. See Bowman, Jones &
Gijbels (1998), Gijbels, Jones, Hall & Koch (2000), and Hall & Heckman (2000). Harezlak
& Heckman (2001) have extended the technique in Bowman, Jones & Gijbels (1998) to test
f (k)(x) � 0 for all x. Can ALB be used to test the null hypothesis thatf 000(x) � 0 for all x?
One way to do this would be to find an ALB fit off restricted so that̂f 000 � 0, then compare this
fit to the unrestricted ALB fit. Can ALB be modified for shape-restricted estimation?

4. EXPLORATORY TECHNIQUES

I was intrigued by the techniques used to study the regression fit for the Boston housing data.
The techniques don’t seem to be specific to the ALB method, and so might be generally useful in
regression analysis of high dimensional data. Two ideas are proposed: (i) definingx-directions
of high variability in f̂ as those eigenvectors ofG � P

ĝ(xi)ĝ(xi)
0 corresponding to large

eigenvalues, wherêg =5f̂ and (ii) clustering of gradient vectors.
I will only comment on the first method. The merits of (i) are clear forf̂ of the formf̂ = b0x,

where any reasonable method should say that the direction of variability off̂ is b. Hereĝ(x) = b
andG = nbb0, which has one non-zero eigenvalue, corresponding to eigenvectorb. Below I’ll
argue that, for more complicated functions, the eigenvectors ofG depend on both the gradient of
f̂ and the distribution of thexi vectors.

Note that the directions chosen by this method are unchanged by a rotation of the axes or
by a shift in origin. If we work in the coordinate systemx� = P 0x + c with P orthonormal,
and if� is an eigenvalue ofG with corresponding eigenvectorv in the original coordinates, then
� is an eigenvalue ofG�, as defined for the rotated coordinates, with corresponding eigenvector
P 0v+c: Therefore, assume that thexi have sample mean 0 and that the sample covariance matrix
is diagonal.

Consider a simple example,̂f(x) = x0Dx=2 with D diagonal. Sôg(x) = Dx andG =
D
P

xix
0

iD
0 � DXD with X diagonal withXjj=n equal to the sample variance of thejth

covariate. The largest eigenvalue ofG is equal to the maximum ofD2
jjXjj, with corresponding

eigenvector completely in the direction of the corresponding covariate. The variation in this
direction stems from both the variation in the function and the variation in the covariate. This
does in some sense meet the author’s claim of identifying “the directions in the covariate space
that best represent variation in̂fK .” Is this interaction between the variation in the function and
the variation the covariates harder to interpret for more complicatedf̂ ’s?

Nancy E. HECKMAN:nancy@stat.ubc.ca
Dept. of Statistics, The University of British Columbia

Vancouver, British Columbia, Canada V6T 1Z2
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Comment 4: Hugh A. CHIPMAN and Hong GU

1. INTRODUCTION

We congratulate the author on an interesting, broad, and practical approach to flexible regression.
The paper includes many features one would expect from a methodology that has been around
much longer. The ability to apply the method to large datasets is appealing, the standard errors a
useful addition, the ability to do quantile and/or robust regression quite convenient, and there are
many extra options, such as the ability to reduce dimensionality of the predictor space. We were
struck by how many avenues for further development were either already developed or suggested
in the paper. The paper also raises many interesting questions and should provide fertile ground
for further research.

In this discussion, we consider two modifications of the algorithm. In Section 2 we look at
how to deal with local optima of the parameters, and in Section 3 we modify the ALB algorithm
to fit radial basis functions. Section 4 concludes with an assortment of other comments.
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FIGURE C-4.1: A simulated example. In (a) is a simulated realization of 50 training cases, the true
functionf(x) (—) and two local optimâf(x) (� � � , ��� ) identified by different versions of ALB with
K = 4. In (b) estimated reference points�̂1; : : : ; �̂4 (standardized bŷ� ) from 20 runs of the algorithm are

plotted, using either random starts or the default algorithm.

2. IMPROVING THE SEARCH

Local optima could be a problem for the stochastic approximation algorithm, especially if some
optima fit poorly. The example in this section suggests that increased randomization of start
points and stepwise deletion of bases could be useful in finding good local optima.

Figure C4-1(a) gives the example used to explore these strategies and shows two local optima
of the ALB function withK = 4. We takef(x) = expfx sin(�x)g + ", with " � N (0; 1) and
the training set having 50 equally spacedx values in the interval(0; 3). The test set is the same
50x values, with responsesyi = f(xi) instead off(xi) + ".

In using the default parameters of the algorithm,K = 5 was usually chosen, which provided
quite an accurate fit (R2 for test set� 0:98). Closer inspection revealed that forK = 3; 4, the
estimated function fit poorly (R2 � 0:70). WithK = 3, it is possible to represent a single bump,
such as the large one nearx = 2:5. However, the algorithm tended to get stuck in poor local
optima [� � � in Figure C4-1(a)], perhaps due to minimal variation in the ten sets of starting
values chosen by the vector quantization (VQ).

We considered random starting points for the parameters, with the hope that increasing vari-
ability would allow the algorithm to avoid poor local optima. We set
m = 0 and drew random
pairs(xi; yi), i = 1; : : : ; 4 from the training set. We setÆi = yi and�i = 2xi. Thexi values
were doubled because in the default runs of the algorithm, the� values were often outside the
range ofx. Using one simulated dataset, the optimization algorithm was run 100 times with
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different random number seeds andK = 4. All 100 f̂ curves correctly identified the bump at
x = 2:5 [� � � in Figure C4-1(a)]. Without randomization, the original algorithm missed the bump
96 times (� ��) and found it the other four (� � �).

Although our implementation is primitive, an increase in the randomization of the initial pa-
rameter values seems to help the algorithm find better local optima. This better optimum is also
found by about half the runs of the original algorithm if the initial step size in the vector quan-
tization algorithm is doubled. A larger step size can be thought of as increasing the randomness
of the algorithm, since the VQ algorithm samples the training cases one at a time in random
order. Other randomization strategies, such as running VQ on small samples from the training
data, might also prove successful. Simulated annealing might also be useful, although this would
mean a substantial modification to the code.

In this example, we also found helpful stepwise deletion of basis functions. In Section 4.2, the
author comments that because the parameters of the model must be simultaneously optimized,
the stepwise addition or deletion of basis functions is not used. We think that deletion may be
helpful in some cases, such as when several� are very close. Consider the� values in Figure
C4-1(b), generated by 10 runs of the default algorithm and 10 runs with random starts. We
standardize values bŷ� which differs for each run. The model identified by the default algorithm
fits poorly and has a group of three� around�2. In the reference point formulation (4) of�k(x),
if two reference points are equal (say�1 = �2), then one basis function is redundant, since
�2(x) = �1(x) exp(
2 � 
1) = c�1(x).

The near-duplication of reference points suggests a stepwise deletion strategy: if a model
with reasonable fit has reference points that are quite close, delete one of the “near-duplicate”
bases and use the remaining parameters as starting points for the algorithm. For the current
example, one run of the default algorithm withK = 5 bases produced reference points� =
�1:183;�:473;�:472;1:524;2:646. By deleting�2 = �:473 and settingK = 4, the default
algorithm identified a solution similar to the� � � curve in Figure C4-1(a). This solution offered
comparable fit to theK = 5 case.

This illustrationof two strategies for finding better optima should not be taken as an indication
that the default algorithm fails — after all,K = 5 basis functions with good fit are identified. It
does indicate, however, that the search for good parameter values could still be refined in some
situations, perhaps leading to more parsimonious models.

3. RADIAL BASIS FUNCTIONS

The flexibility of the ALB family of models leads naturally to comparisons with other flexible
models, such as radial basis functions or neural networks. In this section, we modify the stochas-
tic approximation algorithm to estimate a radial basis function (RBF) model (Moody & Darken
1989). We consider the following parameterization of radial basis functions, as mentioned in the
paper:

�k(x) = exp(���2k jjx� �kjj2)
,

KX
m=1

exp(���2m jjx� �mjj2):

The parameter
k from ALB is dropped, and� is allowed to vary across basis functions. As in
ALB, a normalizing denominator is used. By allowing the radius�j of thejth basis to vary, the
curvature of the function can be adjusted. Now we have

@�m
@�k

=

8>><
>>:

2��3k jjx� �kjj2�k(1� �k) if m = k;

�2��3k jjx� �kjj2�k�m if m 6= k:

As with 
k in ALB, increasing�k increases the influence of�k relative to other basis func-
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tions. Using the same gainam as defined by Hooper, the updating formulae in (10) become

Æk : Æk + aÆmhk(x; y; �);

�k : �k + a
mhk(x; y; �)Æk � fK (x)jjx� �kjj2(2��3k );

�k : �k + a�mhk(x; y; �)Æk � fK (x)(x� �k)(2�
�2
k ):

Note thata
m is used as the gain for� . We used these updating formulae to modify the fortran
code provided by the author to estimate radial basis functions.

As mentioned in Section 2, if�k = �m for somek 6= m, one basis becomes redundant. This
redundancy does not occur with radial basis functions, since if�k = �m but �k 6= �m, a mixture
of two bases with different radii results.

The accuracy of RBF and ALB was compared in simulation experiments for the following
functions:

(i) 2 expf�(x21 + x22)=2g+ 3 expf�(x21 + x22)=5g;
(ii) 2 expf�(x21 + x22)=2g+ 3 exp[�f(x1 � 1)2 + (x2 � 1)2g=5];
(iii) ALB: (2f1 + 3f2)=(f1 + f2),

wheref1 = expf1� (x21 + x22)=4g andf2 = exp[2� f(x1 � 1)2 + (x2 � 1)2g=4];
(iv) RBF: (2f1 + 3f2)=(f1 + f2);

wheref1 = expf�(x21 + x22)g andf2 = exp[�f(x1 � 1)2 + (x2 � 1)2g=4];
(v)–(viii) Examples 2, 3, 6, 7 from the paper.

For each example, ten realizations of the dataset are simulated, and ALB and RBF models fit to
each dataset. Table C4-1 gives averageK and IPSE values, and also the results of pairedt tests
to compare IPSE values of the two models. A negativet statistic indicates that RBF has better
accuracy (lower IPSE).

For Examples 1, 2 and 4, RBF significantly outperforms ALB, which one would expect when
the true function is of the RBF form. For the ALB function in Example 3, ALB did slightly better
than RBF. In Example 8, there is no significant difference. In other examples, ALB outperformed
RBF. Does this mean ALB should be chosen over RBF? Not necessarily. In modifying the
ALB algorithm to estimate a RBF model, we changed only the updating formulae and the basis
functions. Other components of the ALB algorithm, which have been carefully optimized for the
ALB function (e.g., the gains functionsam), were left unchanged. The performance attained by
RBF with a relatively straightforward modification of the algorithm is promising and indicates
the effectiveness of the stochastic approximation algorithm.

4. OTHER COMMENTS

The ALB model is affine invariant, in the sense that if any affine transformation is applied to
the predictors, there exists an ALB model using the transformed variables that provides exactly
the same predictions as an ALB model using the original variables. This doesn’t necessarily
mean that the estimation algorithm can find this equivalent model, especially since there could
be many local optima. A related issue is the fact that the algorithm is based on the reference
point parameterization of the basis functions. By using Euclidean distance from reference points
�k in the covariate space, the accuracy of the fit is sensitive to multicollinear covariates. Under
the affine transformationz = B

0

x, whereB is invertible, the fits of the ALB regression based on
the Euclidean distances in thex-space and in thez-space generally will not have the same accu-
racy. Elements of the algorithm, such as the update steps, may be affected, potentially yielding
different models, even though the two forms of basis functions are one-to-one correspondent.
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TABLE C4-1: Comparisons between RBF and ALB:
average and standard deviations from ten replicated samples of sizen.

ALB RBF

No. d n �f=�" K̂ IPSE K̂ IPSE t p-value

1 2 100 1 4.2 0.59 (.03) 2.1 0.54 (.03) �4:08 0.003

2 100 2 4.9 0.24 (.02) 2 0.21 (.008) �4:16 0.002

2 100 3 5 0.12 (.005) 2.2 0.11 (.003) �10:15 0.000

2 2 100 1 3.7 0.59 (.02) 2 0.54 (.02) �5:3 0.000

2 100 2 4.9 0.24 (.01) 2.5 0.23 (.008) �2:06 0.069

2 100 3 5 0.12 (.006) 3.1 0.11 (0.006) �3:01 0.015

3 2 100 1 2 0.52 (.02) 2.1 0.53 (.02) 1.84 0.098

2 100 2 2 0.21 (.007) 2.2 0.21 (.009) 2.30 0.047

2 100 3 2 0.10 (.003) 2.2 0.11(.005) 2.27 0.050

4 2 100 1 4.1 0.59 (.03) 2.2 0.53(.02) �6:76 0.000

2 100 2 5 0.24 (.009) 2.2 0.21(.008) �9:01 0.000

2 100 3 5.2 0.12 (.005) 2.1 0.11 (.005) �8:00 0.000

5 2 100 0.9 4.6 0.68 (.02) 4.1 0.73 (.04) 3.44 0.007

2 200 0.9 5.8 0.65 (.03) 4.5 0.69 (.04) 4.53 0.001

2 400 0.9 6.5 0.60 (.02) 6.2 0.64 (.02) 6.04 0.000

6 2 100 1.9 5.5 0.33 (.03) 5.1 0.37 (.01) 3.38 0.008

2 200 1.9 8 0.28 (.03) 7.6 0.32 (.02) 6.89 0.000

2 400 1.9 9.2 0.24 (.008) 12.1 0.27 (.01) 5.73 0.000

7 5 50 4.9 4.7 0.16 (.04) 4.5 0.23 (.05) 3.03 0.014

5 100 4.9 5.2 0.08 (.01) 5.7 0.10 (.015) 6.14 0.000

5 200 4.9 5.9 0.06 (.005) 6 0.08 (.007) 6.68 0.000

10 50 4.9 2.7 0.36 (.08) 3 0.38 (.09) 1.05 0.32

10 100 4.9 5.1 0.18 (.07) 4.9 0.23 (.07) 2.56 0.03

10 200 4.9 5.7 0.09 (.01) 6.3 0.11 (.03) 3.45 0.007

8 4 25 3 2.3 0.29 (.10) 2.5 0.31 (.14) 0.34 0.74

4 50 3 2.9 0.17 (.04) 2.5 0.16 (.02) �0:65 0.52

4 100 3 3.3 0.12 (.009) 3 0.13 (.012) 1.17 0.27

4 200 3 3.5 0.11 (.004) 3.8 0.12 (.007) 2.72 0.023

Any sensitivity that ALB has to affine transformations should be smaller than for methods that
assume additivity, such as MARS.

The inclusion of standard errors in Section 5 is a nice addition to the paper, allowing inference
about the shape of the surface. The standard errors are obtained conditional on the number of
bases (K), when in factK is estimated from the data. Accounting for uncertainty inK might
be accomplished via thebootstrap or a more complex Bayesian approach (such as Smith &
Kohn 1996 or Chipman, George & McCulloch 1998). Bayesian (e.g., Draper 1995) or bootstrap
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(Breiman 1996) model averaging might also improve predictions by combining multiple models.
It is difficult to say whether model averaging will offer much of a gain with this form of model.
Improvements are usually largest for families of models that are sensitive to small changes in the
data, such as trees.

The stochastic approximation algorithm has been constructed so that the number of steps of
the algorithm does not depend on the sample size. With sample sizes of more than a few hundred
thousand, many points will never be used. This has a similar flavour to training the model on a
sample of the data, a common technique for large data sets.

In Section 2.5, the paper uses principal components of the gradient sum-of-products matrix
G, suggesting that if the first two eigenvalues are large, a two-dimensional plot will represent
most of the variation in the response model. We wonder whether this strategy could be taken fur-
ther, using the directions defined by the eigenvectors to reduce the dimensionality of the original
problem, perhaps yielding better models. This might also be an effective means to accomplish
variable selection, eliminating variables with loadings near zero in all large principal compo-
nents.

Hugh A. CHIPMAN:hachipman@uwaterloo.ca
Department of Statistics and Actuarial Science

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Hong GU:hgu@mathstat.dal.ca
Department of Mathematics and Statistics

Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

Rejoinder

Peter M. HOOPER

I thank the discussants for their thoughtful comments. My response is organized under three
topics. A FORTRAN implementation of ALB is available atftp.stat.ualberta.ca/pub/research/hooper/

1. OPTIMIZATION

Lindstrom provides an interesting comparison of ALB with free-knot splines. She suggests that
over-parameterization of the ALB model makes optimization more difficult. I am not sure that
this is necessarily so. Redundancy may improve optimization by creating more pathways toward
good local optima. In complex applications with many parameters, it may be unrealistic to hope
that a global optimum will be attained. The randomness inherent in stochastic approximation
could also have a beneficial effect, similar to simulated annealing, assisting escape from poor
local optima. I agree with Lindstrom that multiple local optima imply greater variance inf̂ than
is indicated by the standard errors.

Ramsay notes that alternative non-stochastic optimization methods are available. Such meth-
ods should greatly increase computational speed in smaller problems, allowing the use of boot-
strap standard errors. I would expect stochastic approximation to remain competitive in applica-
tions wheren, d, orK is large.

Chipman and Gu suggest that optimization may be improved by increasing variability in the
initial reference points�k. This modification can be implemented by reducing the number of
iterations in the vector quantization algorithm described at Expression (10). In effect, Chipman
and Gu replace the number3000

p
K by 0. I suspect their modification may introduce too much

variation in some higher-dimensional applications, but an intermediate reduction may improve
performance in such cases. I have recently investigated an alternative vector quantization algo-
rithm allowing the initial reference points to depend on the joint distribution ofx andy. This
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alternative seems to improve optimization in some examples and is included as an option in the
current implementation of ALB.

Chipman and Gu note that optimization can produce near-duplication of reference points.
They suggest a deletion strategy to construct a more parsimonious model. I have also observed
this phenomenon in several examples. There may be little advantage in deleting duplicates since
these have essentially no effect on̂f and do not contribute to overfitting. Duplication may be
viewed as fortuitous. We may miss the optimalK = 4 model, due to poor initial values, but
then effectively obtain the optimalK = 4 model by takingK = 5.

2. ALB AND RBF AS LATENT VARIABLE MODELS

Chipman and Gu show how a radial basis function (RBF) model can be estimated by modifying
the ALB updating formulae. Some care is needed in applying the new formulae to ensure that the
�k are bounded above zero. The comparison of ALB with RBF illustrates howaccuracy depends
on the nature of the estimandf . In my comparisons of ALB with MARS and with Pi, the method
requiring fewer parameters typically yields more accurate estimates. Chipman and Gu obtain a
similar relationship in their Table C4-1. When comparing averageK̂ values for ALB and RBF,
it should be noted that the RBF parameterization is not redundant. The effective number of RBF
parameters isK(d+ 2), as compared with1 + (K � 1)(d+ 2) for ALB.

The two models differ with respect to affine invariance. The RBF model is invariant under
location shifts and orthogonal transformations, but not under scale transformations. The choice
of covariate scales can thus affect the number of basis functions required for adequate approxi-
mation off . Orthogonal invariance of RBF implies that, like ALB, it is unable to capitalize on
additive properties off . Chipman and Gu correctly note that, while the ALB model is affine
invariant, the ALB estimator is not. The choice of covariate scales affects the initial parame-
ter values, and the initial values in turn can affect the outcome of the stochastic approximation.
Potential problems are reduced by routinely scaling all covariates to have unit variance, but
problems could still arise from dependencies among the covariates. The initial reference points
are more spread out in directions of greater variation in the covariate space. This behaviour is
advantageous when the gradient off is small in directions with little variation inx, but it is
problematic when the gradient is large in these directions. Transformation of the covariates to
principal components could sometimes help, but it could also aggravate problems associated with
high dimensionality; see the discussion at Expression (14) in Hooper (1999). To some extent,
ALB shares the advantages and disadvantages of principal components regression.

ALB and RBF models can be viewed as latent variable models. This perspective sheds light
on the ALB parameterizations, supplementing comments by Lindstrom, and reveals a somewhat
unusual property of the RBF model. In the following expressions,p(�) denotes various probabil-
ity and density functions. Supposek is a discrete random variable, distributed jointly with(x; y),
and suppose the conditional mean ofy given(x; k) depends only onk, i.e.,E(y jx; k) = Æk: We
then haveE(y jx) = P

Ækp(k jx). The ALB and RBF models for the conditional mean adopt
different parametric models forp(k jx). Both models represent the regression relationship as
a consequence of a latent discrete variablek, with (some degree of) conditional independence
betweeny andx givenk. The latent variable is an abstraction and would typically not represent
a “real” or interpretable category. The models place no restrictions on the marginal distribution
of x. It is interesting, however, to consider implicit restrictions onp(k) andp(x j k) arising from
Bayes’s formula:

p(k jx) / p(k)p(x j k):
ALB selects a multinomial logistic model:

p(k jx) / exp(�k + �0

kx):

The implications of Bayes’s formula are well known, reflecting the relationship between linear
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and logistic discriminant analysis. The conditional density ofx is in the exponential family:

p(x j k) / expf�0

kx + h(x)g:
We may, for example, takep(x j k) to be theNd(�k;�) density, so that�k = ��1�k. The
distributionp(k) is unrestricted and is not related top(x j k). The factorexp(�k) accounts for
bothp(k) and the normalizing factor forp(x j k).

RBF sets
p(k jx) / expf���2k jjx� �kjj2g:

The conditional density has the form

p(x j k) / expf���2k jjx� �kjj2 + h(x)g:
The distributionp(k) is then determined by the normalizing factor:

p(k) /
Z

expf���2k jjx� �kjj2 + h(x)gdx:

We may, for example, takep(x j k) to be theNd(�k; �
2
kId) density. We would then havep(k) /

�dk. In the context of discriminant analysis, it would be unusual to adopt a model where the
prior probabilitiesp(k) are determined by the densitiesp(x j k). The restriction onp(k) can be
avoided by setting

p(k jx) / expf
k � ��2k jjx� �kjj2g:
This model extends both ALB and RBF, but is not affine invariant.

3. EXTENSIONS

ALB adjusts the potential complexity of the model by varying the number of basis functions.
This strategy produces a flexible but relatively simple family of models. Heckman suggests
extending ALB to semiparametric and additive models. I briefly investigated semiparametric
models comprised of an ALB component and a linear combination of fixed basis functions. The
attempt was only partially successful due to difficulties in extending the optimization technique.
My approach was fairly simplistic, however, and further study is warranted. I have not explored
additive models with several ALB components. Here the task of optimization appears to be
more difficult and may require combining stochastic approximation with a backfitting algorithm.
Model selection issues also arise. I suspect that the ALB methodology will be less successful in
implementing additivity constraints than methods, such as MARS, that employ basis functions
designed for this purpose.

Heckman asks whether ALB can be modified for shape-restricted estimation. This is an
intriguing question. Letd = 1. By using Proposition 1 and the latent variable perspective
described above, the derivatives offK can be expressed in terms of conditional covariances
givenx. First note thatfK(x) = E(Æk jx) and ��(x) = E(�k jx). The first two derivatives of��
are ��(1)(x) = Var(�k jx) and ��(2)(x) = E[f�k � ��(x)g3 jx]. The first three derivatives offK
are

f
(1)
K (x) = Cov(Æk; �k jx);
f
(2)
K (x) = Cov[Æk; f�k � ��(x)g2 jx];
f
(3)
K (x) = Cov[Æk; f�k � ��(x)g3 jx]� 3Cov(Æk; �k jx)Var(�k jx):

With these, it should be possible to estimatefK subject to constraints on its derivatives.
Heckman gives an interesting analysis of the global visualization technique based on gradient

principal components. As she observes, the directions chosen depend on variation in both the
function and the covariates. I think this interaction can be interpreted as a consequence of the
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gradient depending on the scale of the response and the covariates, so the idea in Heckman’s
example applies in general. Chipman and Gu ask whether gradient principal components can be
used to improve the estimator by applying ALB to a smaller set of linear combinations. I have
made some progress in this regard, and an optional dimension reduction strategy is included
in the ALB implementation. It may also be useful to automate methods for identification and
deletion of nuisance variables.

Ramsay asks what advantages ALB has relative to other methods in the context of the Viking
formation and Boston housing examples. In the former example, affine invariant methods
seem more suitable than tensor-product splines. Also, robust methods are desirable given the
long-tailed distribution ofy � f(x). Regarding robustness, I neglected to mention work by
Forsythe (1972) onLq estimators in linear regression. He suggested the choice ofq = 1:5 as a
good compromise, with efficiency near that of theL2 estimator when the errors are Gaussian,
and with substantially higher relative efficiency when the errors are heavily contaminated by
outliers. In the Boston housing example, kernel methods may perform poorly due to the high
dimensionality. ALB describes relationships between housing price and the 13 covariates in a
parsimonious two-dimensional model.
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