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Abstract: The author proposes a new method for flexible regression modeling lofdimiensional data,

where the regression function is approximated by a linear combination of logistic basis functions. The
method is adaptive, selecting simple or more complex models as appropriate. The number, location, and (to
some extent) shape of the basis functions are automatically determined from the data. The method is also
affine invariant, so accuracy of the fit is not affected by rotation or scaling of the covariates. Squared error
and absolute error criteria are both available for estimation. The latter provides a robust estimator of the
conditional median function. Computation is relatively fast, particularly for large data sets, so the method
is well suited for data mining applications.

Un modele de régression flexible défini a partir
d’'une base de fonctions logistiques adaptatives

Résune : L'auteur propose une nouvelleatiiode deegression flexible pour la metiSation de doneés
multivariées dans laquelle la fonction degression est approe@par une combinaisonéaire de fonctions
logistiques. Cette ethode adaptative permet de choisir des atesl plus ou moins complexes selon les
besoins. Le nombre, la localisation et (jusguh certain point) la forme des fonctions logistiques de base
sont automatiquemenetérmirésa partir des doreés. La mthodeetantéquivariante par transformations
affines, la pecision de I'ajustement n’est pas affeetpar une rotation ou un changemergaifiélle des
variables exognes. L'estimation peut s'appuyer sur le @rit'de I'erreur quadratique ou absolue. Dans
le second cas, on obtient un estimateur robuste deeldiané conditionnelle. La ethode se mte bien

au forage de dore€s, car les calculseéssaires se font rapidemengm€ pour de grands ensembles de
donrées.

1. INTRODUCTION

Consider the problem of estimating a regression functio) = E(y | x), wherey is a response
variable andk is a vector ofl covariates. Estimators often approximgtey a linear combination
of basis functions:

Fx) ~ fr(x) =D 0kdr(x). 1)

Examples include tensor-product splines (Gu, Bates, Chen & Wahba 1989; Friedman 1991),
thin-plate splines (Wahba 1990), and ridge functions (Friedman & Stuetzle 1981). This article
investigates a new family of estimatofglefined by logistic basis functions:

K
¢k (x) = exp(ag + B1.x) Z exp(am + B, %). (2

m=1

There is some redundancy in the parameterization. We haye(x) = 1 for all x, so approx-
imation (1) does not require a constant term. Dividing the numerator and denominator of (2) by
exp(ax + B%x) shows that, without loss of generality, one pait, 35 ) can be set to zero.
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The effective number of parameters used in approximation (1) is thus
p=14+ (K —1)(d+2). 3)

| refer to the methodology developed in this article as adaptive logistic basis (ALB) regres-
sion. The method is “adaptive” in that both and the parameters definirfg are determined
from the data. ALB estimatorg are defined for a family of location measures, including the
conditional mean and median. Suppose flay) is a random vector, chooge> 1, and letf be
a function minimizingE{|y — f(x)|?}. It is assumed that this expectation is finite. Conditional
mean and median functions are obtained by takiag2 andg = 1, respectively. The conditional
median need not be uniquely defined. Suppose that we have a sfwplg;),i = 1,...,n}.
For givenk, an ALB I, estimatorfy is calculated by minimizing_ |y: — fx (x:)|¢. The pa-
rameter values defininfy are determined separately for different numhigrsand a generalized
cross-validation technique is used to sel&ct
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FIGURE 1: Preschool boys’ weight/height ratio by age. (a) ALB estimatef.
(b) Basis functions. The correspondifigestimates, from left to right, are 0.25, 0.75, and 1.09.

(c) Standard error of . (d) Gradiengj + 2s€g).

This article introduces the ALB regression methodology and investigates its potential useful-
ness through theory, examples, and simulations. First, in section 2, using five data sets, | will
illustrate the method. Section 3 contains some theoretical results and comparisons of ALB with
related statistical and neural network methods. Algorithms to offtaiior given X and to select
K are described in Section 4. A simple formula for approximate standard errors is developed in
Section 5. The results of simulation studies on predictive performance of the/Aldstimator
are reported in Section 6. Finally, in section 7, several extensions of the ALB methodology are
discussed.
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Logistic basis functions have proved to be useful in many applications. They have long been
used in regression models for binary responses (Cox & Snell 1989). They déwamtly been
applied in classification problems to construct flexible classification boundaries (Hooper 1999)
and to model conditional probabilities of class membership (Hooper 2001). The estimation al-
gorithm described in Section 4.1 is based on a stochastic approximation algorithm developed for
the related classification problem. The classification methodology is an important component of
a program to predict genetic structure in DNA sequences (Hooper, Zhang & Wishart 2000). ALB
regression has been used to model a covariance function, as part of a model relating ultrasound
estimates of fetal weight to gestational age (Hooper, Mayes & Demianczuk 2001).
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FIGURE 2: Nursing time of a beluga whale calf by time period.
(a) ALB L., (solid line) andL; (broken line) estimates. (b) Basis functions for fheestimate.
The corresponding. estimates, from left to right, are137, 453, 46, 225, 16, and 149.

2. EXAMPLES

The examples in this section illustrate propertied pits gradieng = 8f/8x, standard errors,

and basis functions. Usually the basis functions are not interpretable and would not be examined
when analysing a data set. They are displayed here to provide insight concerning the construction
of f.

2.1. Weight/height ratio.

Figure 1 presents data relating weight/height ratio (in Ib/in.) to age (in months) for preschool
boys [source: Gallant (1987), Epprigét al. (1972)]. The ALB L. estimate in (a) is a linear
combination of thek = 3 basis functions plotted in (b). The coefficienis are listed in the
caption below Figure 1. This example provides a simple illustration of how the basis functions are
used to construct the curved and linear portiong.ofhe plot (c) of the standard errm{f(x)}
shows how the standard deviationﬁfr) increases at the boundaries of the data. The plot (d)
of the gradient estimate includes approximate 95% confidence intg@iwgls- 2se{g(=)}. Note

how g(z) shrinks slightly toward zero at the data boundaries. This is likely an artifact that is
related to the shape of the basis functions, which cafigeslatten as: moves away from the
data. Note also howe{g(x)} is large where is close to the boundary ang(«)| is large. These

two effects occur quite generally with single and multiple covariates.

2.2. Beluga whale.

Figure 2 presents data on nursing patterns for Hudson, a beluga whale calf born at the New
York Aquarium [source: Chatterjee, Handcock & Simonoff (1995)]. Hergthe six-hour time
period postpartem index angdis the nursing time in seconds. The ALB, and L, estimates
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are superimposed on scatterplot (a). Plots of residuals (not shown) indicate right skewness and
heteroscedasticity, so it is not surprising that theestimate is slightly less than thig estimate

over much of the interval. Thé, estimate uses’ = 6 basis functions, plotted in (b), while

the L, estimate usesy = 8. Simonoff (1996, Fig. 5.18) estimated the regression function
using a local quadratic kernel smoother with varying bandwidth. His bandwidths were selected
informally to account for varying smoothness and scatter. The adaptive selection of the logistic
basis functions has a similar motivation.
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FIGURE 3: Anaerobic threshold data. (a) ALB; estimate. (b) Gradierdt+ 2s€g).

2.3. Anaerobic threshold.

This example illustrates how gradient estimates can be applied to the problem of estimating
anaerobic threshold levels. Routledge (1991) described this problem in applied physiology as
follows. Physiologists believe that during a progressive exercise test, there comes a point when
aerobic metabolic processes are supplemented by anaerobic processes, producing an additional
source of CQ. Some investigators have estimated this “anaerobic threshold” by locating an
upward bend in a plot of expired ventilation against oxygen uptake. Several authors have noted
that these plots often curve smoothly with no apparent bend. Figure 3(a) presents data for a
single individual in a single exercise test [source: Bennett (1988)]. The location (or even the
existence) of a threshold is not obvious from the plot of the Al.Bestimate {{ = 3). The plot

of its gradient in (b), however, suggests an upward bend. It is possible that the threshold effect
is introduced more gradually in some cases, producing an upward bend in the gradient but not in
the original function.

2.4. Viking formation.

The Viking formation is a sandstone layer, the floor of an ancient ocean, lying beneath the surface
of western Canada. ALB regression can be used to model the elevation of this layer (in feet above
sea level) as a function of latitude and longitude. The data were obtained from 74229 drill holes in
Alberta [source: Stefan Bachu, Alberta Geological Survey, personal communication]. The drill
holes range from the Saskatchewan border to the foothills of the Rocky Mountains and from the
50th to the 57th parallel. Elevations vary frepd60 in the northeast te- 1900 near the foothills

in the southwest. The ALH., and L, estimators produce similar results, with respective
values of 12 and 13. The more robust estimator seems preferable in this application. The
distribution of the residuals is symmetric and very long-tailed, with an interquartile range of 17
and a range of913.

Figure 4 presents a contour plot of the estimatef, with a sample of drill hole locations
superimposed. The plot shows a rapid decline in elevation as one approaches the mountains. The
flattening off in the southwest corner of the plot is an artifact associated with an absence of drill
holes in this region. Figure 4 also displays a contour plahek; ¢, illustrating the location,
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orientation, and relative height of the 12 basis functions. Two of the basis functions, located near
(—111,52), are difficult to identify in the plot because their maximum height is overshadowed
by neighbouring peaks. Reasonably good fitscan be obtained with substantially fewer basis
functions. AsK increases from 1 to 12, the standardized predictive absolute error risk decreases
as follows: 1.000, .295,.078,.069, .046,.042, .040, .. ., .034. An examination of the residuals
from f reveals many outliers (likely due to measurement or data entry errors) but also some
localized effects that appear to represent structure missed by the ALB fit. These finer details
might be investigated by fitting sw€es to the residuals over smaller subregions.
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FIGURE 4: Viking formation. (a) Contours of th&, estimatef, with 2000 randomly sampled
locations superimposed. Latitude is plotted on the vertical axis. Negative longitude
is plotted on the horizontal axis, producing the usual east-west orientation.

(b) Contours ofnax(¢1, ..., ¢12), with lighter shaded regions closer to 1.
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FIGURES: Boston housing data. (a) Contours of theestimatef, with the 374 data points
superimposed. Th¢ values increase from 9.1 to 10.8 as the contours proceed from left to right.
The horizontal and vertical axes are linear combinatiohs andb’ x of the original 13 predictors.
(b) Contours ofnax(¢1, @2, ¢3), with lighter shaded regions closer to 1. Theestimates for

the lower left, upper middle, and lower right basis function are 8.85, 9.80, and 10.92.

2.5. Boston housing.

Following Li (1997), | examined a low crime rate subset of 374 census tracts from the Boston
housing data [source: Harrison & Rubinfeld (1978), Breiman & Friedman (1985)]. ¢Hisrthe

log median housing price per census tract armbnsists of the remaining 13 variables. Ten-fold
cross-validation indicates that the ALB, estimator accounts for 89% of the variancepf.e.,

the predictive squared error risk estimate divided by the sample variagoeqofals 0.11.
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Before examining a plot of the fitted model, consider how one might try to visualize an ALB
model in higher dimensions. It is straightforward to show that an estifjatean be expressed
as a function of = min(d, K — 1) linear combination®’x, ..., b/x, whereb,, ..., b, span
the subspace that is spanned by the contrasts Bx,...,8x_, — Bx. Whenr = 2, we
can visualizefx in a 3-dimensional plot. More generally, we can identify the directions in
the covariate space that best represent variatiofxity carrying out a principal components
analysis of the gradient sum-of-products mat@ix = > g(x;)g(x;)’. The gradient vectors
g(x;) lie in the above-mentioned contrast subspace, so the ragk isfat mostr. Letb; be
the eigenvector corresponding to tfi largest eigenvalue; of G. The first eigenvectob,
maximizes the sum of squared gradiemtgb’g(x;)}>. If (e1 +e2)/(e1 + -+ +e,) &~ 1, then
a plot of fx versus(b)x, b,x) accounts for nearly all of the variation jfi;. Otherwise,fx
cannot be visualized in a single plot.

For the Boston housing data, the ALB estimatef hasA = 3, sof can be fully represented
in a 3-dimensional plot. Figure 5(a) shows a scatter plot of the data and a contour fetiti
horizontal and vertical axes defined by the principal gradient compohgst@ndb,x. The
leading eigenvalue df is relatively large, so most of the variation jroccurs in the horizontal
direction. The plot reveals a partial helix effect similar to that reported by Li (1997). Contours
of the 3 basis functions are shown in Figure 5(b). The ALB estimate Witk 4 is similar to
that with K = 3. A plot (not shown) off, against its first two principal gradient components
accounts for most of the variation ify because the third eigenvalue of teematrix for f4 is
relatively small.

To interpret an ALB model, we must relageto the individual covariates. | address this
problem by examining regions where the axis of steepest ascent/descent remains fairly stable.
This can be done by clustering gradient direction vecidrs) = g(x;)/||&(x;)|| about direc-
tion “centroids”c; using the “distancel — |¢;'g(x;)|. Choosing three clusters leads to regions
on roughly the left side, middle, and right side of Figure 5(a), corresponding to census tracts
with low, middle, and high median housing prices. Witkich region/ is well approximated
by a one-dimensional function. One can attempt to interpret local directions of steepest ascent
(cluster centroids) by examining within-cluster correlations between directions and individual
covariates. The interpretation is, of course, less clear when there are stong dependencies among
the covariates. A gradient clustering approach suggests the following interpretation of the ALB
model. In regions where median prices are high, it appears that median prices are well predicted
by median size of the house alone. Where prices are low, additional variables are needed for the
best effect. This analysis supports the conclusion of Li (1997) that a linear model is inadequate.

3. THEORY AND COMPARISONS

This section presents some simple results about logistic basis functions, together with discussion
and comparisons. The results shed some light on hsapproximated byx and on what kind

of functionsy are well approximated with small’. The first proposition presents some useful
derivatives. The second describes key features of the basis functionsiwhén

PROPOSITIONL.
() 06x/0% = ox(x){Bx — B(x)}, whereB(x) = >5_; éx(x)B.
(i) 0B'/0x = 31y dx(R){By, — BE)HBy — BV
(i) 87 log ¢y /0x0x’ = —0B'/Ox.
(iv) Eachlog ¢y is concave.

Proof. Direct calculation. ]
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PROPOSITION2. Letd = 1 and suppos@; < --- < Bg with5; < fk.
(i) Eachlog ¢y, is strictly concave.
(ii) ¢, is strictly decreasing, approachinigat +occ. If 51 < (2, theng, approached at —cc.

(iii) ¢x is strictly increasing, approachingat —co. If 3x_1 < Sk, thengx approached at
+oo.

(iv) If 81 < Bk < Pk, theng, is strictly increasing forz < z; and strictly decreasing for
x > 7, with z; determined by (z}) = 55. Furthermore,¢; approached at +oco. We
also haver; < z7 if 1 < B < Bm < Pk

Proof. The results follow from Proposition 1, which shows thas a strictly increasing function
mappingRk onto the open intervdl3;, 5k ). O

Whend = 1, ALB can be viewed as a scatterplot smoother. A large variety of nonpara-
metric smoothers have been developed, e.g., see Simonoff (1996) or Eubank (1999). Various
methods often provide similaccuracy given appropriate choices of smoothing parameters. The
concavity oflog ¢, suggests connections with b-splines, in that basis functions contribfii@to
local, overlapping regions. The adaptive estimation ofthsuggests comparison with free-knot
splines, where the number and location of the knots are chosen adaptively (Lindstrom 1999). The
ALB and spline methods differ with regard to smoothness of the fitted models. ALB models are
infinitely differentiable. Splines possess a finite number of derivatives at knot locations (two for
cubic splines), and the number can be reduced by moving knots together. This suggests that free-
knot splines may be more efficient than ALB in fitting curves with sharp bends. Applications of
ALB to examples from Lindstrom (1999) support this view, although differences in predictive
performance appear to be minor.

The following proposition allows an interpretation of higher-dimensional basis functions
through lower-dimensional projections. It also establishes the important property of affine in-
variance.

PROPOSITION3.

(i) LetB be ady x d matrix, withd, < d, and leta € %*¢. The restriction of{ ¢, } to the
do-dimensional linear manifolda + B’z : z € f¢ } produces a set ofy-dimensional
logistic basis functions, i.e.,

K
or(a+B'z) = exp(ar +Bz) [ S exp(Gm + B,2),
m=1
whered, = o 4+ B,a and3, = BS,.
(i) {8, — B, ..,Br_1 — Bx ) spansit?, then eachog ¢ is strictly concave.
(i) Each¢y is quasiconcave; i.e., upper level s¢ts: ¢;(x) > ¢} are convex.

(iv) If B, is in the interior of the convex hull di3,, .. ., Bk }, then the upper level sets of
are compact for > 0. Otherwise, the upper level sets are either unbounded or empty.

(v) If 8, = B,, for somek # m, thenfx = > dr¢r can be re-expressed as a linear
combination ofX’ — 1 logistic basis functions.

(vi) The family of functiongx is invariant under affine transformations®fand fx .
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Proof. (i) Immediate. (ii) Concavity follows from Proposition 1. Strict concavity follows from
(i) with dy = 1, and from Proposition 2. The spanning assumption implies tHat# 0, then
b'B, # b’'s3,, for some(k, m). (iii) Follows from concavity oflog ¢;;. (iv) Follows from (i) and
Proposition 2. (v) Replace; anda,, by o = log{exp(ay) + exp(aym,)}. Replaces; andd,,

by 6/2, whered = dy, exp(ay — &) + 0 exp (v — ). (vi) Follows from (i) withdy, = d and

B invertible, and from the identity + b fx = > (a + bdi) ¢ O

Propositions 2 and 3 suggest limitations on the complexityf It appears likely that
whend = 1, the functionfx can have at mosk’ — 2 local extrema,; i.e., local minima and
maxima. Although | do not have a proof of this conjecture, | have been unable to construct a
counterexample. Proposition 3(i) shows that this limitation would also apply to fluctuations along
one-dimensional linear manifolds in higher dimensions. A large number of basis functions would
thus be required to approximate functions with many bumps or ripples occurring in multiple
directions.

Linear and quadratic functions are often used for local approximation. One may ask whether
these functions are well-approximated by ALB. Linear functions are well-approximated with
K = 2 basis functions. From expression (3), the effective number of ALB parameteré+ 3
is just slightly larger than the numbeér+ 1 defining a linear function. For a quadratic function
f(x) = a 4+ b'x 4+ x'Cx, simulations withx multivariate normal indicate that’ = 2d + 1
generally yields an adequate approximation, e.g., two basis functions for each dimension plus
a single basis function in the centre. The number of ALB parameters1 + 2d(d + 2) is
substantially larger than the numbef d + d(d + 1) /2 defining a quadratic function. Of course,
fx with K = 24 + 1 can approximate many nonquadratic functions as well. Furthermore,
substantially fewer basis functions may be required, depending on the r&hkrmd the domain
of interest withink<.

This raises a key question: What kind of functighare well-approximated bfx with small
K? ForK = 2 we have a one-dimensional sigmoidal function, which can aproximate linear
functions and monotonic curves with an asymptote. This latter shape often arises in applications
of parametric nonlinear regression models (Bates & Watts 1988).kFer 3, there are a few
basic patterns that arise in one and two dimensions; see Examples 2.1, 2.3, and 2.5, and the
example from Gu, Bates, Chen & Wahba (1989) discussed in Section 6. Hooper, Mayes &
Demianczuk (2001) obtained a useful approximation for a covariance functioniising. For
K > 4 the possibilities are more varied and harder to characterize. Given the properties of the
basis functions, | would expect ALB to work well when the covariate space can be covered with
a small number of overlapping regions wheris well approximated by simple low-dimensional
functions. ALB allows the local subspace on whighis implicitly defined to vary smoothly
from one region of the covariate space to another. In the Boston housing example, different
one-dimensional approximations are obtained for regions with low and high prices.

The affine invariance of ALB suggests comparison with projection pursuit regression (Fried-
man & Stuetzle 1981). Both methods employ a linear combination of simpler functions and
neither is affected by rotation or scaling of the covariates. Projection pursuit approxifhates
by a sum of one-dimensional ridge functiofisx) ~ > ks (83)x). The ridge functiong, are
estimated using one-dimensional smoothers and can incorporate several bumps. The logistic ba-
sis functions employed by ALB are more complex than ridge functions in one respect, being
multi-dimensional, but are simpler in other respects, with configuration and quasi-concave shape
constrained by a parametric family.

Affine invariance is a mixed blessing. For some applications, it is a desirable property. In the
Viking formation example, there is no reason to think that latitude and longitude are well-suited
for modeling elevation. Alternative characterizations of spatial location should work just as well.
For other applications, the functighmay exhibit simple structure related to the covariates, such
asf(x) = > hy(zr). Methods that exploit this structure have an advantage, e.g., generalized
additive models (Hastie and Tibshirani 1990), multivariate adaptive regression splines (Friedman



2001 FLEXIBLE REGRESSION MODELING 351

1991), and thél method (Breiman 1991). The performance of such methods will usually suffer
if the covariates are rotated. An affine invariant method provides a minimax performance that is
unaffected by linear transformation.

Logistic functions are usually defined using the linear parameterization in expression (2).
An alternative parameterization is also useful. The ALB functions can be expressed in terms of
Euclidean distance from reference poifitsn the covariate space

K

ou(x) = exp(y = 77 Ix = €,l1)/ D explym — 7% x = &%) - (4)

m=1

Note that the termexp(—7~2||x||?) factors out in the numerator and denominator of (4). The
two parameterizations can thus be related by

ap =y — 7€ 17 and By =277,

The reference point parameterization is easier to interpret than the linear parameterization.
Roughly speaking, the location ¢f, can be controlled byg,., the relative influence af, can be
controlled byy, and the smoothness @f. can be controlled by. This interpretation is useful
when initializing parameter values for estimation. The interpretation oversimplifies matters to
some degree. The roles of the parameters are actually not so clearly separated due to redun-
dancies among the parameters. For examplean be fixed without limiting the generality of
(4), and smoothness can be controlled by adjusting the remaining parameters. This is in fact the
approach adopted in Section 4 when estimafing The details underlying the interpretation are
spelled out as follows.

PROPOSITION4. Set(;, = 724, and define
Ap = {x |x = &> = & < ||x = &)1 — Cm forallm # k}. (5)

(i) We haved, = {x : ¢x(x) > ¢ (x) forall m # k}. EachAy is a convex set, pos-
sibly empty. The boundary between two neighbouring 4gtand A,, is a subset of a
hyperplane orthogonal tg,, — &,,,.

(ii) If the ¢y are all equal, then{ A, } forms a Dirichlet tessellation dk¢; i.e., A;, consists of
all x nearest tc€,, . If the(;, differ substantially, then the spatial interpretation of §eis
less clear; e.g., itis possible thét ¢ Aj.

(i) We havel,, /0y = é1(1 — ¢i) form = k, and—¢r ¢, for m # k, so increasingy;
increases the influence 6f and diminishes that of othet,,, .

(iv) Fix ¢(1,&,...,Ck, €. AsT approaches), ¢;(x) converges to the indicator function of
Ay, for all x not on the boundary of;,. AsT approachesx, ¢ (x) converges td /K.

Proof. Direct calculation. ]

The functionsfx can be viewed as neural networks. If the reference point parameterization
is employed and;, = v is fixed, thenfx is a radial basis functions network of a type introduced
by Moody & Darken (1989). It is common practice in applications of such networks to replace
with varying parameters;. This permits variation in the receptive field size, i.e., the volume of
upper level sets of the basis functions. Proposition 4(iii) shows that fixangd varyingy; has a
similar effect. The(r, v, ) family of functions has a potential advantage over(the~) family.
Logistic basis functions are affine invariant while radial basis functions are not.



352 HOOPER Vol. 29, No. 3

When the linear parameterization (2) is employgd,can be represented as a network with
d inputs, K nodes in a single hidden layer, and one output. This is not a feed-forward net-
work, however, because the logistic transformation (called softmax in neural ndtteoakure)
involves all nodes in the hidden layer. In feed-forward networks, such as

K
> dxexplag + B,x)/{1 + exp(ar, + B,x)}, (6)

k=1

each hiddemode is transformed separately. The basis functions in (6) are ridge functions with

sigmoidal shape. The basis functions in (2) appear to have an advantage over those in (6) with

regard to estimation. While similar training algorithms can be applied to both models, the effec-

tiveness of these algorithms depends on the initial values chosen for the parameters. A spatial

interpretation of the reference points in (4) permits an effective initialization using a clustering

algorithm, which is described in the next section. This approach is not feasible g ih€6).

Initial weights in feed-forward neural networks are usually generated randomly (Ripley 1996).
The family { fx, K > 1} possesses the universal approximation property (Hornik, Stinch-

combe & White 1989), i.e., if is a continuous function defined on a compactAgethen there

exists a sequendgx ) converging uniformly tof on A. This result is easily demonstrated using

Proposition 4. Giverz > 0, chooseK and subsetsl; of the form (5) such thaf varies by

at moste/2 within eachA,. This can be arranged, for example, by settingyalto zero and

choosing the, so that the maximum of||x — &,l| : x € Ax, k < K} is sufficiently small.

Let = approach 0, so thatis essentially approximated by a piecewise constant function. Details

of the proof are omitteddrause the result follows from the universal approximation property of

radial basis functions (Xu, Kryzak & Yuille 1994).

4. ESTIMATION

4.1. Estimation offx by stochastic approximation.

Stochastic approximation was introduced by Robbins & Monro (1951). The following brief re-
view follows Benveniste, Mfivier & Priouret (1990). Consider minimizing a functian(é)
using an iterative algorithm driven by a sequence of independent and identically distributed ran-
dom vectors,,,

Gm = Hm—l —|—amH(0m_1,zm). (7)

Let the gain functionu,, satisfya,, > 0, > a, = oo, and>_ a3 < oo for somea > 1.
Write 8,,, = 6(t,,,), Wheret,, = > " | a;. After an initial transient phase, the behaviour of
process (7) is represented to a first approximation by that of the differential equétigrid: =
E[H{6(t),z}]. In stochastic gradient algorithms, the updating functibris defined so that
—E{H(6,z)} is proportional to the gradient @} ().

This section describes a stochastic gradient algorithm to estifiatg’'x = Zle O ¢y, for
given K. While the underlying idea is simple, its implementation involves several engineering
details, e.g., choosing the number of iterations and the form of the gain function. The choices
described below were made largely on empirical grounds, guided by experience with similar
classification training algorithms (Hooper 1999, 2001). The implementation of the algorithm
treats these choices as default values, to be ignored in most applications, but subject to adjustment
by the user.

Our underlying aim is to minimize the predictive risk

R(fx) = Ep{ly — fx(x)|*},

whereEp denotes the expected value when samp(itg) from a population of interest. Let
denote the empirical distribution, assigning probability. to each observatiofx;, y;). The L,
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estimatorfx minimizes the training risk
1 n
Ep{ly = fx (17} = =~ 3l = Fre(xa) | ®)
i=1

The response and covariates are centered and scaled to have zero mean and unit standard devi-
ation. This standardization makes it easier to initialize parameter values and specify updating
formulae. After estimationf is transformed back to the original scale. The reference point
parameterization (4) is employed, wittfixed at a convenient value described below. Set

6/: (61a71a€/1a"'a6Ka7Ka€/I()

and letd denote a parameter vector definifig. Since the parameters are not uniquely deter-
mined, 6 is not regarded as an estimator but as one of many equivalent parameterizations of
I

Initial parameter values are motivated by Proposition 4. The injtiadre set to zero. The
initial £, are obtained as a spatially representative set of points in the covariate space (see below).
The initial 05 are then defined as the average of ghgalues forx; in the region nearest §, .
The parameter is set to the average distance between nearest neighbours amaiigrthil
points§,. This choice forr yields a reasonable amount of overlap among neighbouring basis
functions.

A representative set df points¢,, can be obtained by minimizing

> min{|lx; — &[]tk =1,... K} (9)
i=1

The resulting points have been call&dmeans cluster centroids (MacQueen 1967) and principal
points (Flury 1990). The latter term is more appropriate here, as we are not searching for clusters.
The initial§;, can be calculated using/é-means clustering algorithm (Hartigan & Wong 1979).
My preference, however, is to initialize bogh andd; simultaneously, using a vector quantiza-
tion algorithm (Kohonen 1995). Begin by generatifig. . ., £x randomly from{x;,...,x,}
and set alb; to zero. Then repeat the following steps $000+v/K iterations. At thenth itera-
tion, sample(x, y) from P, determine the poirg, nearesk, replacet, by (1 — a,,)€), + amx,
and replacéy, by (1 —a,,)d), +any. The gainis defined as,, = 100v/K /(m+100v/K). This
algorithm produces approximate principal points gralerages, which serve as useful starting
values.

After selecting initial values, the training risk (8) is minimized by stochastic approximation.
In successive iterations, an observat{any) is randomly sampled (with reptement) fromP
and the parameter vect8ris updated as in expression (7). Set

hie(x,y,0) = |y — fx (x) |7 'sign{y — fx (x) }éx ().

Differentiation of—|y — fx (x)|? with respect to the parameters yields the following updating
formulae at thenth iteration:

0 — O+ afnhk(x, Y, 9) ,
Yoo e+ ahi(x,y,0){6k — fr(x)}, (10)
& — & +abhe(xy,0){6 — fr(x)}(x — &)
The parameter remains fixed. The updates make sense, based on the interpretation of the

parameters in Proposition 4.¢f fx (x) is positive (negative), thefy is increased (decreased).
If the product{y — fx (x)}{0x — fx (x)} is positive (negative), thep, is increased (decreased)
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andg,, is shifted toward (away fromg. The magnitude of each change dependggix) and,
if ¢ > 1,0n|y— fx(x)].
The number of iterations is set &f = 50000v/K . The gains are defined as follows:

& cgM
aom, 1§m§M/2,

€ 2Mom) A9 < m < M,

pr/o
ab, = d,, a), = d5,/2, a5 = 0.25, andc, = 0.01. The updating functions and gain functions
were scaled in an attempt to make the three perturbationsin (10) have effects of similar magnitude
on fK (X)
The theory of stochastic approximation indicates that after an initial transient phase, the
training process typically converges toward a local optimum (Benvenistéividl & Priouret
1990). There is no guarantee that a global optimum will be found, and replication of the process
could produce varying results, but the algorithm typically yields reasonable results. The quality
of the estimator is improved and variation under replication is reduced by restarting the process,
e., replicate the first 10% of the process ten times, calculating the training risk each time, then
continue the process with the most promising vector of parameter values.
Four commentsFirst, note that the updates (10) for the estimator depend on the deviation
y — fx(x) only through its sign. This shows that tlig estimator is robust against outliers
and heteroscedasticity in the response variable. Second, the ninbeiterations increases
slowly with the complexity of the fitted model but does not depenc oiVhenn is small to
moderate, each observation is sampled many times, but wiewvery large, some observations
may not be sampled at all. In the Viking formation example, wWith= 12 andn = 74229, each
observation is sampled on averayd times. One might want to increadé in such situations.
Third, although | have not done so, one could exploit the conditional linearity of the model
when estimating thé, coefficients for thel., estimator, e.g., obtain preliminary estimates by
stochastic approximation, then fix the basis functions and obtain exact least squares estimates of
thed;. Care would be needed to deal with potential problems of multicollinearity. Fourth, for the
L, estimator, stochastic approximation can be replaced myrdinear least squares algorithm,
such as Gauss—Newton or Newton—Raphson (Bates & Watts 1988). These “batch” algorithms
require fewer iterations than the “on-line” algorithm described above, but they typically employ
the entire data set at each iteration. | hawerfd stochastic approximation to be highly effective
in problems with large data sets and large numbers of parameters. Randomness may help in the
search for a good local optimum, given a poor initial function estimate.

4.2. Selection oK by generalized cross-validation.

Our aim is to select a numbéf so thatR(f,) ~ ming R(fx). To this end,X is obtained by
minimizing an adjusted training risk

Rch(fK) = (

) Zlyz (%), (11)

wherep = 1+ (K — 1)(d + 2). This adjustment, called generalized cross-validation, was
originally introduced forl., loss and linear smoothers (Craven & Wahba 1979). Its application
here is justified primarily on empirical grounds. In simulation studies, \idthpproximated
using a large test seR(fK) was typically close taning R(fx). A straightforward search is
employed to minimize (11). The GCV risk is evaluated for successive valuls starting with

K = 1. The search halts when the minimum GCYV risk remains unchanged fmnsecutive
values ofK . The selection ofs therefore involves the calculation &f + m estimates'x . This
simple strategy works well because computation time increases rapidlyiwitiee below) and
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typically & < 10. The stopping valuen = 3 is adequate in most situations. A larger value may
be useful ifRgcv(fx ) is unusually flat as a function df .

The adjusted riskkcev(fy) is not always a good estimator &f(f, ). Simulation stud-
ies reported in Section 6 show that when the sample size is small, theRatio(f )/ R(fz)
could be highly variable and the average ratio could be significantly less than one. These findings
suggest that if an estimate Bf(j}() is required, therRch(fK) should be supplemented with
a more reliable estimate, such as a 10-fold cross-validated risk estimate or a bootstrap estimate.
The findings do not invalidate the use of GCV in selectihgoecause risk estimates for consec-
utive values ofi’ are highly correlated. In simulations, plotsB&cv (fx ) andR(fx ) against
K often differ substantially while still attaining their minima at the same value

Whenp/n is small, the GCV criterion (11) is closely related to AIC (Akaike 1973). Suppose
the conditional density of givenx has the form

gexp{_|y— fK(X)|q} ’

o qod

wherec is a normalizing constant andis a scale parameter. For= 2, we have the normal
density, and for, = 1, the double exponential. Lét(8, ¢) denote the likelihood function based
on the conditional density dfy; , . . ., y») given(xy, .. ., x,). A maximum likelihood estimator
for 8 yields the ALB L, estimatorfx, and the mle fop is

L& A 1/q
&K:{gZWi_fK(Xi”q} :
i=1

Using AIC, we would selecfy to minimize — log L(éK, dx) + p. This is equivalent to mini-
mizing
log(c%) + qp/n = log(¢) — qlog(l — p/n). (12)

The right-hand side of (12) is the logarithm of the GCV criterion (11).pAs increases, GCV
assigns an increasingly heavier penalty relative to AIC. In particular, GCV imposes the restriction
p < n, while AIC does not.

A potential misconception about model fitting warrants the following comment. Many re-
gression methods select from a large set of potential basis functions using forward selection
and/or backward elimination strategies. ALB regression adopts a different approach. AVhile
is selected by sequentially calculatifig, parameters are optimized separately for esichThe
parameters and basis functions determinfpgplay no role in the calculation of x 1. The
estimatorf would not be improved by pruning basis functions because parameters are optimized
jointly for all K basis functions.

The computation time required to estimateincluding selection ofy, is typically between
5 and 30 seconds, fast enough for interactive use. The time increase& witid d (but does
not depend org) and increases very slowly with. Table 1 lists ALB estimation times for a
360 MHz SUN UltraSparcll workstation. Each value includes the total time needed to ghtain
for K = 1,..., K + 3. The sample size was = 500. The time is roughly linear im, with
intercept and slope depending éfh and roughly linear ink 2 with slope depending od. The
sample sizex has relatively little effect on timedzause of the sampling technique used in the
training algorithm. The numbe¥ of iterations is proportional t¢/ K, each iteration requires the
evaluation ofK” distances, and each distance calculation timedp@tionaltod. Times increase
slowly with n because of increased overhead (dafaut and transformation, calculation of the
GCV risk) and a tendency to select largér In the Viking formation example with = 74299
and K = 12, the computing time was 150 seconds.
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TABLE 1: Time (in seconds)to calculafe including selection of<.

1] 26 3.1 3.6 5.1
2| 35 48 56 8.1
5| 92 126 15.2 22.4
10 | 27.0 375 446 66.1

15| 56.6 79.3 946 140.7

5. STANDARD ERRORS

This section presents approximate standard errors for the & 8stimator and the components
of its gradient. The reader is advised that the derivation makes unwarranted assumptions and
the approximations are unreliable in some situations. The derivation assumés thakl is
fixed, f(x) = fx(x) for somed € R+DK and they; — f(x;) are normally distributed with
zero mean and constant variance Standard errors are obtained using a standard asymptotic
technique in nonlinear regression analysis, e.g., see Bates & Watts (1988, Section 2.3). The
regression functioryx (x) is approximated locally nea by a linear function ofd. Linear
regression formulae are then applied. The redundant parameterizatiopre$ents a potential
problem here. Further difficulties could arise from multicollinearity among the estimated basis
functions. Both problems are resolved in a simple manner by a ridge regression technique.

Set

v(x,0) = 0fk(x)/060 and A=) v(x;,0){v(x;,6)}.
i=1
The matrixA is singular and nonnegative definite symmetric with positive diagonal elements. An
invertible matrixB is obtained by slightly increasing (multiply by 1.0dach digonal element
of A and leaving off-diagonal elements unchanged. The error variance is estimated by

~2
Ua_

LS - f)

n—p*

wherep = 1+ (K — 1)(d + 2). Givenx, the standard deviation ¢f(x) is estimated by

L q1/2

se{f(x)} = o [{v(x, 0B 'v(x,0)| . (13)

The intervalf (x) & 2se{f(x)} provides an approximate confidence interval fox) with
nominal 95% coverage probability. One may note four potential problems with this simple confi-
dence interval. First, the ridge modificationAoproduces a slight downward bias in the standard
error. Second, the quality of the linear approximatiorfgfmay be poor. Bates & Watts (1988)
suggested methods for identifying curvature effects and modifying confidence regions, but their
methods may not be tractable in the applications considered here. Third, standardcaoors
for variance, but not bias. If is poorly approximated byx, thenfx (x) may have substantial
bias relative to its standard deviation. Fourth, and perhaps most important, the derivation as-
sumes thafy is fixed. The effect of adaptive selection is unknown. It seems likely that variation
in X will increase variation i, and hence in the standard error.
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The simulation studies in Section 6 suggest that the confidence interval can be moderately
liberal with coverage probabilities (averaged ower . . ., x,,) between 85% and 97%. These
results reveal only part of the story, since coverage could also vary across the covariate space.
For a simple example, suppoge= 1, « is uniformly distributed ovef0, 2x), f(x) = sin(z),
andeo. = 0.5. The sine function is well approximated By with X' = 4, but smaller values
of K are often selected whenis not large, e.g.P(K < 3) ~ 0.20 whenn = 100. When
K = 3, f typically fits f well over much of the interval, but fits an asymptote at one end. In
the region with the asymptotg‘f — f| tends to be large Whi|ﬁ3(f) tends to be small. Coverage
probabilities are thus lower for values.ohear the ends of the interval. This problemfobeing
underestimated, and bias thereby being increased, appears to diminighcesases and/or the
signal-to-noise ratio increases.

Approximate standard errors for gradient components can be defined in a manner similar to
(13). Set

0 X J ; 9*
9j(x) = 92, (x), gj(x)= 92, fe(x), wi(x,0)= 960z, fr(x),
wherex’ = (21, ..., 24). Givenx, the standard deviation gf (x) is estimated by
L q1/2

se{gj(x)} = o= |{w;(x,6)}'B™'w;(x,6)

The intervalg; (x) £ 2se{g;(x)} provides an approximate confidence interval §ofx) with
nominal 95% coverage probability. The actual coverage probability is less stable than that for
the f(x) interval, perhaps due to increased bias in the gradient estimator. The estfmaéods

to flatten near the edge of the data, shrinkingoward zero. The simulation studies in Section

6 (results omitted from Table 3) revealed coverage probabilities (averagestqver , x,,) be-

tween 75% and 100%. The higher coverage probabilities occur whisridentically zero, i.e.,

when the covariate; is a nuisance variable. Variation in coverage across the covariate space
appears to be greater for derivative$x) than forf(x).

In view of the problems noted above, one may wish to restrict application of the standard er-
rors to exploratory analysis and adopt alternative methods, such as the bootstrap, for more formal
inference. | have found the standard errors useful in two regards. First, pletsfdk)} can be
used to detect outliers in the covariat@sp. When using to predict a response at a new point
x, it is not always clear whether lies within the available data. A large standard error suggests
that the prediction involves extrapolation and is thus likely to be affected by increased bias and
variance. Second, boxplots of the standardized gradig(ts/se{g;(x)} may suggest possible
nuisance variables. If does not involve the covariatg, theng; (x) = 0 for all x. Elimination
of such variables can substantially improve the fit. It should noted that standardized gradient
plots, liket statistics for linear regression coefficients, could be misleading given dependencies
among the covariates.

6. SIMULATION STUDIES

The accuracy of the ALB., estimator was investigated in simulation experiments. Various ex-
amples were chosen to investigate how comparative performance depends on the target function
f, the dimensionalityl, and the sample size. In each example, 100 samplesroindependent
observations ofx, y) were generated from a model:= f(x) + ¢, wherex ande are indepen-

dent,x is distributed uniformly on a hyperculfe, )¢, andz is aN (0, 02) random variable. The

ALB L, estimatef was calculated and several performance measures were evaluated for each
sample. Averages and standard deviations of the performance measures are reported in Table
3. There are ten basic examples. Each has several valuesooflemonstrate how accuracy
improves with increased sample size. Some have several valdds oiemonstrate the adverse
effects of nuisance variables. Table 2 lists characteristics of the basic examples: the ffinction
the side(a, b), o = the standard deviation ¢f(x), ando.. The signal-to-noise ratio is /..
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TABLE 2: Examples used in simulation studies.

No. Functionf Side oy 0. olfo;
1 constant (0,1) 0.00 1.00 1.000
2 exp{z1 sin(wz2)} (-1,1) 045 050 0.552
3 Bsin(rias) (-=2,2) 1.90 100 0.217
4 T1T273 (-2,2) 150 100 0.308
5 additive (16) (0,1) 252 1.00 0.136
6 partly additive (17) (0,1) 490 1.00 0.040
7 impedance (18) (0,1) 354. 118. 0.100
phase shift (19) (0,1) 0.33 0.11 0.100
9 GBCW (20) (0,1) 3.10 1.00 0.094
10 ALB(K =5d=4) (0,1) 053 0.18 0.100

Two measures of predictive accuracy are reported for gacEach measure is scaled by
dividing by aj = 0'? + o2. The scaled mean predictive squared error evaluates accuracy at

points within the observed sample:

MPSE = [% D ASG) = f(xi) + 03] / oy -

The scaled integrated predictive squared error evaluates accuracy okigpéneube:
tesE = | [(760) = F) Pt +2] [ (14)

where P, is the uniform distribution orfa, b)¢. The numerator of (14) was approximated by
averaging the predictive squared errorfobver an independent sample @fn observations.
Usually IPSE is greater than MPSE, and the difference could be large wieeamall ord is
large. Both predictive measures are bounded belowZy? listed in Table 2.

Averages for three additional measures are reported as WelCPf, and GCV/IPSE. CP
is the observed coverage probability of a nominal 95% confidence intervglfgr averaged
over the sample:

CPr= 301 [Ix) — )] < 25€(7(x))]
i=1

GCV/IPSE denotes the ratio of scaled GCV risk to IPSE, where the unscaled GCV risk is defined
in (11). The tabulated values suggest that the bias in the GCV risk is small when MFSEE
but that the GCV risk tends to underestimate the integrated predictive squared error when MPSE
is substantially less than IPSE. The average ratio of scaled GCV risk to MPSE (which is not
tabulated) is typically greater than one. As the sample sitereases, the difference IPSE
MPSE and the bias in the GCV risk both decrease.

Adaptive estimators should detect real structure where it exists and ignore spurious structure
caused by random variation. Example 1 focuses on this second goal by examining performance
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when f is constant. We would hope that, in most samples, ALB selscts 1 so thatf =
and IPSE= 1 + 1/n. Table 3 shows how accuracy deteriorated ascreases and improves as
n increases. In the 100 replicates for each of the faur) pairs, ALB selecteds = 1 with
frequencies 96, 74, 64, and 82.

Examples 2, 3, and 4 were used by Breiman (1991) to illustratd thhethod for multivariate
function estimation. Thél method employs approximations of the form

M

f(x) =

d
I Ami (), (15)
1j=1

where theh,,; are smooth functions. The target functiohi the three examples are all well
approximated by1() with M < 2, so thell method performs very well here. Breiman’s root
mean squared error results (foe= 100) are equivalent to MPSE values of 0.64, 0.25, and 0.33.
The less efficient performance of ALB, observed in Table 3, stems from the the target functions
being less easily approximated by logistic basis functions. This can be seen by comparing aver-
age numbers of degrees of freedom used in the two approaches. Breiman (1991) repaifted
=6.5,13.1, and 5.0. Corresponding values for ALB (witk 100) arel + (ave K —1)(d+2) =
14.9, 20.8, and 34.5. The difference in comparative performance is greatest in Example 4, where
the target function is extremely simple for themethod but relatively complex for ALB. In
support of ALB, however, note that thHé method is sensitive to the coordinate system used to
describe the covariates. If the coordinate axes were randomly rotated, then a larger number of
products would likely be needed for a good approximationi i¥),(and the performance of the
IT method would suffer. The performance of ALB would be unaffected by such a rotation. The
target functions are relatively complex, with several ripples or bumps. ALB adaptively selects
larger values of asn increases.

Examples 5 through 8 were used by Friedman (1991) to illustrate MARS. The target in Ex-
ample 5 is an additive function of the first five covariates:

f(x) = 0.1exp(4a1) +4/[1 + exp{—20(x2 — 0.5)}] + 323 + 224 + x5 . (16)

Friedman reported IPSE values for MARS (with= 10 and» = 50, 100, 200) of 0.26, 0.18,
and 0.16. The target in Example 6 is a partly additive function:

f(x) = 10sin(7z 22) 4 20(25 — 0.5)% + 1024 + 5z . (17)

Friedman’s IPSE values (again with= 10 andn = 50, 100, 200) were 0.24, 0.074, and 0.056.
ALB results are reported in Table 3. In both examples the resultg for10 are substantially
worse than those of MARS, but the resultsdot 5 are only slightly worse. The higher accuracy
of MARS is obtained to some extent by exploiting the additive and partly additive structure of
f and by effectively eliminating the nuisance variabtes. . ., z1,. A rotation of the coordinate
axes would create higher-order interactions, adversely affecting MARS but not ALB.

Plots of the ALB gradient functiorn (x) can be used to detect additive and partially additive
structure. If the effect of; is additive, as in Example 5, then the gradigr(t) is a function of
z1. If the joint effect of(z1, x2) is additive, as in Example 6, then the gradignts) andg»(x)
are functions of(x1, #2). In these examples, plots of the ALB gradient estimates reveal little
scatter about the gradient curve. These ALB diagnostics would suggest the use of alternative
methods, such as MARS, that exploit additivity. As noted in Section 5, plots of standardized
gradient functions can be used to detect nuisance variables.
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TABLE 3: Performance measures: averages (and standard deviations) from 100 replicated
samples of size. MPSE and IPSE are bounded belowd3y/ o, listed in Table 2.
No. d n K MPSE IPSE GCV/IPSE cP
1 1 100 1.04(20)  1.01(.02) 1.01(.03) 1.00(.16)  0.95(.22)
5 100 1.38(.76)  1.06(.11) 1.07(.14) 0.94(.17)  0.90(.23)
10 100 1.60(.97)  1.14(.21) 1.23(.38) 0.86(.22)  0.88(.23)
10 400  1.26(.63)  1.02(.04) 1.02(.05) 0.98(.08)  0.90(.25)

2 2 100 4.47(83)  0.66(.03) 0.70(.04)  1.02(14)  0.92(.06)
2 200 5.49(12)  0.63(.02) 0.64(.03)  1.00(.12)  0.90(.08)
2 400  6.64(94)  0.59(.01) 0.60(.02)  1.02(.08)  0.93(.05)
3 2 100 5.96(1.7)  0.29(.03) 0.34(.04)  1.03(.23)  0.92(.08)
2 200 8.34(15)  0.25(.02) 0.27(.03)  1.05(.15)  0.96(.07)
2 400 951(.78) 0.23(006)  0.24(01)  1.05(.08)  0.98(.03)
4 3 100 7.69(.80)  0.41(.03) 0.55(.09)  0.96(.21)  0.94(.05)
3 200 8.76(.43)  0.35(.02) 0.38(.04)  1.01(14)  0.97(.04)
3 400 9.04(.20)  0.32(.007)  0.33(01)  1.02(09)  0.97(.03)
5 5 50 3.05(74)  0.22(.02) 0.31(.08)  0.81(.23)  0.88(.08)
5 100 3.87(.92)  0.20(.01) 0.23(.03)  0.89(.15)  0.84(.09)
5 200 5.09(.95)  0.18(.01) 0.19(.01)  0.96(.10)  0.85(.10)
10 50 254(56)  0.25(.02) 0.42(13)  0.80(.30)  0.92(.07)
10 100 3.36(.88)  0.23(.02) 0.33(.07)  0.79(.20)  0.88(.08)
10 200 4.15(.89)  0.20(.01) 0.24(.02)  0.88(.13)  0.83(.06)

6 5 50 458(73) 0.080(.022) 0.19(08)  0.87(.40)  0.97(.05)
5 100 5.42(.64) 0.063(.004) 0.089(.025)  0.91(22)  0.95(.04)
5 200 6.10(.93) 0.056(.003) 0.063(.005)  0.95(.12)  0.89(.05)
10 50 2.85(.72)  0.15(.06) 0.46(.14)  0.71(29)  0.92(.09)
10 100 4.93(.57) 0.077(.016)  0.17(.06)  0.86(.27)  0.98(.03)
10 200  5.29(.50)  0.063(.003) 0.081(.010)  0.95(.15)  0.92(.03)

7 4 25 235(50) 0.16(.02) 0.25(.10) 0.86(.43)  0.93(.09)
4 50 2.84(53)  0.14(.01) 0.16(.03) 0.91(.23)  0.92(.09)
4 100 3.16(44) 0.12(.007)  0.12(.01) 0.97(.16)  0.93(.06)
4 200 3.33(55) 0.11(.003)  0.11(.005)  0.99(.12)  0.91(.06)
8 4 25 238(53)  0.17(.03) 0.52(.23) 0.47(23)  0.91(.12)
4 50 3.13(.73)  0.15(.02) 0.33(.12) 0.58(21)  0.91(.11)
4 100 4.13(77)  0.14(.01) 0.20(.05) 0.77(.18)  0.93(.05)
4 200 4.60(.68) 0.13(.009)  0.16(.02) 0.89(.14)  0.89(.06)
9 2 25 307(26) 0.12(.02) 0.15(.05) 1.12(.47)  0.98(.04)
2 50 3.16(.39) 0.11(008)  0.12(.02) 1.01(23)  0.97(.05)
2 100 3.25(56) 0.10(.004)  0.10(.007)  1.00(.17)  0.94(.06)
10 50 2.99(.61)  0.19(.07) 0.50(.29) 0.80(.28)  0.91(.16)
10 100 3.14(.38)  0.12(.01) 0.15(.05) 0.95(.21)  0.96(.03)
10 50  4.16(47)  0.14(.01) 0.20(.05) 0.92(.32)  0.97(.04)

200 5.06(.45) 0.12(.004)  0.12(.006)  0.97(.10)  0.94(.04)

4

4 100 4.59(62) 0.13(.007)  0.14(.02)  0.95(.19)  0.95(.04)
4

4 400 5.06(28) 0.11(.002)  0.11(.003)  1.00(.08)  0.94(.04)
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The functionsf in Examples 7 and 8 relate impedance and phase shift to four other variables
in an alternating current series circuit (Friedman 1991):

impedance = <Q2+R2)1/2 and (18)
phase shift = arctan(Q/R), (29)

where R = 100« is the resistancey = 27(20 + 260x5) is the angular frequency, = 3
is the inductance(’ = 1 + 10z, is the capacitance, and = wlL — 1/(wC'). These target
functions include interactions of all orders, although capacitance has only a slight effect over the
specified domain. Friedman (1991) reported the following IPSE results @nvith4 andn =
100, 200, 400): 0.35, 0.21, 0.16 for impedance and 0.32, 0.25, 0.21 for phase shift. O'Sullivan
(1991) reported improvements over MARS in these examples using a smoothed version of CART.
Forn = 100, he obtained IPSE 0.22 for impedance and IPSE (.25 for phase shift. ALB is
substantially more accurate in these examples. Resultsawitte5, 50, 100, 200 are reported in
Table 3.
Example 9 was used by Gu, Bates, Chen & Wahba (1989) to illustrate interaction spline
smoothing: ( )
40h(x,0.5,0.5
T = 302,01+ h(x,07,0.2)

(20)

where
h(x,a1,az2) = exp [8 {(xl — a1)2 + (22 — az)z}] .

This example was also used by Breiman (1991) and Friedman (1991) to illustratentieéhod

and MARS, respectively. Plots gf and several estimatgscan be found in these references.

The targetf is well approximated byx with X' = 3, and ALB provides accurate estimates with
small sample sizes. Other estimators are less efficient. Gu, Bates, Chen & Wahba (1989) and
Friedman (1991) reported MPSE = 0.11 foe 300 andd = 2. Breiman (1991) reported MPSE
=0.125 forn = 100 andd = 2.

TABLE 4: IPSE results for MARS in Example 10, based on 100 replicated samples of.size
The tuning constant “degree” is the maximum number of covariates permitted in MARS interaction terms.

degree
n 1 2 3 4

50 | 0.74(.10) 0.61(.20) 0.70(.34) 0.72(.38)
100 | 0.66(.05) 0.40(.46) 0.47(.48) 0.49(.48)
200 | 0.63(.03) 0.29(.09) 0.32(.09) 0.33(.33)
400 | 0.61(.02) 0.28(.09) 0.29(.07) 0.30(.06)

In Example 10, the target functiofi is an ALB regression function defined on a 3-
dimensional projection dk?, i.e., f(x) = [k (z) whereK = 5,z = (21, 22, z3)’,

2 = V34 watas g —2),
Zs = \/5(1‘1-1-902—1‘3—904),
Z3 = \/§($1—$2+$3—$4)~

The z; have mean 0 and standard deviation 1. The reference point parameterization is used
to specify fx: &, = (1,0,0), &, = (—1,0,0), €5 = (0,1,0), &, = (0,0,1), & = (0,0,0),
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vy == =0, =6 = 1,85 = §4 = —1, 45 = 0, andr = 1. The targetf can
be expressed directly as an ALB functionxgfwith suitable parameters, arfchas interactions
of all orders among the four covariates. The interpretatioyi &f simpler in terms of.. For
fixed (22, 23), f is a bowl-shaped function af . For fixed(z1, z3), f is a decreasing sigmoidal
function of z3. For fixed(z1, 22), f is a decreasing sigmoidal function of. Table 3 lists ALB
results forn = 50, 100, 200, and 400. In previous examples, the average vallieinfreases
with n. Here, the results suggest thit converges in probability to the true valué = 5.
Whether this convergence holdsas+ ~o is unknown.

In this example, the performance of ALB is substantially better than that of MARS (see Table
4). | carried out simulations using the version of MARS in the mda Package (Hastie & Tibshirani
2001, http://lib.stat.cmu.edu), varying the “degree” argument and setting all other arguments
to their default values. The degree specifies the maximum number of covariates permitted in
MARS interaction terms. Setting the degree to 1 yields an additive model. The best MARS
results were obtained with the degree set to 2. It appears that MARS has difficulty modeling the
higher-order interactions iffi, even whem is large. In further simulations, the average IPSE
values for MARS remain roughly constantiagncreases from 400 to 4000.

7. DISCUSSION

| have attempted to show that ALB provides a useful addition to regression methodology. Its
strengths, such as affine invariance, complement those of other flexible regression techniques.
ALB appears well-suited for exploration of large multidimensional data sets where the target
function f contains higher-order interactions. Some of ALB’s limitations may be addressed by
extending its methodology or by combining it with other techniques. The following are some
ideas under investigation.

The simulation studies show that when nuisance variables are added to the predictors, ALB
tends to compensate by reducing the number of basis functions. This results in smoother esti-
matesf and reduced predictive performance. The behaviour is related to the effective number of
parameters + (K — 1)(d + 2) employed by ALB. In many applicationg,is well-approximated
by a function defined on a lower-dimensional projection, iféx) ~ fo(Bx), whereB is a
dy x d matrix withdy, < d. There is a substantial body of literature describing stable meth-
ods for dimension reduction, see, e.g., Li (1991, 1992), Cook (1998a,b) ared(E€88). Such
methods can be used to estimdteand the column space @&, before applying ALB to the
lower-dimensional predictor space. The affine invariance of ALB implies that the subspace basis
chosen to defin® will not affect the resulting estimator.

When a residual analysis indicates heteroscedasticity, one may wish to employ a weighted
least squares estimator; i.e., minimize

n

S [t = Fxd /o]

i=1

wheres(x) is an estimate of some measure of scale for the conditional distributigpn ®he
extension of ALB to weighted least squares is straightforward. A robust scale estimate can be
obtained in two steps: first calculate the AlLB regression estimatg then calculate(x) as the
ALB L, regression ofy; — f(x;)| against eithef (x;) or x;. This conditional scale estimator is
motivated by the MAD (median of absolute deviations from the median) estimator used in robust
methods.

Regression quantiles can be estimated by modifying the ALB training risk) Setv < 1
and define the check functiop, (z) = (1 — a)(—2)T + a2z, where:* = max(z,0). Min-
imizing 3" po {5 — f(x;)} yields an ALB«-quantile estimator suitable for multi-dimensional
applications. He (1997) described methods for constructing several quantile curves that avoid
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crossing. This constraint can be implemented by using a common set of basis functions for all
guantiles and order restrictions on theoefficients.

ALB methods can be applied in the context of generalized linear models. The main adjust-
ment is to replace the training risk with an appropriate log likelihood. If the response variable is
nonnegative (e.g., count data) théfx) can be approximated bxp{>_ dx ¢x(x)}. Modifica-
tions to the updating functions (10) are straightforward. Techniques for an unordered polytomous
response variable were developed in Hooper (2001).
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Discussion *
Comment 1: Mary J. LINDSTROM

The author is to be commended for a very thorough and insightful presentation of a promising
new class of multidimensional nonparametric estimators. From this discussant’s point of view,
the most intriguing aspect of these estimators is that they are based on multivariate basis functions
whose locations are estimated from the data.

1. PARAMETERIZATIONS

Our first challenge is to understand the structure of the ALB estimator. If we start with the
reference point parameterization (equation 4) and (without loss of generality) wesgetl to

1, the parameters which define each basis function ar&’thelimensional “centres, and the

K scalarsy; . The form of the denominator, viz.

> exp(ym) exp(—[lx — &, ||,

m=1

is what makes the ALB functions interesting (and complex). If the denominator did not involve
x, the expfy) term in the numerator and the entire denominator could be absorbed; iito
equation 1) and we would have a set of very simple, radially-symmetric, Gaussian-density type
basis functions, i.e.,

o1 (x) = exp(—[Jx — &|1%).

However, the denominator does involve all the distaroes- &,, || with relative influence con-
trolled by v,,. Note that the relative influence gk — &,,|| is the same for all basis func-
tions (other than thenth) sincev,, does not vary by basis function. Thus the interpretation of
v = (v1,...,7k)" is more complex than might be expected at first. One interpretation which
seems helpful is that allows for estimation of the appropriate orientation of the basis functions,
i.e., it allows for affine invariance. It would be interesting to compare the ALB estimator to a
(nonaffine invariant) version with fixegl and potentially more basis functions.

It is interesting to note that while fixing does not reduce the generality@f(x), bothy and
the “centres’¢;, must be adjusted. That is, if we substitate= ¢7 for 7, then to obtain the same
basis functions we must also substitéfe= c?&,, for &, andy} = v — (1 —c?)||€,||* /72 for y.
Note that nothing limits the new “centregj; (or, for that matter, the original onég) to be in the
span of the predictors. This underlines the interdependence of the paramefersandr and
the risks involved in interpreting them separately. The approach taken by the author seems very
sensible. That is, reduce the over-parameterization of the basis by fixingroduce reasonably
centered “centres.” Unfortunately this mustdene separately fazach data set. 8agr = 1
is theoretically acceptable, but starting valuesf@nd§, may be difficult to guess.

2. COMPARISON TO B-SPLINES

The author points out the similarities between one-dimensional ALB functions and the b-spline
basis commonly used in fixed and free-knot regression splines. The term “free-knot” refers to
location parameters (knots) which are estimated from the data. Like an ALB function, the value
of a b-spline at a point depends on the distance framto the active “centres” (oknots) in

the b-spline. In the cubic regression spline that is commonly used, there are five active knots for
each b-spline. B-splines have truly locapgort in that ifz is outside the range of the five active
knots, then the b-spline value is zero. This is not a major advantage over ALB functions though

1These comments reflect the discussion of the paper which occurred after its public reading at the 29th
Annual Meeting of the Statistical Society of Canada in BurnabitiBr Columbia) on 14 Jun2001.
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since, depending on the parameter values, ALB functions can have effective (computationally)
local support.

There are at least two major differences between ALB functions and b-splines. First, the knot
locations completely determine the form of the b-splines. There are no parameters analogous to
7 and~ modulating the shape. This makes them less flexible but also eliminates the problem of
over-parameterization. Thus free-knot splines may be easier to estimate than ALB estimators.
The second major difference is that replicate centres in a regression spline (two or more centres
or knots with the same value) correspond to the loss of one or more derivatives at that location.
As the author points out, this could be an advantage when modeling non-smooth functions but
typically, it is more a nuisance when estimating knot positions. The enforced smoothness of
the ALB estimators may make them easier to estimate than free-knot splines but only when
using optimization methods which can handle over-parameterized models. These conflicting
conclusions indicate that a detailed comparison would be worthwhile.

The author mentions the over-parameterization of the ALB functions but does not specifically
discuss the problem of exchangeable parameters (which is shared by free-knot splines), i.e., ex-
changing the values &f, and~, with £; and~; for any: and; will not change the fitted values,
but does change the parameter vector. Exchangeable parameters contribute to the numerous lo-
cal optima which make least squares estimates of the knots in free-knot splines typically very
difficult to find. Not only are there multiple global optima with relabeled parameters, but the
exchangeability introduces extra local optimechuse of the symmetrgduced in the objective
function along lines and surfaces where two exchangeable parameters are equal (see Lindstrom
1999 for details). In one dimension, we can eliminate exchangeability by transforming the cen-
tres to a log-ratio parameterization which enforces ordering. Unfortunately, there is no obvious
analogy in multiple dimensions due to the lack of a strict ordering.

Even when using the log-ratio parameterization, there are typically many local optima in a
free-knot spline objective function which may or may not correspond to fits that are similar to
the global optimum. In other words, the global optimum can be difficult to find and it may be
important to find it. It seems that the estimation methods described in Section 4 would not, in
general, identify this condition. Also, an objective surface with multiple optima corresponding
to similar fits creates difficulties when estimating standard errors. The variability of the estimator
may be much greater than can be inferred from the local characteristics of the objective function
(a fifth caveat to the approximate standard errors).

B-splines do not generalize directly to multiple dimensions but there are many multivariate
basis functions suggested in the literature. Typically, howevektthkasis function depends on
only thekth centre through a term of the forfix — &,||, i.e., the locations of the other centres
do not influence théth basis function at all. It is intriguing that the ALB functions generalize
the dependence of b-splines on multiple centres to multiple dimensions.

| am not aware of any previous proposal for true estimation of the locations of multi-
dimensional basis functions. As the author points out, there are many proposed stepwise deletion
and insertion algorithms but these do not allow for the inclusion of the variability of the estimated
centre locations in estimates of the variability of the fit. It may be that most researchers, perhaps
given the known difficulties in estimating the knots in a unidimensional spline, felt that the com-
putational difficulties of estimating multivariate locations would be overwhelming. The author
is to be commended for finding a computational approach which is fast and seems to find useful
solutions.

Mary J. LINDSTROM:lindstro@biostat.wisc.edu
Dept. of Biostatistics and Medical Informatics, University of Wisconsin

600 Highland Avenue, Room K6/446, Madison, WI 53792, USA
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Comment 2: James O. RAMSAY

This paper showcases a wide spectrum of interesting ideas and issues in the smoothing of data
and the estimation of response functions andaa@$. The adaptive logistic basis system seems
well worth considering in some applications, and the optimization technology used to fit the data
has some distinct merits. The five examples are interesting, and this article would make great a
discussion piece for a graduate course in data analysis.

The implementation of localized basis functions in the 1960’s, especially in the literature on
spline functions, was an enormous leap forward with respect to either orthogonal polynomials
or Fourier series as basis systems for basis function expansions. It meant that complex curve
features could be accurately captured whti# setaining the sparse coefficient matrix in the
linear equation system defining least squares coefficient estimates. Thigxpadealculations
possible in practice, a crucial advantage when curve-fitting technology was transported to image
analysis where the numberof data points could routinely be in the thousands. Moreover, a
local basis system implies a local response to either changes in data or changes in coefficients,
whereas in polynomial and Fourier series bases, a change in a single coefficient changes the fit
everywhere, and often catastrophically at extreme sampling points.

Local basis systems led naturally to two strategies: use a lot of basis functions, and trim
or down-weight those not needed in the fit; or keep the nuntbef basis functions small,
and move them to where they were needed. Both strategies have advantages and disadvantages.
Certainly one plus for the second adaptive approach is that conventional statistical theory can be
appealed to in constructing confidence regions, since the number of parameters can be kept to a
reasonably small fraction of the number of data values.

However, adaptive systems could also be unstable, and the author alludes to the problem of
multicollinearity when two basis functions get too close together. The adaptive logistic basis
for curve estimation was used by Bock & Thissen (1980) to model human growth data. They
worked with three basis functions, implying nine parameters, but found that two parameters had
to be collapsed to assure stable estimation. This parameter-collapse issue is also well known in
the free-knot spline literature.

The real challenge is now in image analysis, whether over two or three spatial dimensions;
we probably have more reliable curve-fitting technology than we need at this point. Both of the
example response sades are rather benign in the sense of being fairly flat, with sampling points
distributed over most of a rectangular region. | wonder what advantages the adaptive logistic fit
would have relative to those from other approaches such as kernel or local polynomial smoothing
or tensor product splines.

There is a third basis selection strategy in the image situation that seems promising, illustrated
in Ramsay (2000). This is to position a great number of local basis functions exactly where they
are needed, and then to control the smoothness through the use of a roughness penalty. The
finite element method for solving partial differential equation systems can be adapted easily to
the smoothing problem, and it also permits adaption to complex boundaries, both around the
exterior of the data and also around “holes” in the interior of their distribution. T. Ramsay (2001)
has taken the finite element approach substantially further.

| would like to focus some remarks on the optimization strategy, stochastic approximation,
used in the paper. | was delighted to see this applied so successfully, and | am sure that we will
see many more applications in the near future as we confront more and more data sets with
of huge size.

Stochastic approximation may seem shocking at first sight, since it is the method that will not
produce the same answer every time, and almost guarantees that the answer settled on is not as
good as something out there. In this sense, it is in the same spirit as Markov chain Monte Carlo
techniques. Butin my opinion, statisticians have been too preoccupied by optimality, a view well
argued by Tukey (1962). What matters is that we can find a good answer to a question, especially
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when the best answer is going to be indistinguishably better in a sense that really matters, such
as predictive efficiency, risk, and other criteria. Those of us who work a lot with multicollinear
predictors in regression settings are already used to seeing a dozen models with vdtdes of
within 0.005 of the least squares estimate, even Witfixed.

Nevertheless, stochastic approximation could be slow, and when other methods are available
that yield answers quickly enough to enable bootstrapping and other resampling approaches to
interval estimation, they are likely to be preferred. In this regard, the first order differential
equation corresponding to the stochastic gradient method used in the paper can be solved directly
for the numbers of parameters involved in the illustration. The solution can be computed using
existing numerical methods, such as those available in the base version of the Matlab system, for
example. See Ramsay (1970) for a discussion of this approach.

James O. RAMSAYtamsay@psych.mcgill.ca
Dept. of Psychology, 1205 avenue Docteur-Penfield

McGill University, Montgal (Quebec), Canada H3A 2B1

Comment 3: Nancy E. HECKMAN

1. INTRODUCTORY COMMENTS

Parametric regression methods can be used to estimate an arbitrary smooth regression function
provided one uses a flexible set of basis functions. Common bases include trigonometric func-
tions yielding a Fourier series expansion and B-splines (see, e.g., Eubank 1988). The Fourier
method does not accurately estimate functions that are relatively constant in some regions but
rapidly changing in others. B-spline methods are able to adapt to this type of local variation
provided one chooses the B-spline basis appropriately. Choosing a B-spline basis is equivalent
to selecting a finite set of points, called knots, in the independent variatde sphis is typically

done by a somewhat cumbersome combination of forward selection and backward elimination.
Extending these B-spline methods to high dimensions is straightforward in principle, but is com-
putationally prohibitive due to the knot selection. See Stone, Hansen, Kooperberg & Truong
(1997) and Zhou & Shen (2001).

The author’s Adaptive Logistic Basis (ALB) regression method can be used to estimate func-
tions that are relatively constant in some regions but rapidly changing in others. The method
works well in high dimensions, and the speed is impressive (see the author’'s Table 1). The
method is virtually automatic, following easily understandable criteria in a non-ad hoc manner.
This is quite an accomplishment, and so the method shows great promise.

I will comment on some useful extensions of the methodology and also on one of the high-
dimensional exploratory techniques introduced by the author.

2. ADDITIVE MODELS AND MODEL TESTING

The author notes, in Section 3 of his paper, that “the funcfiamay exhibit simple structure re-
lated to the covariates... Methods that exploit this structure have an advantage.” Additive models
and semiparametric models have just such a simple structure.

With an additive model, one avoids some of the problems of high-dimensional regression.
Computations are faster and one eliminates the “curse of dimensionality,” the large mean squared
errors inherent in high dimensional estimation. Moreover, additive models are often easily inter-
pretable. As an example of an additive model, suppose the covariate wecaorbe split into
two components = (z1,z2). If there are no interactions between and z,, we model the
expected response additively ASe1,22) = fi(z1) + fa2(z2). In principle, the ALB method
can be adapted to fit this additive model by modeling:;) as> 1 67 ¢ (z;)(j = 1,2), with
the¢; as in (2) of the paper. Furthermore, the ALB method might be used to construct a test to
determine that there are indeed no interactions betweemdx-. We would compare the fit of
the additive model with the fit gotten from the full model, bootstrapping to calculptesdue.
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In a semiparametric model, the expected response is linear in some of the covariates and
smooth in the other covariates. Semiparametric models are popular due to their easy inter-
pretability and the parametric rate of convergence of the linear fit. The simplest example of a
semiparametric model arises whegiis the response to some treatment, one of the covaiates
say, is the treatment indicator, and the other covariatese nuisance parameters such as age
and weight. We model the expected responsgias f(x), f smooth. Is this model reasonable?

If so, what isg3, the treatment effect? A modified ALB would be able to answer these questions.

3. TESTING FOR SHAPE OF REGRESSION FUNCTIONS

In Example 2.3, the main interest is the existence and location of an anaerobic threshold. The
illustration in Figure 3(b) indicates that this threshold may appear at oxygen intake of approx-
imately 3000 units, when the gradient function becomes convex, that is, yHemecomes
negative. However, the-2se(g) confidence bands are pointwise and subject to the problems
discussed in Section 5, so any inference drawn is suspect.

Several nonparametric tests have been proposed to test the null hypothegi&that 0 for
all z, against the alternative th#t is positive for some region afvalues. See Bowman, Jones &
Gijbels (1998), Gijbels, Jones, Hall & Koch (2000), and Hall & Heckman (2000). Harezlak
& Heckman (2001) have extended the technique in Bowman, Jones & Gijbels (1998) to test
f¥)(x) < 0forall . Can ALB be used to test the null hypothesis tfit(x) < 0 for all ?
One way to do this would be to find an ALB fit gfrestricted so thaf””’ < 0, then compare this
fit to the unrestricted ALB fit. Can ALB be modified for shape-restricted estimation?

4. EXPLORATORY TECHNIQUES

| was intrigued by the techniques used to study the regression fit for the Boston housing data.
The techniques don't seem to be specific to the ALB method, and so might be generally useful in
regression analysis of high dimensional data. Two ideas are proposed: (i) defidirggctions
of high variability in f as those eigenvectors 6f = 3 j(z;)g(x;)’ corresponding to large
eigenvalues, wherg = 7 and (ii) clustering of gradient vectors.

| will only comment on the first method. The merits of (i) are clear faf the formf = 'z,
where any reasonable method should say that the direction of variabilitisof Hereg(z) = b
andG = nbb’, which has one non-zero eigenvalue, corresponding to eigenvecBelow I'll
argue that, for more complicated functions, the eigenvectofsadgpend on both the gradient of
f and the distribution of the; vectors.

Note that the directions chosen by this method are unchanged by a rotation of the axes or
by a shift in origin. If we work in the coordinate systesh = P’x + ¢ with P orthonormal,
and if X is an eigenvalue off with corresponding eigenvecterin the original coordinates, then
A is an eigenvalue of'*, as defined for the rotated coordinates, with corresponding eigenvector
P’v+c. Therefore, assume that thghave sample mean 0 and that the sample covariance matrix
is diagonal.

Consider a simple examplg(x) = «'Dz/2 with D diagonal. Sqj(x) = Dz andG =
D3 xx; D' = DXD with X diagonal withX;;/n equal to the sample variance of thih
covariate. The largest eigenvalue®fs equal to the maximum dDJZijj, with corresponding
eigenvector completely in the direction of the corresponding covariate. The variation in this
direction stems from both the variation in the function and the variation in the covariate. This
does in some sense meet the author’s claim of identifying “the directions in the covariate space
that best represent variation jiz " Is this interaction between the variation in the function and
the variation the covariates harder to interpret for more complicigsd

Nancy E. HECKMAN:nancy@stat.ubc.ca
Dept. of Statistics, The University of British Columbia

Vancouver, British Columbia,&hada V6T 122
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Comment 4: Hugh A. CHIPMAN and Hong GU

1. INTRODUCTION

We congratulate the author on an interesting, broad, and practical approach to flexible regression.
The paper includes many features one would expect from a methodology that has been around
much longer. The ability to apply the method to large datasets is appealing, the standard errors a
useful addition, the ability to do quantile and/or robust regression quite convenient, and there are
many extra options, such as the ability to reduce dimensionality of the predicioe.syp/e were
struck by how many avenues for further development were either already developed or suggested
in the paper. The paper also raises many interesting questions and should provide fertile ground
for further research.

In this discussion, we consider two modifications of the algorithm. In Section 2 we look at
how to deal with local optima of the parameters, and in Section 3 we modify the ALB algorithm
to fit radial basis functions. Section 4 concludes with an assortment of other comments.
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FIGUREC-4.1: A simulated example. In (a) is a simulated realization of 50 training cases, the true
function f(z) (—) and two local optimg (z) (- - - , — — — ) identified by different versions of ALB with

K = 4. In (b) estimated reference poirgs . . ., & (standardized by) from 20 runs of the algorithm are
plotted, using either random starts or the default algorithm.

2. IMPROVING THE SEARCH

Local optima could be a problem for the stochastic approximation algorithm, especially if some
optima fit poorly. The example in this section suggests that increased randomization of start
points and stepwise deletion of bases could be useful in finding good local optima.

Figure C4-1(a) gives the example used to explore these strategies and shows two local optima
of the ALB function withK' = 4. We takef(z) = exp{xsin(nxz)} + ¢, withe ~ N (0, 1) and
the training set having 50 equally spacedalues in the interval0, 3). The test set is the same
50« values, with responseg = f(x;) instead off(z;) + «.

In using the default parameters of the algoritiin= 5 was usually chosen, which provided
quite an accurate fit{> for test set~ 0.98). Closer inspection revealed that far = 3, 4, the
estimated function fit poorly$? < 0.70). With K = 3, itis possible to represent a single bump,
such as the large one near= 2.5. However, the algorithm tended to get stuck in poor local
optima [ — — in Figure C4-1(a)], perhaps due to minimal variation in the ten sets of starting
values chosen by the vector quantization (VQ).

We considered random starting points for the parameters, with the hope that increasing vari-
ability would allow the algorithm to avoid poor local optima. We sgt = 0 and drew random
pairs(z;,y;), ¢ = 1,...,4 from the training set. We sét = y; andé; = 2z;. Thex; values
were doubled bcause in the default runs of the algorithm, ¢healues were often outside the
range ofz. Using one simulated dataset, the optimization algorithm was run 100 times with
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different random number seeds ahd= 4. All 100 f curves correctly identified the bump at
z = 2.5[---in Figure C4-1(a)]. Without randomization, the original algorithm missed the bump
96 times ¢ — —) and found it the other four  -).

Although our implementation is primitive, an increase in the randomization of the initial pa-
rameter values seems to help the algorithm find better local optima. This better optimum is also
found by about half the runs of the original algorithm if the initial step size in the vector quan-
tization algorithm is doubled. A larger step size can be thought of as increasing the randomness
of the algorithm, since the VQ algorithm samples the training cases one at a time in random
order. Other randomization strategies, such as running VQ on small samples from the training
data, might also prove successful. Simulated annealing might also be useful, although this would
mean a substantial modification to the code.

In this example, we also found helpful stepwise deletion of basis functions. In Section 4.2, the
author comments that because the parameters of the model must be simultaneously optimized,
the stepwise addition or deletion of basis functions is not used. We think that deletion may be
helpful in some cases, such as when sevgrale very close. Consider tifevalues in Figure
C4-1(b), generated by 10 runs of the default algorithm and 10 runs with random starts. We
standardize values bywhich differs for each run. The model identified by the default algorithm
fits poorly and has a group of thréaround-2. In the reference point formulation (4) ¢f (x),
if two reference points are equal (sqy = &£:), then one basis function is redundant, since
$a2(x) = ¢1(x) exp(y2 — 71) = c¢1(x).

The near-duplication of reference points suggests a stepwise deletion strategy: if a model
with reasonable fit has reference points that are quite close, delete one of the “near-duplicate”
bases and use the remaining parameters as starting points for the algorithm. For the current
example, one run of the default algorithm with = 5 bases produced reference poifits-
—1.183,—.473, —.472,1.524,2.646. By deletingé; = —.473 and settingk’ = 4, the default
algorithm identified a solution similar to the - curve in Figure C4-1(a). This solution offered
comparable fit to thé&X = 5 case.

This illustration of two strategies for finding better optima should not be taken as an indication
that the default algorithm fails — after alk’ = 5 basis functions with good fit are identified. It
does indicate, however, that the search for good parameter values could still be refined in some
situations, perhaps leading to more parsimonious models.

3. RADIAL BASIS FUNCTIONS

The flexibility of the ALB family of models leads naturally to comparisons with other flexible
models, such as radial basis functions or neural networks. In this section, we modify the stochas-
tic approximation algorithm to estimate a radial basis function (RBF) model (Moody & Darken
1989). We consider the following parameterization of radial basis functions, as mentioned in the
paper:

K
on(x) = exp(=m|le = &lI1*) / Y exp(=m" |z = &mll?).
m=1

The parametet;, from ALB is dropped, and- is allowed to vary across basis functions. As in
ALB, a normalizing denominator is used. By allowing the radipsf the jth basis to vary, the
curvature of the function can be adjusted. Now we have

06m | 27 Nle = &illPou(1 =) ifm=k

o .
C| et - el Pem iEmA ke

As with v, in ALB, increasingr; increases the influence i, relative to other basis func-
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tions. Using the same gain,, as defined by Hooper, the updating formulae in (10) become
(Sk : 6[@ +afnhk(xay’ 9)’
T Th+ ahe(e,y,0) — fx (2)]]e - &[17(27,7°),

€t &+ ad hy(x,y,0)0, — fx(x)(x — &) (2777).

Note thata;, is used as the gain far. We used these updating formulae to modify the fortran
code provided by the author to estimate radial basis functions.

As mentioned in Section 2, & = &, for somek # m, one basis becomes redundant. This
redundancy does not occur with radial basis functions, singe# &,, butr, # 7,,,, a mixture
of two bases with different radii results.

The accuracy of RBF and ALB was compared in simulation experiments for the following
functions:

(i) 2exp{—(a} + x3)/2} + 3exp{—(a} + 23)/5};
(i) 2exp{—(2i +«3)/2} + 3exp[—{(x1 — 1) + (z2 — 1)*}/5];

(i) ALB: (2f1 +3f2)/(f1 + f2),
wheref; = exp{l — (2 + z3)/4} and f2 = exp[2 — {(z1 — 1)? + (z2 — 1)?}/4];

(iv) RBF: (2f1 4+ 3f2)/(f1 + f2),
wheref; = exp{—(z? + z3)} and fs = exp[—{(z1 — 1)? + (z2 — 1)?}/4];

(v)—(viii) Examples 2, 3, 6, 7 from the paper.

For each example, ten realizations of the dataset are simulated, and ALB and RBF models fit to
each dataset. Table C4-1 gives averagand IPSE values, and also the results of pairegbts

to compare IPSE values of the two models. A negatistatistic indicates that RBF has better
accuracy (lower IPSE).

For Examples 1, 2 and 4, RBF significantly outperforms ALB, which one would expect when
the true function is of the RBF form. For the ALB function in Example 3, ALB did slightly better
than RBF. In Example 8, there is no significant difference. In other examples, ALB outperformed
RBF. Does this mean ALB should be chosen over RBF? Nmessarily. In modifying the
ALB algorithm to estimate a RBF model, we changed only the updating formulae and the basis
functions. Other components of the ALB algorithm, which have been carefully optimized for the
ALB function (e.g., the gains functions,), were left unchanged. The performance attained by
RBF with a relatively straightforward modification of the algorithm is promising and indicates
the effectiveness of the stochastic approximation algorithm.

4. OTHER COMMENTS

The ALB model is affine invariant, in the sense that if any affine transformation is applied to
the predictors, there exists an ALB model using the transformed variables that provides exactly
the same predictions as an ALB model using the original variables. This doesn't necessarily
mean that the estimation algorithm can find this equivalent model, especially since there could
be many local optima. A related issue is the fact that the algorithm is based on the reference
point parameterization of the basis functions. By using Euclidean distance from reference points
& in the covariate space, the accuracy of the fit is sensitive {ticollinear covariates. Under

the affine transformation= B'z, whereB is invertible, the fits of the ALB regression based on

the Euclidean distances in thespace and in the-space generally will not have the same accu-
racy. Elements of the algorithm, such as the update steps, may be affected, potentially yielding
different models, even though the two forms of basis functions are one-to-one correspondent.
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TABLE C4-1: Comparisons between RBF and ALB:
average and standard deviations from ten replicated samples ef.size

ALB RBF
No. d n o;loe K IPSE K IPSE t p-value
1 2 100 1 42  0.59(.03) 21  054(03) —4.08  0.003
2 100 2 49 0.24(.02) 2 0.21(.008) —4.16  0.002
2 100 3 5 0.12(.005) 22  0.11(003) —10.15 0.000
2 2 100 1 3.7 0.59(.02) 2 0.54(.02) —5.3 0.000
2 100 2 4.9 0.24(.01) 25  0.23(.008) —2.06  0.069
2 100 3 5 0.12 (.006) 3.1  0.11(0.006) —3.01 0.015
3 2 100 1 2 0.52 (.02) 21 053(.02) 1.84 0.098
2 100 2 2 0.21(.007) 22 021(009)  2.30 0.047
2 100 3 2 0.10(.003) 22 0.11(.005) 2.27 0.050
4 2 100 1 41  0.59(.03) 22 053(.02) -6.76  0.000
2 100 2 5 0.24 (.009) 22  0.21(.008) —9.01 0.000
2 100 3 52  0.12(.005) 21 0.11(.005) —8.00  0.000
5 2 100 09 46 0.68(.02) 41 0.73(.04) 3.44 0.007
2 200 09 5.8 0.65(.03) 45  0.69(.04) 453 0.001
2 400 09 6.5 0.60(.02) 6.2  0.64(.02) 6.04 0.000
6 2 100 1.9 55  0.33(.03) 51  0.37(01) 3.38 0.008
2 200 1.9 8 0.28 (.03) 76  0.32(.02) 6.89 0.000
2 400 1.9 9.2 0.24(.008) 121 0.27(.01) 5.73 0.000
7 5 50 49 4.7 0.16 (.04) 45  0.23(.05) 3.03 0.014
5 100 49 52 0.08(.01) 57  0.10(015)  6.14 0.000
5 200 49 5.9  0.06(.005) 6 0.08(.007)  6.68 0.000
10 50 49 2.7 0.36(.08) 3 0.38(.09) 1.05 0.32
10 100 4.9 51 0.18(.07) 49  0.23(.07) 2.56 0.03
10 200 4.9 5.7  0.09(.01) 6.3  0.11(.03) 3.45 0.007
8 4 25 3 23 0.29(.10) 25  0.31(.14) 0.34 0.74
4 50 3 29 0.17(.04) 25 016(02) -065  0.52
4 100 3 3.3 0.12(.009) 3 0.13(.012)  1.17 0.27
4 200 3 3.5  0.11(.004) 38  0.12(.007) 272 0.023

Any sensitivity that ALB has to affine transformations should be smaller than for methods that
assume additivity, such as MARS.

The inclusion of standard errors in Section 5 is a nice addition to the paper, allowing inference
about the shape of the sade. The standard errors are obtainedditional on the number of
bases ), when in factk is estimated from the data. Accounting for uncertaintykirmight
be accomplished via thkootstrap or a more complex Bayesian approach (such as Smith &
Kohn 1996 or Chipman, George & McCulloch 1998). Bayesian (e.g., Draper 1995) or bootstrap
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(Breiman 1996) model averaging might also improve predictions by combining multiple models.
It is difficult to say whether model averaging will offer much of a gain with this form of model.
Improvements are usually largest for families of models that are sensitive to small changes in the
data, such as trees.

The stochastic approximation algorithm has been constructed so that the number of steps of
the algorithm does not depend on the sample size. With sample sizes of more than a few hundred
thousand, many points will never be used. This has a similar flavour to training the model on a
sample of the data, a common technique for large data sets.

In Section 2.5, the paper uses principal components of the gradient sum-of-products matrix
G, suggesting that if the first two eigenvalues are large, a two-dimensional plot will represent
most of the variation in the response model. We wonder whether this strategy could be taken fur-
ther, using the directions defined by the eigenvectors to reduce the dimensionality of the original
problem, perhaps yielding better models. This might also be an effective means to accomplish
variable selection, eliminating variables with loadings near zero in all large principal compo-
nents.

Hugh A. CHIPMAN: hachipman@uwaterloo.ca
Department of Statistics and Actuarial Science
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Hong GU:hgu@mathstat.dal.ca
Department of Mathematics and Statistics
Dalhousie University, Hiifax, Nova Scotia, @hada B3H 3J5

Rejoinder
Peter M. HOOPER

| thank the discussants for their thoughtful comments. My response is organized under three
topics. AFORTRAN implementation of ALB is availablefgtstat.ualberta.ca/pub/research/hooper/

1. OPTIMIZATION

Lindstrom provides an interesting comparison of ALB with free-knot splines. She suggests that
over-parameterization of the ALB model makes optimization more difficult. | am not sure that
this is necessarily so. Redundancy may improve optimization by creating more pathways toward
good local optima. In complex applications with many parameters, it may be unrealistic to hope
that a global optimum will be attained. The randomness inherent in stochastic approximation
could also have a beneficial effect, similar to simulated annealing, assisting escape from poor
local optima. | agree with Lindstrom that multiple local optima imply greater variangetiman

is indicated by the standard errors.

Ramsay notes that alternative non-stochastic optimization methods are available. Such meth-
ods should greatly increase computational speed in smaller problems, allowing the use of boot-
strap standard errors. | would expect stochastic approximation to remain competitive in applica-
tions wheren, d, or K is large.

Chipman and Gu suggest that optimization may be improved by increasing variability in the
initial reference pointg,. This modification can be implemented by reducing the number of
iterations in the vector quantization algorithm described at Expression (10). In effect, Chipman
and Gu replace the numb2s00+/K by 0. | suspect their modification may introduce too much
variation in some higher-dimensional applications, but an intermediate reduction may improve
performance in such cases. | have recently investigated an alternative vector quantization algo-
rithm allowing the initial reference points to depend on the joint distributior ahdy. This
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alternative seems to improve optimization in some examples and is included as an option in the
current implementation of ALB.

Chipman and Gu note that optimization can produce near-duplication of reference points.
They suggest a deletion strategy to construct a more parsimonious model. | have also observed
this phenomenon in several examples. There may be little advantage in deleting duplicates since
these have essentially no effect grand do not contribute to overfitting. Duplication may be
viewed as fortuitous. We may miss the optinkal= 4 model, due to poor initial values, but
then effectively obtain the optima@ = 4 model by takingi’ = 5.

2. ALB AND RBF AS LATENT VARIABLE MODELS

Chipman and Gu show how a radial basis function (RBF) model can be estimated by modifying
the ALB updating formulae. Some care is needed in applying the new formulae to ensure that the
7, are bounded above zero. The comparison of ALB with RBF illustratesdwowracy depends

on the nature of the estimarfd In my comparisons of ALB with MARS and with Pi, the method
requiring fewer parameters typically yields more accurate estimates. Chipman and Gu obtain a
similar relationship in their Table C4-1. When comparing averagealues for ALB and RBF,

it should be noted that the RBF parameterization is not redundant. The effective number of RBF
parameters i& (d + 2), as compared with + (X — 1)(d + 2) for ALB.

The two models differ with respect to affine invariance. The RBF model is invariant under
location shifts and orthogonal transformations, but not under scale transformations. The choice
of covariate scales can thus affect the number of basis functions required for adequate approxi-
mation of f. Orthogonal invariance of RBF implies that, like ALB, it is unable to capitalize on
additive properties of. Chipman and Gu correctly note that, while the ALB model is affine
invariant, the ALB estimator is not. The choice of covariate scales affects the initial parame-
ter values, and the initial values in turn can affect the outcome of the stochastic approximation.
Potential problems are reduced by routinely scaling all covariates to have unit variance, but
problems could still arise from dependencies among the covariates. The initial reference points
are more spread out in directions of greater variation in the covariate space. This behaviour is
advantageous when the gradientfofs small in directions with little variation i, but it is
problematic when the gradient is large in these directions. Transformation of the covariates to
principal components could sometimes help, but it could also aggravate problems associated with
high dimensionality; see the discussion at Expression (14) in Hooper (1999). To some extent,
ALB shares the advantages and disadvantages of principal components regression.

ALB and RBF models can be viewed as latent variable models. This perspective sheds light
on the ALB parameterizations, supplementing comments by Lindstrom, and reveals a somewhat
unusual property of the RBF model. In the following expressipfg,denotes various probabil-
ity and density functions. Supposés a discrete random variable, distributed jointly wih y),
and suppose the conditional mearyafiven(x, k) depends only ok, i.e.,E(y | x, k) = ;. We
then haveE(y | x) = > dxp(k | x). The ALB and RBF models for the conditional mean adopt
different parametric models fgr(k | x). Both models represent the regression relationship as
a consequence of a latent discrete varighlavith (some degree of) conditional independence
betweery andx givenk. The latent variable is an abstraction and would typically not represent
a “real” or interpretable category. The models place no restrictions on the marginal distribution
of x. Itis interesting, however, to consider implicit restrictionsgh) andp(x | k) arising from
Bayes's formula:

p(k|x) o p(k)p(x | k).

ALB selects a multinomial logistic model:
p(k|x) o exp(ag + B1x).

The implications of Bayes’s formula are well known, reflecting the relationship between linear
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and logistic discriminant analysis. The conditional density @ in the exponential family:
p(x| k) ox exp{Bx + h(x)}.

We may, for example, takg(x | k) to be theN,(gu,,, =) density, so thaB, = 7 'u,. The
distributionp(k) is unrestricted and is not related (x | ). The factorexp(«y) accounts for
bothp(k) and the normalizing factor fqr(x | k).
RBF sets
Pk | %) oc exp{—r *[]x — &|I*}-
The conditional density has the form

p(x | k) oc exp{—7?[[x — &||* + h(x)}.

The distributiorp() is then determined by the normalizing factor:
(k) o [ exp{=nllx = &l + hix) .

We may, for example, take(x | k) to be theNy(€,, 071,) density. We would then haygk) «
od. In the context of discriminant analysis, it would be unusual to adopt a model where the
prior probabilitiesy(k) are determined by the densitigék | ). The restriction op(k) can be
avoided by setting

plk|x) o exp{e — 77 %||x — &, [}

This model extends both ALB and RBF, but is not affine invariant.

3. EXTENSIONS

ALB adjusts the potential complexity of the model by varying the number of basis functions.
This strategy produces a flexible but relatively simple family of models. Heckman suggests
extending ALB to semiparametric and additive models. | briefly investigated semiparametric
models comprised of an ALB component and a linear combination of fixed basis functions. The
attempt was only partially successful due to difficulties in extending the optimization technique.
My approach was fairly simplistic, however, and further study is warranted. | have not explored
additive models with several ALB components. Here the task of optimization appears to be
more difficult and may require combining stochastic approximation with a backfitting algorithm.
Model selection issues also arise. | suspect that the ALB methodology will be tzessiul in
implementing additivity constraints than methods, such as MARS, that employ basis functions
designed for this purpose.

Heckman asks whether ALB can be modified for shape-restricted estimation. This is an
intriguing question. Let! = 1. By using Proposition 1 and the latent variable perspective
described above, the derivatives fif can be expressed in terms of conditional covariances
givenz. First note thaifx (z) = E(J | ) and3(x) = E(Bx | z). The first two derivatives of
areV) (x) = Var(B | z) and ) (z) = E[{B — B(x)}?| z]. The first three derivatives ¢y
are

I @) = Covld fila),
I @) = Covldn, {8 — B(x)}? ],
FO @) = Cov[sk, {Bs — B(x)}>| 2] — 3Cov(dk, B | ¢) Var(By | z).

With these, it should be possible to estimgtesubject to constraints on its derivatives.

Heckman gives an interesting analysis of the global visualization technique based on gradient
principal components. As she observes, the directions chosen depend on variation in both the
function and the covariates. | think this interaction can be interpreted as a consequence of the
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gradient depending on the scale of the response and the covariates, so the idea in Heckman’s
example applies in general. Chipman and Gu ask whether gradient principal components can be
used to improve the estimator by applying ALB to a smaller set of linear combinations. | have
made some progress in this regard, and an optional dimension reduction strategy is included
in the ALB implementation. It may also be useful to automate methods for identification and
deletion of nuisance variables.

Ramsay asks what advantages ALB has relative to other methods in the context of the Viking
formation and Boston housing examples. In the former example, affine invariant methods
seem more suitable than tensor-product splines. Also, robust methods are desirable given the
long-tailed distribution ofy — f(x). Regarding robustness, | neglected to mention work by
Forsythe (1972) oL, estimators in linear regression. He suggested the choige-otl .5 as a
good compromise, with efficiency near that of the estimator when the errors are Gaussian,
and with substantially higher relative efficiency when the errors are heavily contaminated by
outliers. In the Boston housing example, kernel methods may perform poorly due to the high
dimensionality. ALB describes relationships between housing price and the 13 covariates in a
parsimonious two-dimensional model.
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